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Breakup of H2
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Total and partial cross sections for breakup of the ground rovibronic state of H2
+ by photon impact are calculated

using the exact nonadiabatic nonrelativistic Hamiltonian without approximation. The converged results span six
orders of magnitude. The breakup cross section is divided into dissociative excitation and dissociative ionization.
The dissociative excitation channels are divided into contributions from principal quantum numbers 1–4. For
dissociative ionization, the fully differential cross section is calculated using a formally exact expression. These
results are compared with approximate expressions. The Born-Oppenheimer expression for the dissociative
ionization amplitude is shown to be deficient near onset. A Born-Oppenheimer approximation to the final state
is shown to give accurate results for the sharing of kinetic energy between the electronic and the internuclear
degrees of freedom—the doubly differential cross section. To accurately calculate the triply differential cross
section, including the angular behavior, it is shown that nonadiabatic wave functions for both initial and final
states are required at low electron energies.
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I. INTRODUCTION

The H2
+ cation is the smallest molecule, and one that is

relevant in contexts ranging from interstellar chemistry [1,2]
to fusion reactors and, as such, is well studied in the literature.
It provides the one-electron archetype for fundamental pro-
cesses, such as dissociative recombination [2]. Due to its size,
it is tractable to include nonadiabatic effects in calculating
its dynamics [3,4]. Such studies provide insight into how
coupled electronic and nuclear dynamics may be manipulated
by laser light, and in recent years, the interest in strong field and
ultrafast physics has led to many experimental and numerical
studies on this topic, including accurate descriptions of charge
localization [5,6], various processes in strong fields [7–11],
and others [12,13]. Benchmark calculations of bound-state
rovibronic energies have been given in Refs. [14–19].

The fundamental one-photon processes in H2
+ may be

called excitation, dissociative excitation, and dissociative
ionization. The first, excitation to bound vibrational states
of excited Born-Oppenheimer electronic states, occurs with
vanishing probability from the ground rovibrational state.
Dissociative excitation or photodissociation has been studied
experimentally [20–23] and theoretically [23–26]. Disso-
ciative ionization has received prior interest by theoreti-
cians over the decades [27–31] and, recently, through the
topic [32] of differential cross sections and interference
effects [33–37].

Given the degree to which it is studied, it is surprising that
no ab initio calculation of its one-photon Fermi’s golden rule
breakup cross section that treats the nuclear and electronic
degrees of freedom on the same footing has been published.
The process represents one of the three fundamental Coulomb
breakup problems, the others including double ionization of
helium, a complete calculation of which was reported in 2005
[38]. Here, such calculations are presented.

II. HAMILTONIAN AND BASIS

The calculations employ an implementation [39–42] of the
full nonadiabatic Hamiltonian in prolate spheroidal coordi-

nates [4,42]. The nuclear basis set is identical to that used in
Ref. [42], but the expressions for the matrix elements have
been improved. The basis functions are localized piecewise
polynomials defined on a product grid in the prolate spheroidal
coordinates with some matrix elements evaluated within the
discrete variable representation approximation [43–46]. For
odd-M values, the basis functions include (unitless) factors
of ρ = √

(ξ 2 − 1)(1 − η2) to enforce square-root boundary
conditions.

The exact nonrelativistic Hamiltonian may be written [47]

Ĥ = − 1

2μeR2
∇2 + 1

R
− 1

rA

− 1

rB

+ 1

μR

×
[
T̂R + J (J + 1) − 2J 2

z + ˆJ+ ˆl− + ˆJ− ˆl+ + l̂2

2R2

]
,

μe = 2 × 1836.152 701

2 × 1836.152 701 + 1
, μR = 1

2
1836.152 701, (1)

with the interparticle distances R, rA, and rB , with ∇2 the
Laplacian in the electronic coordinates, and Jz the projection
of angular momentum (total J , and electronic l; the projection
of nuclear angular momentum is zero) upon the bond axis,
conjugate to the third Euler angle γ . Except for ∇2, operators
are denoted with hats, and scalars have no hats in this equation.
For R5/2 times the wave function, the nuclear kinetic energy
may be written

T̂R = −1

2

∂2

∂R2
+

(
1

R

∂

∂R
− 1

2R2

) (
Ŷ + 3

2

)

− 1

2R2

(
Ŷ + 3

2

)2

, (2)

in which expression,

Ŷ = 1

ξ 2 − η2

(
ξ (ξ 2 − 1)

∂

∂ξ
+ η(1 − η2)

∂

∂η

)
. (3)
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It may be shown that

(ξ 2 − η2)[(Ŷ + 3/2)(Ŷ + 3/2) + l2]

= 9

4
(ξ 2 − η2) + ∂

∂ξ
(ξ 4 − ξ 2)

∂

∂ξ
+ ∂

∂η
(η2 − η4)

∂

∂η

+ J 2
z (ξ 2 − η2)

(
1 + (ξη + α)2

(ξ 2 − 1)(1 − η2)

)
, (4)

in which the second derivatives ∂2

∂ξ∂η
cancel each other and

more trivially that

(ξ 2 − η2)

(
Ŷ + 3

2

)
=

[
ξ (ξ 2 − 1)

∂

∂ξ
− 1

2
+ 3ξ 2

2

]

−
[
η(η2 − 1)

∂

∂η
− 1

2
+ 3η2

2

]
. (5)

The raising and lowering operators are

l± = ±e±iφ ρ

ξ 2 − η2

(
η

∂

∂ξ
− ξ

∂

∂η

)
+ i

ξη

ρ

∂

∂φ
. (6)

As mentioned above, the primitive basis functions are defined
with factors of ρ =

√
(ξ 2 − 1)(1 − η2) for odd M. The matrix

elements of the raising and lowering operators for a bra-ket
with the ket having even quantum number M, therefore,
involve integrals of the following operator with respect to the
polynomial basis functions:

ρ(ξ 2 − η2)l± = ±
(

(1 − η2)η

[
(ξ 2 − 1)

∂

∂ξ
+ ξ

]

−(ξ 2 − 1)ξ

[
(η2 − 1)

∂

∂η
+ η

])

− (M ± 1)ξη. (7)

The matrix elements involving an odd-M ket are, in turn,
expressed in terms of matrix elements of the operator,

(ξ 2 − η2)l±ρ = ±(· · ·) − Mξη. (8)

The matrix elements of the individual terms in Eq. (4),
which are Hermitian, of the operator in Eqs. (5) and (8) that
occurs both in η and in ξ , which is anti-Hermitian, and of the
anti-Hermitian ( 1

R
∂

∂R
− 1

2R2 ) operator are integrated exactly by
quadrature. As in Refs. [39,42], only one-dimensional integrals
are involved, and therefore the matrix representations of these
operators are quite sparse.

The basis set employs exterior complex scaling [48–54]
of the electronic and nuclear coordinates in order to enforce
outgoing wave boundary conditions exactly. The coordinates
of electrons and nuclei are rotated into the complex coordinate
plane in the asymptotic region, which results in an anti-
Hermitian component of the Hamiltonian that only absorbs
outgoing flux. Bound states are not absorbed, and despite the
fact that Rydberg states penetrate into the complex scaled
region, their analytic continuations are accurately represented,
obeying an orthogonality relationship, having unperturbed real
eigenvalues, etc.

III. TOTAL CROSS SECTIONS

The absorption cross section is calculated [54–56] by
solving the linear equation,

ψsc(ω) = Ĝ+(E0 + ω)μψ0, (9)

in which E0 is the energy of the initial ground rovibronic
eigenstate ψ0, ω is the photon energy, μ is the dipole operator,
and Ĝ+(E0 + ω) is the outgoing wave Green’s function as
represented by exterior complex scaling.

Examples of the calculated time-independent half-
scattering wave functions ψsc are shown in Fig. 1. The wave
functions are evaluated parallel or perpendicular to the bond
axis for the corresponding laser polarizations, i.e., at the point
η = ±1 or 0, correspondingly. At the energies studied, the
behavior in η is mostly uninteresting, being mostly p-wave
outgoing flux for dissociative ionization, for instance.

To extract the cross sections from the ψsc, the method of
Ref. [57] as adapted to exterior complex scaling in Ref. [42]
is applied. As the outgoing wave at a given photon energy is
directly calculated via Eq. (9), no Fourier transform is needed.
The total breakup cross section is obtained in the length gauge
and for polarization parallel to the bond axis via

σ (ω) = 8
3παωh̄〈ψsc(ω)|a(Ĥ )|ψsc(ω)〉, (10)

with α the fine structure constant. In this expression, a(Ĥ ) ≡
1
2 (Ĥ − Ĥ †) is the anti-Hermitian part of the Hamiltonian, the
Hermitian part being h(Ĥ ) ≡ 1

2 (Ĥ + Ĥ †). This is an isotropic
cross section, so there is the factor of 1

3 . For perpendicular
polarization, there is a factor of 2

3 , and so the corresponding
coefficient in Eq. (10) is 16

3 .
To distinguish dissociative excitation from dissociative

ionization, the anti-Hermitian part of the Hamiltonian is
divided into the part that absorbs flux for large bond lengths R

and that which does so for large values of the prolate spheroidal
coordinate ξ . With the identity

1

rA

+ 1

rB

= 4ξ

R(ξ 2 − η2)
, (11)

and the shorthand

B = − 1

2μe

∇2 + 1

2μR

[(
Y + 3

2

)2

+ l̂2

]
,

V = − 4ξ

ξ 2 − η2
, D = 1

μR

(
1

R

∂

∂R
− 1

2R2

)
, (12)

T = −1

2

∂2

∂R2
+ 1

R
+ J 2 − 2Jz

2R2
, Y =

(
Ŷ + 3

2

)
,

the full Hamiltonian may be abbreviated

H = 1

R2
B + T + 1

R
V + DY, (13)

and the anti-Hermitian part of the Hamiltonian divided

a(H ) = He
anti + HR

anti, (14)
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FIG. 1. (Color online) Outgoing waves ψsc(ω) for hν = 5.9, 14.6, 18.95, 23.3, 33.1, and 56.0 eV, evaluated at η = 1, i.e., along the bond
axis. The behavior of the wave function is trivial in the η coordinate. The modulus is plotted on a logarithmic scale, and the color denotes the
phase with the dark-medium-light (blue-red-yellow) colors having time derivatives light-dark-medium (yellow-blue-red). The coordinates are
real valued within the plots.

such that

He
anti = h

(
1

R2

)
a(B) + h

(
1

R

)
a(V ) + a(D)h(Y ),

(15)

HR
anti = a

(
1

R2

)
h(B) + a(T ) + a

(
1

R

)
h(V ) + h(D)a(Y ).

The cross sections for dissociative ionization σDI (E) and
dissociative excitation σDE(E) are calculated as

σDI (ω) = 8
3παωh̄〈ψsc(ω)|He

anti|ψsc(ω)〉,
(16)

σDE(ω) = 8
3παωh̄〈ψsc(ω)|HR

anti|ψsc(ω)〉,

with σ (ω) = σDI (ω) + σDE(ω).
In Fig. 2, the cross sections σ (E), σDI (E), and σDE(E)

are plotted. The total cross section is also calculated via the
optical theorem, i.e.,

σ (ω) = − 4
3παωh̄ Im(〈μψ0|Ĝ+(E0 + ω)|μψ0〉). (17)

The agreement between the two formally equivalent results
is essentially exact (to approximately five to eight signifi-
cant figures, in general), although they are calculated quite
differently.

It is true that there may be outgoing flux that is absorbed
in the region in which both HR

anti and He
anti are nonzero, calling

into question the separation described above. However, the
results for σDI and σDE presented here are converged with
respect to the complex scaling radii in both the electronic and
nuclear coordinates.

IV. DISSOCIATIVE EXCITATION

The dissociative excitation cross section σDE is divided
into contributions of the final electronic states of the hydrogen
atom. The wave function is projected upon the fixed-nuclei
electronic eigenfunctions φi ,

ψsc
i (ξ,η,R; ω) = φi(ξ,η; R)

∫
(ξ ′2 − η′2)dξ ′dη′

×φi(ξ
′,η′; R)ψsc(ξ ′,η′,R; ω). (18)

The division of the cross section proceeds via

σDE
ij (ω) = 8

3παωh̄
〈
ψsc

i (ω)
∣∣HR

anti

∣∣ψsc
j (ω)

〉
, (19)

such that
∑

ij σDE
ij (ω) = σDE(ω).

If the final states φj were exact representations of the
asymptotic states and in the limit of large projection radius,
σDE

ii of Eq. (19) would be the formally exact cross section for
Rydberg state i; the off-diagonal results σij , i �= j , would go
to zero.

A. Formal and numerical considerations

However, because the prolate spheroidal coordinate R is not
exactly the same as the dissociative coordinate, due to the mass
of the electron, states φi(R) that are used for the projection are
not exactly the asymptotic states; the asymptotic states are
delocalized in R. Due to the resulting nonadiabatic coupling
between the approximate states φi(R), nonzero off-diagonal
results σij , i �= j , are expected.

Nonzero off-diagonal contributions are also expected if the
projection is not performed at a sufficiently large bond radius R

such that the different principal quantum number manifolds are
still significantly mixed by the interaction with the bare proton.
In any case, the off-diagonal cross sections σij , i �= j , are
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FIG. 2. (Color online) Cross sections calculated for total breakup
σ (ω), light colored lines, dissociative ionization σDI (ω), black small
diamonds, and dissociative excitation σDE(ω), large orange (pale)
diamonds, as calculated via Eqs. (10) and (16), and total absorption
via the optical theorem, Eq. (17), thick black lines, for parallel (top)
and perpendicular (bottom) polarization.

spurious and should be significantly smaller than the physical
cross sections σii for the latter to be regarded as reliable.

The projection onto final Rydberg states must be performed
at a bond length large enough such that there are no significant
nonadiabatic couplings from that bond length outward. The
last avoided crossing involving a �u n = 3 electronic state
occurs at approximately 16.5a0, and that involving a �u

n = 4 state occurs at approximately 15a0. The calculations are
observed to be well converged with an exterior complex scaling
bond length slightly larger than these values. The last avoided
crossing involving the n = 4 �u states occurs at approximately
40a0, and projection upon these states was not attempted.

B. Results

Results are shown in Fig. 3. This figure shows the
dissociative excitation cross section binned by the principal
quantum number of the final Rydberg state. The electronic
orbital angular momentum of the final Rydberg state is not
resolved. The total cross section into the principal quantum
number n, σDE

n with one subscript, is defined as

σDE
n =

∑
i∈n

∑
j∈n

σDE
ij , (20)

with the sums of spurious cross sections off-diagonal in the
principal quantum number denoted

σ̃ DE
n =

∑
i∈n

∑
j /∈n

σDE
ij , (21)
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FIG. 3. (Color online) Cross sections σn [Eq. (20), connected
dots] for dissociative excitation into the manifold of Rydberg states
with principal quantum number n and sums of unphysical erroneous
of-diagonal cross sections σ̃n [Eq. (21), dots] as described in the text.
Top, parallel polarization; bottom, perpendicular.

in which the notation
∑

i∈n means sum over fixed-nuclei states
i that correlate with a given principal quantum number n. As
discussed, the off-diagonal sum σ̃ DE

n should be regarded as a
minimum error bound to the calculated physical cross section
σDE

n .
As can be seen in Fig. 3, the largest part of the dissociative

excitation cross section is the low-energy part due to absorption
into the lowest 1 �u and 1 �u states. About 4 orders of
magnitude below the peak cross sections, at about 10 and
18 eV, respectively, one may see that there are nonzero
cross sections, both diagonal and off-diagonal, calculated for
the higher electronic states. These are nonzero below their
thresholds and are congruent to the dominant 1 �u or 1 �u

peak. These facts suggest that these calculated features are
spurious and probably come from contamination of the higher
states’ results from the outgoing flux in the lowest electronic
state channel. As explained above, the electronic states used
for the final-state projection in dissociative excitation are not
precisely the long-range states, and therefore, this behavior is
not surprising.

At higher energies, the calculated physical cross sections
σDE

n in Fig. 3 are several orders of magnitude above any
unphysical off-diagonal results and, therefore, should be
regarded as reliable. Nonadiabatic coupling leads to double
peaks, which are especially prominent in parallel polarization;
the main peak for each final principal quantum number has
a small side peak at lower energies due to coupling from the
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FIG. 4. (Color online) Photodissociation cross sections for dis-
sociative excitation into the 1s �u and 2p �u electronic states as
calculated presently and as calculated for 1s �u in Ref. [24].

high-energy side of the peak of the prior principal quantum
number.

The prior experimental results [20–23] on the photodisso-
ciation of H2

+ do not permit a comparison with the present
calculation. Calculated cross sections for the lowest 1s �u

photodissociation [24–26] and that of the 2p �u [26] have
been reported. In Fig. 4, the cross sections calculated for
these final states are shown and that of the �u is shown
to compare well with the result of Dunn calculated near
the peak of the cross section within the Born-Oppenheimer
approximation [24]. On this linear scale, the nonadiabatic
contributions are not visible.

V. DISSOCIATIVE IONIZATION

The dissociative ionization flux at a given photon energy
may be differentiated with respect to the energy sharing
between the electronic and nuclear degrees of freedom and
with respect to the angular behavior. The dissociative ioniza-
tion cross section is obtained by calculating the amplitudes
Al(k,κ) for breakup as a function of kinetic-energy sharing
and electronic angular momentum quantum number,

Al(k,κ) = 〈�−
l (k,κ)|μ|�0〉. (22)

Presently amplitudes Al(k,κ) are calculated exactly and by
using two degrees of approximation as described below.

A. Exact and approximate amplitude expressions

For the fixed-nuclei problem, exact final states were
calculated in Ref. [39] by solving the equation

�−
l (E) = φ0 + G+(E)(H − E)φ0, (23)

with the zeroth-order wave function a Coulomb wave φ0 =
fl(kr)Plm(cos θ ), E = k2

2 , and the interaction term is

(H − E)φ0 =
(

1

r
− 1

rA

− 1

rB

)
φ0. (24)

In contrast, for three-body scattering with pairwise interac-
tions Eq. (23) is not valid. As an alternative to employing an
explicit representation of �−(E), stationary phase expressions
[58,59] that can be implemented in a numerically robust way
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FIG. 5. (Color online) Total cross sections for dissociative ioniza-
tion calculated in different ways: using the flux expression Eq. (16);
using Eq. (22) and integrating Eq. (26) with respect to energy sharing;
using the exact states of Eq. (25), the approximate final states of
Eq. (27), or the Chase approximation with Born-Oppenheimer am-
plitudes Eq. (28). Top: parallel polarization; bottom: perpendicular.

[54–56] have been applied to three-body Coulomb breakup
problems with two electrons.

However, the prolate spheroidal coordinate system, along
with the unequal masses between the electronic and nuclear
degrees of freedom, in general appears to allow Eq. (23) to be
implemented such that it yields an accurate final state. At the
end of the electronic grid in prolate spheroidal coordinates,
the electron is always at a greater radius than the nuclei. Thus,
we should not expect to be able to construct final states for
which μRk < μeκ for which the protons recoil faster than the
electrons and are thereby shielded from one another by the
electron. Given a maximum of approximately 13.6-eV nuclear
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FIG. 6. (Color online) Dissociative ionization cross section
calculated exactly using Eq. (16) and as in Ref. [27].
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kinetic-energy release, this would indicate that our results are
certainly good above 7.5-meV electron energy, a quantity that
is not visible in any of the figures.

The final-state wave function is thereby calculated as

�−
l (k,κ) = fl(kr)f1(κR) + G+(E)(H − E)fl(kr)f1(κR),

(25)

wherein fl(kr) and f1(κR) are attractive (Z = 2) and repulsive
(Z = 1) Coulomb functions in the electronic and nuclear
degrees of freedom, energy normalized. This is performed in
the same manner as in Ref. [39]. The final-state wave functions
so constructed are orthogonal to the bound rovibronic states
for M = 0 and 1 to within no more than one part in 103, in
general.

With the amplitudes defined as per Eq. (22), cross sections
differential in the kinetic-energy sharing between the electron
k2

2 = ε and that of the nuclei κ2

2 = E at constant total energy

E + ε are

∂

∂E
σ (E,ε)

∣∣∣∣
E+e

= 4

3
π2αωm

∑
l

|Al(k,κ)|2, (26)

wherein �−(k,κ) is energy normalized.
Approximate final states are often employed in calculations

in the literature, and in some contexts, simple unperturbed
product wave functions φ0 are surprisingly accurate. For
instance, in time-dependent calculations on small atoms
and diatomics, cross sections may be calculated [60–63]
by projecting a propagated wave packet onto unperturbed
Coulomb wave functions as long as enough time has elapsed
such that the ionized electrons have escaped beyond the
molecule. In systems containing resonances, this method
becomes less tractable the longer lived the resonances. A
comparison of different amplitude expressions for single and
double ionization of two-electron systems, similar to that
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FIG. 7. (Color online) Distributions of kinetic energy between the electron and the nuclei calculated exactly (top) using Born-Oppenheimer
final states (middle) and using Born-Oppenheimer initial and final states (bottom, Chase approximation). The cross-section differential in
energy sharing, Eq. (26), is plotted with contours as a function of electron energy and photon energy. The total cross section, without regard
to energy sharing, is plotted vertically as a function of photon energy. The result of integrating the differential cross section is plotted with
different styles as in Fig. 5, and the dissociative ionization cross section as calculated via Eq. (16) is plotted in bold black.
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FIG. 8. Triply differential cross sections for dissociative photoionization calculated exactly (dots) and with approximate final states (lines)
with each panel plotted on an arbitrary scale, the two results in each panel internormalized. In each panel, the photon energy and the outgoing
electron energy are indicated.

presented here for dissociative ionization of H2
+, can be found

in Ref. [64].
Approximate final states �−

l (k,κ) are constructed as
products

�−
l (k,κ) ≈ f1(κR)ψ−

l (k2/2; R) (27)

of Coulomb waves in the bond distance and the exact
fixed-nuclei scattering state ψ−. This is, therefore, a Born-
Oppenheimer representation of the final state. Finally, the ini-
tial state is replaced with its Born-Oppenheimer approximation
as well such that the amplitudes are the matrix elements of the
Born-Oppenheimer amplitudes with respect to the initial and
final vibrational states, which expression is called the Chase
approximation [65],

Al(k,κ) ≈
∫

dR f1(κR)χ0(R)Al(k; R), (28)

in which χ0 is the ground vibrational Born-Oppenheimer state.

B. Results

Cross sections for dissociative ionization are shown in
Fig. 5. For these total cross sections, there is very little

difference among the various results calculated using the
different amplitude expressions, exact and approximate. How-
ever, in perpendicular polarization, there is a large discrepancy
between these results and σDI (ω) as defined by Eq. (16). The
origin of this discrepancy is unclear, but it calls into question
the division of the cross section as defined by that equation.
Further study of this discrepancy is, therefore, indicated. The
results calculated via the amplitude expressions should be
regarded as reliable due to the fact that one of them has been
calculated in a formally exact manner.

The dissociative ionization cross section is compared to the
calculation of Ref. [27], the exact analytic fixed-nuclei result
convolved over the initial vibrational wave function in Fig. 6.
This and the present calculation are also in agreement with the
prior Born-Oppenheimer results [28–31]. The cross section is
overwhelmingly dominated by the perpendicular component,
and the perpendicular component of the total dissociative
ionization cross section is affected little by inclusion of the
internuclear coordinate.

The distributions of kinetic energy between the electrons
and the nuclei are shown in Fig. 7. In these figures the exact,
approximate, and Born-Oppenheimer (Chase approximation)
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results are compared. One can see that for electron en-
ergies above 5 eV, the three results are substantially in
agreement. Below 5 eV, however, the Chase approximation
yields qualitatively incorrect behavior, yielding strong min-
ima in the cross section as a function of energy sharing,
whereas in the exact result, there are none. In terms of
the distribution of kinetic energy between the electron and
the nuclei, the results for approximate Born-Oppenheimer
final states do not significantly differ from the exact
ones.

However, when the full triply differential cross section
(TDCS) is calculated, there are clear differences, indicating
that an exact nonadiabatic treatment is indeed necessary to
fully describe the breakup of H2

+. In Fig. 8, the triply differ-
ential cross section, differential with respect to energy, energy
sharing, and the relative angle of ionization and dissociation,
is plotted near onset and for low electron energies. In general,
in parallel polarization, these figures show that the approxi-
mate treatment with Born-Oppenheimer final states somewhat
overestimates these low electron kinetic-energy cross sections.
However, the shape of the TDCS for parallel polarization—that
is to say, the relative magnitude and phases of the partial
waves contributing to it—is in agreement and is nearly
constant over all energies for both treatments. In contrast, for
perpendicular polarization there are substantial differences in
the shape of the TDCS obtained via the exact and approximate
final-state treatments. This indicates that nonadiabatic effects

are important for a completely accurate description of the
dynamics.

VI. CONCLUSION

Full nonadiabatic calculations of the cross sections for
the breakup of the H2

+ cation by photon impact have been
presented. In the case of dissociative ionization, the exact
result has been critically compared to approximate ones, and
it was shown that the Born-Oppenheimer approximation gives
cross-sections differential in energy sharing that are very close
to the exact result. However, an accurate calculation of the
fully differential cross section requires the full nonadiabatic
treatment. The use of the described flux formalism to calculate
the dissociative ionization of the cross section, Eq. (16), is
called into question due to its disagreement with the formally
exact result in perpendicular polarization. In the case of
dissociative excitation, the cross sections have been calculated
over six orders of magnitude, revealing the influence of
nonadiabatic coupling.
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