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I. INTRODUCTION

Recent years have seen essential achievements in the field
of high-precision laser spectroscopy based on simultaneous
interrogation of strongly forbidden optical transitions in a large
number of alkaline-earth-like atoms, confined to an optical
lattice at the magic wavelength (MWL). In addition to well-
studied fermionic and bosonic Sr atoms [1–4], the MWL and
corresponding optical properties were well defined for Yb and
Hg atoms [5,6]. The use of clock transitions was also discussed
for creation of a millihertz-linewidth laser [7].

The progress in designing atomic optical frequency stan-
dards with unprecedented fractional frequency uncertainty
at a level of 10−18 requires unprecedented accuracy in
estimating the role of different sporadic and stray-field effects
[8]. In particular, an accurate control of the shift induced
by blackbody radiation (BBR) is possible by the on-site
measurement of the BBR temperature with a mK precision at
usual laboratory conditions [9], or by the use of the “synthetic”
frequency spectroscopy free of BBR shift [10]. Two recent
works [11,12] have presented experimental and theoretical
data on the BBR-induced shift of the clock frequency in Sr
atoms, which enable a high-precision account of the effect
at room temperature, reducing the temperature-related clock
uncertainties to the level below 10−17.

However, more important effects on uncertainties should
be clarified in more detail, in particular those related with the
definition and precision of the MWL, as the wavelength pro-
viding atomic-motion-insensitive conditions for the frequency

of clock transition [13]. To this end, the role of higher-order and
multipole atom-lattice interaction in the definition of the MWL
should be considered. The anharmonic effects on vibrational
motion of atoms inside the lattice should be also taken into
account as the precision-restricting factors, introducing some
difference between the motions of atoms trapped into the
lattice potential wells in upper (excited) and lower (ground)
clock states. Therefore, corresponding limitations may arise
for spectroscopy of atoms confined to an optical lattice of
a MWL. In particular, the response should be given to the
following questions.

(i) What ranges of uncertainties for the MWL may be
acceptable to ensure equality and atomic-motion independence
of the Stark shifts for upper and lower clock states, sufficient
to reduce the clock uncertainties at the level of 10−18?

(ii) What is the difference between the effective Stark shifts
of the clock frequencies in traveling and standing laser waves
and does it influence on the definition of the MWL?

(iii) What is the influence of higher-order and multipole
effects on clock levels in a standing wave?

(iv) What is the difference between uncertainties on clock
frequencies in red-detuned (attractive) and blue-detuned (re-
pulsive) optical lattices?

These problems were already studied and discussed in
part in Refs. [13–15]. Preliminary numerical estimates of E2
and M1 polarizability and hyperpolarizability effects were
presented for red-detuned MWL in Ref. [16] and for blue-
detuned MWL in Refs. [13,14]. The influence of higher-
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order (hyperpolarizability) effects on the lattice-based clock
uncertainties was estimated theoretically [16,17] and measured
experimentally [18,19] for Sr and Yb atoms trapped in MWL
lattices. In the lattices with red-detuned MWL the higher-order
Stark-shift uncertainties were determined at the level of 10−17

[2] and therefore were put aside for further considerations.
Meanwhile, the target uncertainties at the level of 10−18

require more and more precise estimates of the lattice-atom
interaction effects with account of inhomogeneity of the
lattice field spatial distribution. The indicated effects cause
unavoidable systematic shifts of the clock frequency, which
should be correctly controlled (compensated or taken into
account) in high-precision laser spectroscopy measurements.

In this article, we present detailed analysis of linear in
the laser intensity I clock-frequency shifts from multipole
interactions (magnetic-dipole M1 and electric-quadrupole E2)
and quadratic in I shifts (electric dipole hyperpolarizability
effects) of the Sr atom clocks in both the red-detuned and
blue-detuned optical MWL lattices.

The principal difference between red-detuned and blue-
detuned lattices consists in the location of atomic occupancy
sites. The Stark potential in the red-detuned lattice is attractive,
so the potential minima locate in maxima of the lattice-wave
electric-field amplitude. Thus, the optical lattice with the red-
detuned MWL tends to confine atoms in the vicinity of the
standing-wave antinodes. By contrast, the lattice with blue-
detuned MWL repulses atoms to the standing-wave nodes,
where electric-field amplitudes vanish. So, the lattice field
effects on the clock frequency in the latter is significantly
smaller than those in the former.

Electric-dipole forces provide the basic contribution to the
atom-lattice interaction. Simple considerations demonstrate
that to make the lattice-induced uncertainties of the clock
frequency at the level of 10−18, the fractional difference
between E1 polarizabilities of the clock levels should not
exceed 0.5 × 10−9 when the depth of lattice wells achieves
0.6 MHz. In these conditions, M1 and E2 effects, which are
approximately seven orders smaller than the E1 effect, should
be taken into account together with quadratic in the laser
intensity I interactions, since their fractional contributions
may impede reducing clock uncertainties to the target level.

The moderation of uncertainties from multipole and hyper-
polarizability effects is restricted from below by the limitations
on the laser intensity I , which should be sufficiently large
for trapping atoms in vibrational states with negligibly small
widths of tunneling between adjacent wells. To this end,
the well depths U0 and the energy of atomic vibrations �

should exceed essentially the lattice photon recoil energy
E rec [19,20] (atomic units e = m = h̄ = 1, with the speed of
light c = 137.036 a.u., are used throughout this paper, unless
otherwise specified explicitly),

U0 � � � E rec = k2

2M , (1)

where k = ω/c is the wave number of the lattice wave with
the angular frequency ω, and M is the atomic mass. In
view of so rigorous restrictions on the lattice-wave intensity
from below, an accurate account of multipole, nonlinear, and
anharmonic effects is the necessary condition for reducing the
clock fractional uncertainties to the level of 10−18.

We consider in detail the role of indicated effects on the
clock transition in strontium atoms confined to an optical
lattice of a MWL. All calculations were performed in the
model-potential approximation, the uncertainties of which in
evaluating electromagnetic transition amplitudes and suscep-
tibilities of interaction with external fields for two-valence-
electron atoms do not exceed 10% at most [21]. Numerical
results are presented for lattices with red-detuned MWL λr

m =
813.42727 nm [2] and blue-detuned MWL λb

m = 389.889 nm
[14]. Due to very strong dependence of hyperpolarizabilty
on frequency, the data for now exactly known MWL differ
considerably from those made for an approximately estimated
value λr

m ≈ 800 nm in Ref. [16].
Evidently, basic properties and principal features of one-

dimensional (1D) lattices may be transferred to their superpo-
sitions in 2D and 3D lattices. Therefore, we confine ourselves
to investigations of a 1D case.

II. ATTRACTIVE LATTICE POTENTIAL WITH A
RED-DETUNED MWL

Position and time dependence of electric-field vector of a
1D lattice standing wave may be written as

E(R,t) = 2E0e cos(k · R) cos(ωt), (2)

where E0 is the scalar amplitude of the laser wave. The factor
2 accounts for the superposition of forward and backward
traveling waves, which doubles the lattice standing-wave
amplitude in comparison with that of the incident (forward
traveling) laser radiation. This doubling corresponds to the
four-times increase of the potential-well depths. k = n ω/c

is the wave vector, n, the unit wave vector; e is the unit
polarization vector e · e = 1 (linear polarization of the laser
wave, e = e∗, is assumed here for simplicity). The plane-wave
transversal condition k · e = 0 holds also for the lattice wave.
The position vector R originates in an antinode of the standing
wave.

According to Maxwell’s equation

curl(E) = −1

c

∂B
∂t

,

the magnetic field vector is

B(R,t) = 2E0[n × e] sin(k · R) sin(ωt). (3)

As is seen from (2) and (3), the magnetic-dipole interaction,
V̂M1 = −m · B, is a quarter wavelength out of phase with the
electric-dipole E1 interaction V̂E1 = −d · E. The magnetic-
dipole moment of atom is m = −(L + 2S)/2c, where L is the
total angular momentum and S, the total atomic spin; d = −r
is the electric-dipole moment.

Separating the position of atom from internal atomic
variables, the operator of atom-lattice interaction may be
presented as

V̂ (X,t) = Re[V̂ (X) exp(−iωt)], (4)

where X determines the position of atomic nucleus along the
standing-wave axis starting from the standing-wave antinode,
the center of localization for the trapped atom. The spatial part
of operator is given by

V̂ (X) = V̂E1 cos(kX) + (V̂M1 + V̂E2) sin(kX). (5)
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The coefficients at cosine and sine functions here are the
operators of E1, M1, and E2 atom-lattice interaction de-
pending on only internal atomic variables. The outermost
electrons provide principal contributions into amplitudes of
the interactions, therefore in our numerical estimates we use
a single-electron approximation where the operators may be
presented as follows:

V̂E1 = E0(r · e); V̂M1 = E0

2c
{[n × e] · (L + 2S)};

(6)
V̂E2 = E0

ω√
6c

r2 [{n ⊗ e}2 · C2(θ,φ)] .

Here {n ⊗ e}2 is the rank 2 tensor product of the wave and
polarization unit vectors, C2(θ,φ) is the modified spherical
function of the angular variables of the atomic electron position
vector r = {r,θ,φ} [22]. The interaction (4) of a ground-state
(excited) atom produces potential energy proportional to the
laser intensity I , which equals to the second-order Stark shift:

U
(2)
g(e)(X) = −{

αE1
g(e)(ω) − α

dqm

g(e) (ω) sin2(kX)
}
I, (7)

where

α
dqm

g(e) (ω) = αE1
g(e)(ω) − α

qm

g(e)(ω) (8)

is the difference between the electric dipole αE1
g(e)(ω) and

the sum α
qm

g(e)(ω) = αM1
g(e)(ω) + αE2

g(e)(ω) of magnetic-dipole and
electric-quadrupole dynamic polarizabilities of a ground-state
(g) [excited-state (e)] atom at the frequency of the lattice wave
ω. Here and in all equations below I is the intensity of a
single traveling laser wave. The intensity of the laser wave in
the antinode is 4I [for explanation, see the text after Eq. (2)].

The fourth-order in operator (4) corrections to the clock-
level energies determine quadratic in I Stark shifts of the
lattice potential. With account of only the electric-dipole
interaction from (5) it is described by the dipole dynamic
hyperpolarizability βg(e)(ω) of the ground (excited) state

U
(4)
g(e)(X) = −βg(e)(ω)I 2 cos4(kX). (9)

Resolving the sine and cosine functions in power series of their
arguments and confining ourselves to harmonic (∝ X2) and
lowest-order anharmonic terms (∝ X4), we get for the lattice
potential an oscillatorlike form with coefficients depending on
the lattice laser intensity up to I 2 terms

UL
g(e)(X) = U

(2)
g(e)(X) + U

(4)
g(e)(X)

= −αE1
g(e)(ω)I − βg(e)(ω)I 2

+ [
α

dqm

g(e) (ω)I + 2βg(e)(ω)I 2](kX)2

− [
α

dqm

g(e) (ω)I + 5βg(e)(ω)I 2
] (kX)4

3
. (10)

The coefficient at X2 may be equalized to M�2
g(e)/2,

where �g(e) is the oscillator eigenfrequency. Correspond-
ingly, the coefficient at X4 may be written as [M�2

g(e)/6 +
βg(e)(ω)k2I 2]k2. Averaging the Hamiltonian of trapped atom
ĤL

g(e)(X) = P̂ 2/(2M) + UL
g(e)(X) over positions in a vibra-

tional state with a quantum number n, we get the vibra-
tional energy Evib

g(e)(I,n) of a ground-state (excited) atom

FIG. 1. An illustration of optical transitions between vibrational
levels for atoms confined to an optical lattice.

(see Fig. 1)

Evib
g(e)(I,n) = 〈n|ĤL

g(e)(X)|n〉

= −αE1
g(e)(ω)I − βg(e)(ω)I 2 + �g(e)

(
n+ 1

2

)

− E rec

2

[
1 + 3βg(e)(ω)I

α
dqm

g(e) (ω)

] (
n2+ n+ 1

2

)
. (11)

In averaging the anharmonic term, the relation is used

〈n|X4|n〉 = 3

2
X4

0

(
n2 + n + 1

2

)
,

where X0 = (M�)−1/2 ∝ I−1/4 is the oscillator length scaling
factor. Therefore, the frequency �2 in the coefficient at X4

cancels out, leaving behind an intensity-independent term,
proportional to the recoil energy E rec and quadratic in n

polynomial. The quadratic in I part of the coefficient turns
into the linear in I term.

It should be taken into account that the harmonic approxi-
mation for the motion of atom in the potential well (10) holds
only if the anharmonic term in the last line of Eq. (11) is
significantly smaller than the vibrational frequency �g(e). It
also means that the scaling factor X0 should be significantly
smaller than half-widths of wells in the lattice with the
wavelength λm, which determines also the spacing between
the lattice potential wells, X0 
 λm/4. This inequality may
be rewritten as

√
E rec 
 √

�, thus strengthening the second
inequality in (1).

The indicated conditions impose limitations from above
on the values of the vibrational quantum number n at fixed
laser intensity I and limitations from below on the values of
I at fixed n. In particular, as follows from numerical data of
Table I, in the lattice with the red MWL λr

m = 813.42727 nm
and the laser intensity I = 10 kW/cm2 the potential wells (10)
may host states with n � 6, but the contribution of anharmonic
term of (11) does not exceed �/10 only for states with n � 2
and achieves the value of 0.8� in the highest state n = 6.
For I = 100 kW/cm2 the potential wells (10) host states with
n � 21, and the contribution of anharmonic term is below
�/10 only for states with n � 4, whereas for states n > 13
the anharmonic correction exceeds �.
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Evidently, the intensity-independent part of the anharmonic
shift only deepens the trapping potential energy, lowers down
vibrational levels and does not influence the clock frequency, if
the atom does not change its vibrational state (
n = 0) during
transition between the ground and excited clock levels.

III. MWL IN A STANDING WAVE

The linear in I , n-independent term of the vibrational
energy (11) is determined by only the E1 polarizability,
whereas the harmonic and anharmonic coefficients include
the difference (8) of the E1 and multipole polarizabilities.
Evidently, the principal goal of tuning lattice to the MWL is
to make equal the energies (11) for the clock states.

Neglecting the quadratic terms βI 2, the “atomic-motion-
insensitive” MWL λm = 2πc/ωm may be determined by the
equality [13]

αdqm
g (ωm) = αdqm

e (ωm) ≡ αdqm
m . (12)

Then eigenfrequencies of vibrational motion for the ground-
state and excited atom are equalized and may be written as
follows:

�g = �e = �(0)
m

√
I , where �(0)

m =
√

2α
dqm
m k2

M . (13)

As was mentioned above, the eigenfrequency (13) is propor-
tional to the square root of the laser intensity. In terms of recoil
energy the intensity-independent factor may be written as

�(0)
m = 2

√
α

dqm
m E rec. (14)

Thus, neglecting the multipole and hyperpolarizability terms,
the vibrational frequency (13) may be determined as twice the
geometric mean of the lattice potential depth |UL

g(e)(X = 0)| =
αE1I and the the photon recoil energy.

Equation (12) eliminates the atomic-motion-related clock-
frequency dependence on the laser intensity in the lowest order
in I . In this case, however, the linear in I shift between bottoms

TABLE I. Numerical values of E1 polarizabilities, differences
between E2-M1 polarizabilities and hyperpolarizabilities [for linear
(l) and circular (c) lattice-wave polarization] calculated in the
model potential approximation [21], oscillator frequencies and recoil
energies for 87Sr atoms in optical lattices with red-detuned (λr

m =
813.42727 nm [2]) and blue-detuned (λb

m = 389.889 nm [14]) magic
wavelengths.

λm 813.42727 nm 389.889 nm

αE1
m , kHz

kW/cm2 64.5 −92.7


αqm
m , mHz

kW/cm2 −6.75 −13.6

Re{
βl
m}, mHz

(kW/cm2)2 −1.66 1.15

Im{
βl
m}, s−1

(kW/cm2)2 0 1.56 × 10−5

Re{
βc
m}, mHz

(kW/cm2)2 −2.43 1.55

Im{
βc
m}, s−1

(kW/cm2)2 0 1.49 × 10−5

�(0)
m , kHz√

kW/cm2
29.9 74.8

E rec, kHz 3.47 15.1

of potentials for ground-state and excited atom remains, due
to the difference between dipole polarizabilities at the magic
frequency, as is seen from Eqs. (8) and (12)


αE1
m ≡ αE1

e (ωm) − αE1
g (ωm) = 
αqm

m . (15)

This difference may be taken into account if the uniform
distribution of intensity for all atoms trapped in lattice sites
is provided. Correspondingly, the difference between the
ground-state and excited-state hyperpolarizabilities, 
βm =
βe(ωm) − βg(ωm) determines the second-order shift, which
appears both in position-independent and position-dependent
terms of the lattice-induced potentials (10) and vibrational
energies (11). Assuming the equality (12), the clock frequency
shift, related with the difference between vibrational energies
for excited and ground-state atom, is


νcl = Evib
e (I,n) − Evib

g (I,n)

= a1(n)I + a3/2(n)I 3/2 + a2I
2, (16)

where coefficients a are determined by the dipole and multi-
pole dynamic polarizabilities, their differences (8), (15) and
differences between hyperpolarizabilities of clock levels at the
magic wavelength; a1 and a3/2 depend also on the vibrational
quantum number n. Assuming identical n for the ground-state
and excited atom,

a
l(c)
1 (n) = −
αqm

m − 3
βl(c)
m k2

4Mα
dqm
m

(n2 + n + 1/2);

(17)

a
l(c)
3/2(n) = 
βl(c)

m k√
2α

dqm
m M

(n + 1/2); a
l(c)
2 = −
βl(c)

m .

The superscripts l(c) appear due to the dependence of
hyperpolarizability on polarization [17,21] and correspond
to the linear (circular) polarization of the lattice wave. Due
to the square-root dependence of the vibrational fre-
quency (13), the half-integer power 3/2 of intensity appears
in the shift of the clock frequency (16). In addition, the
hyperpolarizability from the anharmonic part of potential
provides n-dependent contribution to the linear in I term.
These contributions may be written in terms of the the
vibrational frequency (13) or the recoil energy (1), as follows:

a
l(c)
1 (n) = −
αqm − 3
βl(c)

m E rec

2α
dqm
m

(n2 + n + 1/2)

= −
αqm − 3
βl(c)
m

(
�(0)

m

)2

8
(
α

dqm
m

)2 (n2 + n + 1/2); (18)

a
l(c)
3/2(n) = 
βl(c)

m

√
E rec

α
dqm
m

(n + 1/2) = 
βl(c)
m �(0)

m

2α
dqm
m

(n + 1/2).

So, all the three coefficients in (16) include the difference
between hyperpolarizabilities 
βm of the clock levels. The nu-
merical data for susceptibilities of Sr atoms in the red-detuned
and blue-detuned magic lattices are presented in Table I.
From these data one can derive the following values of
coefficients in Eq. (16) for the oscillation number n = 0 in
linearly polarized lattice:

al
1 = 6.82

mHz

kW/cm2
, al

3/2 = −0.192
mHz

(kW/cm2)3/2
. (19)
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Also, for the circular polarization

ac
1 = 6.85

mHz

kW/cm2
, ac

3/2 = −0.282
mHz

(kW/cm2)3/2
. (20)

The value of a
l(c)
2 = − 
βl(c)

m may be taken directly from
Table I.

Equation (16) together with the data (19) and (20) demon-
strates that at the laser intensity around I = 10 kW/cm2 the
principal contribution to the lattice-induced shift (16) comes
from the I 2 term, determined by the net hyperpolarizability

βl(c)

m . Therefore, to reduce the uncertainty of the shift (16)
to the level below 5 mHz, sufficient for the fractional clock
uncertainty below 10−17, a precise control of the lattice inten-
sity should be done, with possible deviations not exceeding
1% over the region of trapped atoms. The lattice-induced-shift
uncertainty below 0.5 mHz, required for the clock fractional
uncertainty at the level of 10−18 may be provided by reducing
the fractional uncertainties of the laser intensity to 0.1%.
The intensity of I = 10 kW/cm2 provides the depth of the
red-detuned MWL lattice wells∣∣UL

0

∣∣ = αE1
m I ≈ 31 μK ≈ 188E rec ≈ 6.9�m,

quite sufficient for trapping atoms cooled to 1 μK into the
lowest vibrational states.

IV. DETERMINATION OF MOTION-INSENSITIVE MWL
FROM THE MWL FOR A TRAVELING WAVE

A MWL for a traveling wave (TW) may be determined by
measuring the clock shifts of atoms exposed to the TW of a
small intensity It < 10−3I , as experimentally demonstrated in
Ref. [14]. To avoid the Doppler and recoil shifts, atoms were
trapped in a lattice tuned to a magic frequency ωm. Evidently,
in this case the linear in It shift of the clock frequency,
caused by the difference of the TW-induced shifts of the clock
levels, is determined by the difference of polarizabilities at the
TW frequency 
α(ωt ) = αe(ωt ) − αg(ωt ). The contribution to
linear in It term comes also from the bilinear in I and It term
of the fourth-order perturbation theory for the energy of atom
in the field of two different monochromatic waves [21,23].
This contribution may be considered as the dependence of
polarizabilities on the lattice laser intensity I , determined by
the dichromatic hyperpolarizability βd

g(e)(ωm,ωt ),

αg(e) (ωt ,I ) = αg(e)(ωt ) + βd
g(e)(ωm,ωt )I.

The determination of the MWL for the TW is performed by
finding the frequency ωt = ωt

m for which the clock frequency
does not depend on It .

Numerical estimates give an approximate equality for
order of magnitudes of the monochromatic and dichromatic
hyperpolarizabilities, βg(e)(ωm) and βd

g(e)(ωm,ωt ). So the con-
tribution of the bilinear term is on the order of the ratio
It/I < 10−3 (the value of Ref. [14]) in comparison with the
quadratic in I term of Eqs. (9)–(11). Thus, the lattice-TW
cross effect is less important than the lattice hyperpolarizability
effect and therefore does not influence the precision of the
MWL measurements. In the following, we confine ourselves
to discussion of the uncertainties in the lattice-induced shifts
and of the corrections, which should be made to tune the

lattice-wave frequency to the motion-insensitive value when
the TW is used for determination of the MWL.

Since the spatial distributions of the dipole and multipole
interactions (6) for a TW are uniform, the corresponding Stark
shifts of the clock levels are position independent. At low TW
intensity It , the principal contribution to the Stark shifts are
given by the sum of dipole and multipole polarizabilities, both
proportional to It , by neglecting the nonlinear terms. So the
MWL in a TW λt

m = 2πc/ωt
m may be determined from the

equality

α

g

(
ωt

m

) = α

e

(
ωt

m

) ≡ α

m, (21)

where

α

m = αE1

g(e)

(
ωt

m

) + α
qm

g(e)

(
ωt

m

)
(22)

is the sum of E1, E2, and M1 polarizabilities.
After having been determined according to Eq. (21), by

equalizing clock-level shifts in atoms exposed to a TW, the
so determined MWL may be used for a standing wave of an
optical lattice. In this lattice, an opposite to (15) relation holds


αE1
m = −
αqm

m . (23)

In addition, the combined polarizabilities determining the
frequencies of vibrations (13), in the case of equality (21),
also differ for upper and lower clock-state atom, as follows:


αdqm
m = −2
αqm

m . (24)

So, the difference between frequencies of oscillations inside
the lattice site for ground-state and excited atom is


�m = �e − �g = −
αqm
m k

√
2I

α

mM

. (25)

This difference imparts an additional term to the right-hand
side of Eq. (16), which is proportional to the square root of
intensity


νcl(n,I ) = b1/2(n)I 1/2 + b1(n)I + b3/2(n)I 3/2 + b2I
2, (26)

where

b1/2(n) = −
αqm
m

√
2k2

α

mM

(
n + 1

2

)

= −2
αqm
m

√
E rec

α

m

(
n + 1

2

)
, (27)

and the remaining coefficients in the right-hand side of (26)
look similar to (17) and (18) with the replacement of −
α

qm
m

and α
dqm
m by 
αqm and α


m , respectively,

b
l(c)
1 (n) = 
αqm − 3
βl(c)

m E rec

2α

m

(
n2 + n + 1

2

)
;

(28)

b
l(c)
3/2(n) = 
βl(c)

m

√
E rec

α

m

(
n + 1

2

)
; b

l(c)
2 = −
βl(c)

m .

With the use of the data of Table I, we have

b1/2 = 3.13

(
n + 1

2

)
mHz/

√
kW/cm2;

bl
1(n = 0) = −6.68 mHz/(kW/cm2); (29)

bc
1(n = 0) = −6.65 mHz/(kW/cm2).
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With seven-digit accuracy, b
l(c)
3/2(n) ≈ a

l(c)
3/2(n), whereas an

equality b
l(c)
2 = a

l(c)
2 holds exactly.

Thus, the definition of the MWL on atoms in a lattice
[Eq. (12)] and in a traveling wave [Eq. (21)] differs by the
term ∝ √

I in the lattice-induced shifts of Eqs. (16) and (26).
The term ∝ I 1/2 was first predicted in Ref. [15]. However,

the considerations of Ref. [15] were based on an assumption
of equality αE1

e (ωm) = αE1
g (ωm), without account for the

contribution of E2-M1 polarizability of Eq. (22). Therefore,
the right-hand side of (23) was assumed to be equal to zero
and the analytical and numerical results of Ref. [15] did not
refer either to standing-wave (12) or to traveling-wave (21)
measurements of the MWL.

In addition to the difference between equations for
determining the MWL in a standing wave and in a traveling
wave, the above considerations bring to evidence a possibility
for measuring the contribution of the E2 and M1 interactions
and the net polarizability 
α

qm
m from the difference

between MWL values determined in traveling-wave (λt
m)

and standing-wave (λs
m) experiments. So, the difference

between the magic frequency determined in a traveling wave,
νt

m = c/λt
m, and the magic frequency in a standing wave,

νs
m = c/λs

m, may be calculated from Eqs. (12) and (21) as


νts
m =νt

m − νs
m = − 2
α

qm
m

∂αE1
e (ω)/∂ω − ∂αE1

g (ω)/∂ω

∣∣∣∣∣
ω=ωm

.

(30)

In particular, with the use of the data of Table I this difference
evaluates to 
νts

m = 20.5 MHz. Subtraction of this value
from the magic frequency νt

m, measured in a traveling wave,
determines the magic frequency νs

m for the motion-insensitive
optical lattice. The uncertainties of this value do not exceed
10%, coming from the uncertainties of the single-electron
model potential approximation in divalent atoms [21] and
from approximations in evaluating the frequency derivatives
of the dipole polarizabilities.

V. REPULSIVE POTENTIAL IN A LATTICE WITH
A BLUE-DETUNED MWL

The potential wells of a lattice with a red-detuned wave-
length are replaced by potential barriers in a lattice with
blue-detuned wavelength, since the dipole polarizability at the
high-frequency wing of resonance line becomes negative. So,
in a lattice with a blue-detuned wavelength, atoms are trapped
at the nodes of the lattice standing wave. In this case the origin
of the coordinate axis X in Eq. (4) should be related with
the node, near which the trapped atom oscillates. Then the
electric-dipole and multipole parts of interaction (4) exchange
their positions and the spatial part (5) is modified to

V̂ (X) = V̂E1 sin(kX) + (V̂M1 + V̂E2) cos(kX). (31)

Correspondingly, the second-order and fourth-order in V̂ (X)
shifts (7) and (9) of atomic energy levels transform to

U
(2)
g(e)(X) = −{

α
dqm

g(e) (ω) sin2(kX) + α
qm

g(e)(ω)
}
I, (32)

and

U
(4)
g(e)(X) = −βg(e)(ω)I 2 sin4(kX), (33)

Resolving the sine function in power series of its argument
and confining ourselves to harmonic and the lowest-order
anharmonic terms, we get the Stark potential for the blue-
detuned lattice

U
L(b)
g(e) (X) = U

(2)
g(e)(X) + U

(4)
g(e)(X)

= −α
qm

g(e)(ω)I − α
dqm

g(e) (ω)I (kX)2

+ [
1
3α

dqm

g(e) (ω)I − βg(e)(ω)I 2
]
(kX)4. (34)

In contrast with the red-detuned-wavelength lattice [see (10)],
the hyperpolarizability term does not appear either in the
constant (position-independent) or the harmonic part (∝ X2)
of the potential (34). The anharmonic term is the first instance
where the hyperpolarizability appears. So, the quadratic in
I corrections to the lattice-induced clock-frequency shift
are significantly suppressed due to smallness of anharmonic
lattice-atom interaction. Numerical estimates demonstrate that
this suppression at I = 10kW/cm2 achieves nearly two orders
of magnitude and falls down with the growth of I due to
corresponding fall-down of the anharmonic effects, together
with contraction of the oscillator length scaling factor X0 =√

1/M�m ∝ I−1/4.
The bottoms of potential wells [the X-independent terms

of (34)] depend on the multipole polarizabilities, which are
seven orders smaller than the E1 polarizability (see Table I).
Therefore, the principal contributions into the lattice-induced
shifts of the clock levels

Evib
g(e) ≡ 〈n| P̂ 2

2M + U
L(b)
g(e) (X)|n〉

= −α
qm

g(e)(ω)I + �g(e)

(
n+ 1

2

)

− E rec

2

[
1 − 3βg(e)(ω)I

α
dqm

g(e) (ω)

] (
n2+ n+ 1

2

)
, (35)

comes from the energy of harmonic vibrations, determined by
the eigenfrequencies

�g(e) = �
(0)
g(e)

√
I , �

(0)
g(e) = 2

√
−α

dqm

g(e) (ω)E rec. (36)

Similar to (11), the intensity-independent shift here also
appears as a result of averaging the linear in intensity
anharmonic term of (34).

Thus, the lattice-induced clock frequency shift 
νcl deter-
mined by the difference between energies (35), includes only
square-root and linear in I terms


νcl(n,I ) = Evib
e − Evib

g = c1/2(n)I 1/2 + c
l(c)
1 (n)I, (37)

where (assuming identical vibrational quantum numbers n in
clock states)

c1/2(n) = (
�(0)

e − �(0)
g

) (
n + 1

2

)
;

c
l(c)
1 (n) = −
αqm(ω) + 3

2
E rec

[
βl(c)

e (ω)

α
dqm
e (ω)

− βl(c)
g (ω)

α
dqm
g (ω)

]

×
(

n2+ n+ 1

2

)
. (38)
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The condition (12) for atomic-motion-insensitive MWL in a
standing wave ensures the equality �(0)

e = �(0)
g , which cancels

out the lowest-order term from (37), as c1/2 = 0, and the
lattice-induced shift (37) remains a linear function, directly
proportional to the laser intensity


νcl(n,I ) = c
l(c)
1 (n)I, (39)

with coefficient

c
l(c)
1 (n) = −
αqm

m + 3
βl(c)
m

2α
dqm
m

E rec

(
n2+ n+ 1

2

)
. (40)

For the lowest vibrational state n = 0 of 87Sr atoms in a lattice
with the blue MWL λm = 389.889 nm the data of Table I
gives Re(cl

1) = 13.48 mHz/(kW/cm2), where the contribution
of hyperpolarizability [second term in (40)] is below 1%;
for the state n = 2 we have Re(cl

1) = 11.8 mHz/(kW/cm2),
and the absolute value of the hyperpolarizability-dependent
term amounts to about 14% of |
α

qm
m |. The contributions

to the clock frequency shift come from the real part
of hyperpolarizability, whereas the imaginary part (see Table I)
determines the rate of two-photon ionization by the lattice
wave from the clock states. It is interesting to note that the
real part of the hyperpolarizability of the excited 3P0 state
exceeds that of the ground state 1S0 by more than two orders
of magnitude, while the imaginary part of the ground-state
hyperpolarizability is more than three times that of the excited
state, in accord with general regularities for the ionization
cross section dependence on the free-electron energy (see for
example [24]). However, since the contribution of hyperpo-
larizability in the energy of vibrations (35) comes from the
anharmonic term of the Stark potential (34), it is suppressed
by the factor |E rec/α

dqm
m I |. So, Im(cl

1) = 0.96 × 10−6(n2 +
n + 1/2) s−1/(kW/cm2) and the total rate of the two-photon
ionization is linearly dependent on the laser intensity. For the
ground vibrational state n = 0 at I = 10 kW/cm2 this rate
does not exceed 10−5 s−1.

However, when the MWL is determined in a traveling wave,
according to Eqs. (21) and (22), the eigenfrequencies of an
atom in the upper and lower clock states differ by 
�m =
�e(ωm) − �g(ωm) = 2c1/2(n = 0)

√
I , with

c1/2(n) = −
α
qm
m

α

m

�(0)
m

(
n + 1

2

)
,

�(0)
m = 2

√
−α


g(e)(ω)E rec.

From the data of Table I we have:

c1/2(n) = −10.97

(
n + 1

2

)
mHz√

kW/cm2
.

These data may be useful not only for estimating fractional
uncertainties of the clock-frequency measurements, but also
for determining experimentally E2-M1 polarizability of the
clock transition at the MWL.

With the use of Eq. (30), the difference between the magic
frequencies determined in traveling and standing waves, for
the blue-detuned lattice is evaluated to 
νts

m = 2.66 MHz.
One should bear in mind the lack of the radial confinement

in a 1D lattice of a blue MWL. Nevertheless, the principal
result of elimination of nonlinear in the laser intensity terms

and suppression of hyperpolarizability effects in a blue-
detuned lattice will also remain in a 3D case.

VI. PRECISION FOR THE MWL

Evidently, the lattice-induced shifts determined in
Eqs. (16)–(20), (26)–(29), (37)–(40), may not be reduced to
zero simultaneously for all trapped atomic oscillators due
to different power dependencies of separate terms and to
inhomogeneous distribution of the laser intensity over lattice
traps. However, the shifts can be reduced to their minimal
possible values and then taken into account in experiment. The
idea of the MWL pursues this minimization and its first target
is to equalize the principal contributions to the Stark shifts
of the upper and lower clock levels, basically determined by
dipole polarizabilities.

Naturally, the precision for the value of the MWL should
ensure the difference between the first-order in I electric-
dipole shifts below the hyperpolarizability and multipole
effects, which should be taken into account in high-precision
measurements of the clock frequency. To this end, the
frequency derivatives of the dipole polarizabilities of the clock
levels should be known to control the precision of tuning the
lattice laser to the magic frequency [14,16].

To reduce clock uncertainties to the level of 10−18, the
fractional uncertainties of the lattice-induced shifts of the
clock frequency |
νcl| = |Evib

e − Evib
g |, due to uncertainties


ωm of the magic frequency, at the depth of the lattice traps
on the order of 0.1 MHz to 1 MHz (4.8 to 48 μK) should
not exceed 0.4 × 10−8–0.4 × 10−9. The principal contribution
to the lattice-induced shift comes from the lowest-order
electric dipole interaction. In the red-detuned lattice these
contributions are described by the first and third terms in the
right-hand side of Eq. (11). So, the lattice-induced uncertainty
may be determined numerically by the derivative [16]

∂νcl

∂ωm

= ∂
Evib

∂ωm

= −∂
αE1
m

∂ωm

I + ∂
�(0)
m

∂ωm

√
I

(
n + 1

2

)
,

(41)
where 
�(0)

m = �(0)
e − �(0)

g . Simple estimates,

∂αE1
m

∂ωm

≈ αE1
m


res
and

∂�(0)
m

∂ωm

≈ �(0)
m

(
1

2
res
+ 1

ωm

)
,

(with 15% precision, as is confirmed in numerical calculations)
give

∂νcl

∂ωm

= −
[
αE1

m I − �(0)
m

2

√
I

(
n + 1

2

)] (
1


res
e

− 1


res
g

)
,

(42)
where 
res

g(e) = ωres
g(e) − ωm is the detuning from the frequency

ωres
g(e) of transition to the nearest resonance state, providing

principal contribution to the polarizability of the ground-state
(excited) atom. For the red-detuned MWL the detuning from
resonance of excited clock level 5s5p(3P0) on 5s6s(3S1) state
is 
res

e = 72.778 THz, and for the ground state 5s2(1S0)
the detuning from resonance on 5s5p(1P1) state is 
res

g =
281.950 THz. So the derivative (42) may be presented
numerically as

∂νcl

∂ωm

= −10−10

{
6.575I − 1.524

√
I

(
n + 1

2

)}
, (43)
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with the laser intensity I in kW/cm2. It is evident, that for I =
10 kW/cm2 the 0.1 MHz precision for the MWL is sufficient
to confine the lattice-induced fractional uncertainties on the
clock frequency below 10−18.

The principal contribution to the energy shift of clock
levels in the lattice with blue-detuned MWL is determined
by the energy vibrations described by the second term in the
right-hand side of Eq. (35). So, the derivative of the clock
frequency shift is here determined by only the last term in the
right-hand side of Eq. (41), which may finally be written as
the last term in square brackets of Eq. (42). However, here
the resonance detuning 
res is negative and for the blue MWL
λ = 389.889 nm the detuning from resonance of excited clock
level on 5s6d(3D1) state is 
res

e = −8.39258 THz, and for
the ground state the detuning from resonance on 5s5p(1P1)
state is 
res

g = −118.414 THz. So the derivative for the
clock-frequency-shift dependence on the blue-detuned laser
frequency may be presented numerically as

∂νcl

∂ωm

= −4.14 × 10−9
√

I

(
n + 1

2

)
, (44)

where the laser intensity I is in kW/cm2. The 0.1 MHz
precision for the MWL is required here to provide lattice-
induced fractional uncertainties at the level below 10−18 for
the clock frequency on atoms confined in the blue MWL
lattice to the lowest vibrational state n = 0. To this end, the
lattice laser frequency precision and stability at the intensity
I = 10 kW/cm2 should be on the order of 
ωm/ωm ≈ 10−10,
which is well achievable with such as GPS disciplined Rb
oscillators.

VII. CONCLUSION

In summary, this paper presents detailed quantitative inves-
tigations of the lattice-induced shifts of the clock frequency
in Sr atoms, which may not be eliminated in a MWL lattice
due to higher-order (hyperpolarizability), multipole (M1-E2),
harmonic, and anharmonic [proportional to the second-order
(X2) and fourth-order (X4) displacement of an atom from
its equilibrium position, respectively] effects of the atom-
lattice-field interaction. The analysis distinguished between
two different methods for determining the MWL: for atoms in
a standing wave (12) and for atoms in a traveling wave (21).
The resolutions in powers of intensity for the clock-frequency
shifts in a lattice with a blue MWL (37) in the indicated
approximations include only two terms, ∝ I 1/2 and ∝ I ,
whereas in a lattice with a red MWL (16), (26) additional terms
appear, ∝ I 3/2 and ∝ I 2. In the case of exact equalization of
the harmonic oscillation frequencies of an atom in its upper
and lower clock states, the terms ∝ I 1/2 disappear in Eqs. (16)
and (37) for both types (red- and blue-detuned) of lattices.

In a lattice with a red-detuned MWL the anharmonic terms
of the lattice potential transfer hyperpolarizability effects into
the terms ∝ I and ∝ I 3/2. However, the principal contribution
to the clock-frequency shift (16) at the laser intensity I =
10 kW/cm2 is given by the pure hyperpolarizability term,
determining the quadratic in I vibrational-state-independent
shift of the Stark potential well. The hyperpolarizability-
related harmonic effects are linear and anharmonic effects are
quadratic in the vibrational quantum number n.

In a lattice with a blue MWL the hyperpolarizability
effect appears only in the anharmonic atom-lattice interaction.
Therefore it is quadratically dependent on n and contributes
only into the linear in I term. For the ground vibrational state,
n = 0, the contribution of hyperpolarizability to c1 in (40) and
consequently, to the clock-frequency shift, does not exceed
1%.

Significant dependence on the vibrational quantum num-
bers of coefficients determining the lattice-induced shifts in
Eqs. (16) and (39) suggests application of sideband cooling
to the vibrational ground state is preferable in prior to
spectroscopy. Finally, on the basis of calculated data we can
state that high-precision measurement and account of the
unavoidable lattice-induced shifts (16), (39), together with
high stability of the lattice magic frequency, makes it possible
to proceed to the frequency standard on Sr atoms in optical
lattices with precision in the eighteenth decimal place. The
obtained results provide necessary quantitative information,
which can be rather important for the choice of experimental
methods to accurately account for the unavoidable shifts of the
clock frequency.

Equation (30) indicates the possibility for determining the
motion-insensitive MWL from straightforward measurements
of the MWL for a traveling wave. Inversely, the difference
between the MWL measured in standing and traveling waves
provides the possibility to measure the ratio of the net multipole
polarizabilities and net frequency derivative of the dipole
polarizabilities for the clock states.
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