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Control of qubits by shaped pulses of finite duration
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We consider the interaction of a two-state quantum system with a class of pulses of finite temporal duration.
The pulse shape function f (t) of such a pulse is a nonanalytic function of time, with discontinuous derivatives at
the turn-on and turn-off times. The excitation line width—the excited-state population versus the detuning—is
determined primarily by the magnitude of the jumps of the derivative f (n)(t) at the points of nonanalyticity,
where n is the order of the first discontinuous derivative; this nonanalyticity shows up in the nth superadiabatic
basis. The excitation line width for such pulses exhibits weak power broadening—it scales up as �

1/(n+1)
0 ,

where �0 is the peak Rabi frequency of the transition: �(t) = �0f (t). As a specific example, we consider
the power-of-sine class f (t) = sinn(πt/T ) (0 � t � T ) and a truncated Gaussian pulse, and we compare their
excitation line widths with the well-known excitation profile of the rectangular pulse (the Rabi formula). We
find that, because of the reduced power broadening, the sinn and truncated Gaussian pulses may accelerate
manipulation of qubits compared to rectangular pulses. The reason is that the lower power broadening allows
one to use higher Rabi frequency, and hence shorter pulse duration, without affecting significantly other closely
lying states.
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I. INTRODUCTION

Quantum information processing with atomlike qubits
(trapped atoms and ions, doped solids, quantum dots, super-
conducting qubits, etc.) is usually performed by driving pulses
of rectangular shape, which have a well-defined duration T

and on-resonance Rabi frequency,

�(t) = �0 (0 � t � T ), (1)

and �(t) = 0 otherwise. The transition probability between
states |0〉 and |1〉 of a qubit induced by such a pulse is given
by the famous Rabi formula [1–3],

P0→1 = �2
0

�2
0 + �2

sin2
(√

�2
0 + �2 T/2

)
, (2)

where � is the qubit-field detuning. When plotted as a function
of � the envelope of P0→1(�) vanishes in a Lorentzian manner,
and exhibits a typical power broadening: The line width � 1

2

(full width at half maximum) of the excitation profile P0→1(�)
is proportional to the Rabi frequency: � 1

2
= 2�0.

The power broadening associated with the rectangular pulse
shape poses a lower limit on the pulse duration, and therefore
an upper limit on the speed of manipulation of the state of the
qubit. For example, complete population inversion between the
two qubit states is achieved by a resonant pulse of temporal
area A = �0T = π . If there are other states near one or both
of the qubit states, the Rabi frequency �0 of the driving pulse
must be small compared to the frequency offset � of these
states in order to avoid unwanted excitation of them. Figure 1
shows such a model case when there is a third state |2〉 near
the upper state |1〉 of the two-state system of states |0〉 and
|1〉. A rectangular pulse with area π will invert the transition
|0〉 ↔ |1〉 without exciting state |2〉 provided the Rabi
frequency �0 is far lower than the detuning � of state
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|3〉: �0 � |�|. Because for a π pulse, �0 = π/T , we find
from here a lower limit on the pulse duration: T � π/|�|.
The power broadening associated with the rectangular pulse
shape therefore slows the quantum processors down.

The power broadening—the increase of the spectral line
width of a two-level transition with the radiation intensity—
is a common notion in atomic and molecular spectroscopy
[4,5]. Power broadening always occurs when a two-level atom
is excited by a cw laser field. However, when the atom is
exposed to a pulsed laser field, the extent of power broadening
changes dramatically. Then it is important how the spectral line
profile is measured [6,7,9,10]. A signal collected during the
action of the excitation pulse, e.g., by measuring the ionization
produced by this pulse itself or by another ionizing laser field,
still exhibits power broadening. However, in a signal measured
after the excitation, e.g., by post-pulse fluorescence or light-
induced ionization, the extent of power broadening depends
very strongly on the pulse shape [6–9,11]. For Gaussian pulse
shapes [12,13] there is a weak (logarithmic) power broadening,
which has been demonstrated experimentally [6–8,14]. In an
even more dramatic departure from common wisdom, we have
predicted recently that for smooth pulse shapes, the falling
edges of which vanish as inverse powers with time (e.g., for
pulse shapes that are powers of the Lorentzian function), there
is power narrowing, i.e., the line width of the excitation profile
decreases as the laser intensity increases [11]. The physical
ground for this striking feature is the simple effect of coherent
adiabatic population return [15].

These latter examples—of Gaussian and Lorentzian pulse
shapes—have an infinite pulse duration. However, the circuit
model of quantum computation [16] is based on circuits of
one- and two-qubit gates of certain time duration, which is
why rectangular pulse shapes are predominantly used.

In this paper, we use some of the ideas for reducing
(with Gaussian shapes), eliminating (with hyperbolic-secant
shapes), and inverting (with Lorentzian shapes) the extent
of power broadening proposed and demonstrated earlier
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FIG. 1. (Color online) A qubit composed of states |0〉 and |1〉
driven by a resonant external field with Rabi frequency �0. Unwanted
excitation to state |2〉, which is coupled off-resonantly, with detuning
�, to state |0〉 by the same driving field, is suppressed by using
a sufficiently low Rabi frequency. Because a pulse with a smooth
shape has lower power broadening compared to a rectangular pulse,
it allows one to use a larger Rabi frequency (and shorter duration)
without exciting state |2〉.

[6–9,11], and propose to replace the rectangular pulse shape
with smoother pulse shapes f (t), still with finite duration
(cf. Fig. 2). The main motivation for this is that smoother pulses
must exhibit lower power broadening, which should allow one
to use higher Rabi frequency, and therefore shorter pulses,
without inducing unwanted transitions to neighboring states.
The pulse shape function f (t) of a pulse of finite duration
is a nonanalytic function of time, which has discontinuous
derivatives at the turn-on and turn-off times, ti = 0 and tf = T

(except for some artificially designed pulse shape functions
for which all these derivatives can be made zero; we have no
interest in them here). The transition probability, and hence the
excitation line width, is determined mainly by the magnitude
of the jumps of f (n)(t) at the points of nonanalyticity,
where n is the order of the first discontinuous derivative.
Below we shall use this feature, together with the notions of
adiabatic and superadiabatic coherent population return [15],
in order to estimate the transition probability induced by
such partially smooth pulses of finite duration. This approach
allows us to estimate the transition probability, and therefore
the spectral line shape and line width, for pulses of finite
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FIG. 2. (Color online) Comparison of a rectangular pulse
with truncated sinn(πt/T ) (thick solid curves) and exponential
exp[−(t − T/2)2/τ 2] (dashed curve, τ = 0.3T ) pulses. The values
of n or τ/T are indicated on the respective curves. All pulses are
normalized to have an area π .

duration, including rectangular pulse, truncated sinn, and
truncated Gaussian.

II. EXCITATION BY SMOOTH PULSES
OF FINITE DURATION

A. Diabatic (bare) basis

We consider a two-state quantum system coherently excited
by an external field. Its evolution is described by the time-
dependent Schrödinger equation,

ih̄
d

dt
C(t) = H(t)C(t), (3)

where C(t) = [C0(t),C1(t)]T is a column vector with the time-
dependent probability amplitudes of the unperturbed (diabatic)
basis states |0〉 and |1〉. We assume that the system is initially in
state |0〉: C0(0) = 1,C1(0) = 0; then the post-pulse transition
probability is P0→1 = |C1(T )|2.

The Hamiltonian of the two-state system in the rotating-
wave approximation [2,3] is (h̄ = 1)

H(t) = 1

2

[ −� �(t)
�(t) �

]
, (4)

where � = ω0 − ω is the detuning between the Bohr transition
frequency ω0 and the frequency of the driving field ω. The
Rabi frequency �(t) = �0f (t) parametrizes the interaction
between the laser field and the atom: for an atomic electric-
dipole transition �(t) = −d · E(t)/h̄, where d is the electric
dipole moment of the transition and E(t) is the electric field
of the driving laser pulse. Here we assume that �(t) is real
and positive because its phase is of no importance in the
present context (it can be incorporated in the probability
amplitudes). We further assume that f (t) is a smooth function
except at the turn-on time ti = 0 and the turn-off time tf = T ,
where f (t) itself or one of its derivatives undergoes sudden
jumps. We restrict our analysis to constant detuning � and
bell-shaped symmetric pulse shapes f (t). Then the post-pulse
transition probability P0→1 is an even function of the detuning
�, P0→1(−�) = P0→1(�), i.e., the excitation spectral line is
symmetric [11,22].

B. Pulse shapes

We are mainly concerned by pulse shapes that are powers of
the sine function and last for half of its period, �(t) = �0f (t),
with

f (t) = sinn(πt/T ) (0 � t � T ), (5)

which are shown in Fig. 2. A pulse with a temporal area A =∫ T

0 �(t)dt = π is produced for

�0T = π
√

π �(n/2 + 1)

�(n/2 + 1/2)
, (6)

where �(z) is the Euler’s gamma function. For odd and even
n we find

�0T = (2k − 1)!!

2k(k − 1)!
π2 (n = 2k − 1), (7a)

�0T = 2kk!

(2k − 1)!!
π (n = 2k), (7b)
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with k = 1, 2, 3, . . . . As the power n increases, the pulses
become smoother, and the nonanalyticity moves to higher
derivatives. However, in order to maintain the same pulse area,
the peak value of the Rabi frequency increases with n, as it
follows from Eq. (6), and as it is seen in Fig. 2.

Below we use the nonanalyticities of the pulse shape
function f (t) at the turn-on and and turn-off times, ti = 0
and tf = T , in order to estimate the transition probability
|0〉 → |1〉. This nonanalyticity shows up in the nth supera-
diabatic basis; to this end we start by reviewing the notions
of adiabatic and superadiabatic bases, and adiabatic and
superadiabatic coherent population return [15].

C. Adiabatic basis, adiabatic evolution, and sudden transition

1. Adiabatic basis

The adiabatic states are the (time-dependent) eigenstates
of the Hamiltonian (4). The transformation matrix, which
is formed by them, links the original diabatic basis to the
adiabatic one: C(t) = R(ϑ1(t))A1(t), where

R(ϑ1) =
[

cos ϑ1 sin ϑ1

− sin ϑ1 cos ϑ1

]
, (8)

with

ϑ1(t) = 1

2
arctan

�(t)

�
(0 � ϑ1(t) � π/4). (9)

The subscript 1 is introduced in anticipation of the superadi-
abatic bases, which will be used below; the adiabatic basis is
a superadiabatic basis of order 1. Because �(ti) = �(tf) = 0
and � = const, we have ϑ1(ti) = ϑ1(tf) = 0, and hence

R(ti) = R(tf) = I. (10)

In other words, the diabatic and adiabatic bases coincide at ti
and tf , and therefore, the post-pulse transition probabilities in
the two bases are equal; then the choice of basis for calculation
of P0→1 is just a matter of convenience. The Hamiltonian in
the adiabatic basis reads H1 = R†HR − iR†Ṙ, or explicitly,

H1(t) = 1

2

[
−ε1(t) −2iϑ̇1(t)

2iϑ̇1(t) ε1(t)

]
, (11)

where the nonadiabatic coupling 2ϑ̇1(t) and the eigenvalues
splitting ε1(t) are

2ϑ̇1(t) = ��̇(t)

�(t)2 + �2
, (12a)

ε1(t) =
√

�(t)2 + �2. (12b)

2. Adiabatic evolution

By definition, the evolution is adiabatic if there are no
transitions between the adiabatic states; then the probability
amplitudes can only acquire time-dependent phases in the
course of the evolution. The condition for adiabatic evolution
requires that

|ϑ̇1(t)| � ε1(t). (13)

Then the terms ϑ̇1(t) in Eq. (11) can be neglected, the Hamil-
tonian (11) becomes diagonal, Ha

1(t) = −ε1(t)σ z/2 (with σ z

being the Pauli’s z matrix), and the propagator contains only
phase factors,

Ua
1(tf,ti) =

[
eiη1 0

0 e−iη1

]
, (14)

with

η1 = 1

2

∫ tf

ti

ε1(t)dt. (15)

Because the adiabatic states are time-dependent superposi-
tions of the diabatic states, the populations of the latter states
may change during adiabatic evolution, but in the end the
initial populations of the diabatic states are restored because
the post-pulse transition probabilities in the two bases are
equal. In the adiabatic limit, both probabilities are zero and
we have coherent adiabatic population return [15].

3. Sudden transition

The condition for sudden transition is the opposite to the
adiabatic condition (13),

|ϑ̇1(t)| � ε1(t). (16)

Then the terms ±ε1(t) in Eq. (11) can be neglected, the
Hamiltonian (11) becomes Hs

1(t) = ϑ̇1(t)σ y (with σ y being
the Pauli’s y matrix), and the propagator reads Us

1(t) =
exp[−i

∫
tδ

Hs
1(t)dt], or explicitly,

Us
1(tδ) =

[
cos ϑs

1 − sin ϑs
1

sin ϑs
1 cos ϑs

1

]
= R(−ϑs

1 ), (17)

where tδ is the time interval of the sudden transition, and ϑs
1 is

the change of ϑ1(t) over this interval: ϑs
1 = ∫

tδ
ϑ̇1(t)dt .

4. Example: Rectangular pulse

A sudden transition is induced by a δ-function shaped
coupling: ϑ1(t) ∝ δ(t − ts). Such a behavior of ϑ1(t) emerges
when the Rabi frequency is a discontinuous function at t = ts ,
as in the Rabi model (1). Taking this model as an example,
we find that the discontinuity of f (t) at ti and tf leads to
jumps in ϑ1(t) of magnitude ϑ i

1 = ϑ1(ti) = 1
2 arctan(�/�)

and ϑ f
1 = ϑ1(tf) = − 1

2 arctan(�/�). At any other time, the
Rabi frequency is constant and therefore ϑ̇1(t) = 0, i.e., the
evolution is perfectly adiabatic. The propagator in the original
bare basis reads U(tf,ti) = R(ϑ f

1)Us
1(tf)Ua

1(tf,ti)Us
1(ti)RT (ϑ i

1),
and by taking Eq. (10) into account we find

U(tf,ti) = Us
1(tf)Ua

1(tf,ti)Us
1(ti). (18)

Next, by taking also Eqs. (14) and (17) into account, we find for
the transition probability P0→1 = |U10(tf,ti)|2 the expression,

P0→1 = sin2 2ϑ i
1 sin2 η1. (19)

After replacing ϑ i
1 and η1, and using the relation

sin2(arctan x) = x2/(x2 + 1), we find exactly the Rabi for-
mula (2). This is not surprising because for the Rabi model
the assumptions for sudden evolution at ti and tf and adiabatic
evolution in between are satisfied exactly.
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5. Example: Truncated Gaussian pulse

The next example is a Gaussian pulse centered at T/2 with
its wings truncated symmetrically at the turn-on and turn-off
times ti = 0 and tf = T (see Fig. 2),

�(t) = �0 exp[−(t − T/2)2/τ 2] (0 � t � T ), (20)

The discontinuity of f (t) at ti and tf causes jumps in ϑ1(t) of
magnitude ϑ i

1 = −ϑ f
1 = 1

2 arctan[�0e−T 2/(4τ 2)/�]. Then the
transition probability is given by Eq. (19); explicitly,

P0→1 = �2
0e

−T 2/(2τ 2)

�2
0e

−T 2/(2τ 2) + �2
sin2 η1. (21)

Unlike the Rabi model, this formula is only approximate
because the assumption of adiabatic evolution in the time
interval [0,T ] is only an approximation. Baring the oscillatory
part, the excitation line width scales as

� 1
2

≈ �0e
−T 2/(4τ 2). (22)

In the limit τ → ∞ the Gaussian becomes infinitely broad
and the time interval [0,T ] cuts off only its flat top. Hence
the truncated Gaussian reduces to the rectangular pulse and
the transition probability (19) reduces to the Rabi formula (2);
the cut-off dominates the probability completely.

For small τ (τ � T ), the discontinuity caused by the
truncation has a negligible effect on the transition probability
because e−T 2/(2τ 2) � 1. Then the truncated pulse differs very
little from a Gaussian pulse of infinite duration, which has
been studied in detail elsewhere [12,13]. Then the transition
probability is determined primarily by the condition for
nonadiabatic evolution, which reads [13]

�0 � �

2
e

27
4 �2τ 2ε2

, (23)

where ε is a small number measuring the deviation from perfect
adiabaticity [13]. This condition shows a logarithmic power
broadening of the excitation line width.

We conclude that for large τ , the line width suffers from
power broadening nearly as much as the rectangular pulse.
For small τ , the line width increases due to deteriorating
adiabaticity [cf. Eq. (23)]. This suggests the existence of
some optimal value τopt, for which the excitation line width is
minimal; we have estimated this value to be τopt ≈ 0.3T .

D. Superadiabatic bases

The treatment for the smooth pulses of finite duration
of Eq. (5) follows the same template, with two important
differences. First, the sudden transitions are calculated in the
appropriate superadiabatic basis, of order n + 1, in which the
respective coupling has a δ-function behavior at the turn-on
and turn-off times ti and tf, as a result of the nonanalyticity of
the pulse shape f (t). Second, we assume that between ti and tf
there are no transitions in the (n + 1)-st superadiabatic basis,
which amounts to superadiabatic evolution; therefore, unlike
the Rabi model, the solutions are only approximate because
the evolution away from the singularities is not perfectly
superadiabatic.

1. Lowest superadiabatic basis

The superadiabatic bases of different order n are generated
by diagonalization of the Hamiltonian in the respective
preceding superadiabatic basis of order n − 1, starting from
the adiabatic basis, for which we take n = 1. Thus the
superadiabatic basis of order 2 is formed of the eigenstates of
the adiabatic Hamiltonian (11). Before proceeding we make
the phase transformation,

F =
[

e−iπ/4 0

0 eiπ/4

]
, (24)

which does not change the probabilities. It casts the adiabatic
Hamiltonian (11) in the form of the original bare-basis
Hamiltonian (4), H1(t) → H2(t) = F†H1(t)F, with the cor-
respondences � → ε1(t), �(t) → 2ϑ̇1(t), and C(t) → A1(t).
Now we can repeat all the calculations of Sec. II C, with the
replacements,

ϑ1(t) → ϑ2(t), (25a)

ε1(t) → ε2(t), (25b)

A1(t) → A2(t), (25c)

H1(t) → H2(t), (25d)

η1 → η2. (25e)

Of particular significance are the superadiabatic coupling ϑ̇2(t)
and splitting ε2(t),

ϑ̇2(t) = ε1(t)ϑ̈1(t) − ε̇1(t)ϑ̇1(t)

ε1(t)2 + 4ϑ̇1(t)2
, (26a)

ε2(t) =
√

ε1(t)2 + 4ϑ̇1(t)2. (26b)

The conditions for superadiabatic and supersudden evolution
read

|ϑ̇2(t)| � ε2(t) (superadiabatic), (27a)

|ϑ̇2(t)| � ε2(t) (supersudden). (27b)

If the superadiabatic coupling ϑ̇2(t) has a δ-function
behavior at the turn-on and turn-off times, while it is negligibly
small compared to the superadiabatic splitting ε2(t) at any time
in between, the solution in the original bare basis will be similar
to the Rabi model [Eq. (18)],

U(tf,ti) = Us
2(tf)Ua

2(tf,ti)Us
2(ti), (28)

with Ua
2(tf,ti) and Us

2(tδ) defined as Eqs. (14) and (17), with
the subscript 1 replaced by 2.

We note that this definition of superadiabatic bases, ob-
tained by repeated diagonalization of the Hamiltonian in the
preceding superadiabatic basis, differs from earlier definitions
[17], but is in accord with others [18,19].

2. Sine pulse: Approximate solution

The solution (28) is particularly suitable for the sine pulse,

�(t) = �0 sin(πt/T ) (0 � t � T ), (29)

because it has a discontinuous first derivative, and therefore,
δ-function singularities in the superadiabatic coupling at the
turn-on and turn-off times ti = 0 and tf = T . The magnitudes
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FIG. 3. (Color online) Post-pulse transition probability P0→1 vs
the detuning � for the sine pulse shape of Eq. (29) (top) and the
sin2 shape of Eq. (32) (bottom). The pulse area is A = π in both
cases, which according to Eq. (6) means that �0 = π 2/2 for n = 1
and �0 = 2π for n = 2. The solid lines are obtained by numerical
integration of the Schrödinger equation and the dashed lines are the
analytic approximations (31) (top) and (34) (bottom).

of the jumps of ϑ2(t) at ti and tf are

ϑ2(ti) = −ϑ2(tf) = 1

2
arctan

π�0

�2T
. (30)

The approximate transition probability for the sine pulse (29)
reads

P0→1 = π2�2
0

π2�2
0 + �4T 2

cos2 η2, (31)

with η2 = 1
2

∫ tf
ti

ε2(t)dt . Although this approximate formula
bears many similarities to the Rabi formula (2), there is one
essential difference: This is the term with �4 in the pre-factor,
which signals reduced power broadening, to which we shall
return in the next section.

Figure 3 (top frame) compares the analytic approxima-
tion (31) for the transition probability P0→1 to the exact
numerical values for a sine pulse with an area π . The
analytic formula (31) describes remarkably accurately both
the amplitude and the phase of the oscillations in P0→1, except
for small detuning where the assumption for superadiabatic
evolution between the singularities is not fulfilled well.

3. Sin2 pulse: Approximate solution

The same approach allows us to obtain the naked singu-
larities for any other sinn pulse shape of Eq. (5) by going,
iteratively, to the n + 1-st superadiabatic basis. For the sin2

pulse shape,

�(t) = �0 sin2(πt/T ) (0 � t � T ), (32)

we repeat the procedure described above but for the n = 3
superadiabatic basis by replacing all subscripts “1” by “2” and

all subscripts “2” by “3”. The magnitude of the jumps of ϑ3(t)
at ti and tf are

ϑ3(ti) = ϑ3(tf) = 1

2
arctan

2π2�0

�3T 2
. (33)

Thereby we find the following approximate expression for the
transition probability:

P0→1 = 4π4�2
0

4π4�2
0 + �6T 4

sin2 η3, (34)

with ε3(t) =
√

ε2(t)2 + 4ϑ̇2(t)2 and η3 = 1
2

∫ tf
ti

ε3(t)dt . We
note the power �6 in the pre-factor of Eq. (34), which signals
a further reduction of the power broadening.

Figure 3 (bottom frame) compares the analytic formula (34)
for the transition probability P0→1 to the exact numerical
values for a sin2 pulse with an area π . Formula (34) describes
very well the amplitude and the phase of the oscillations
in P0→1 for fairly large detunings, while it is not as good
for small detuning where the assumption for superadiabatic
evolution is not fulfilled very well. In particular, formula (34)
is very accurate around the quantum computation benchmark
value 10−4.

4. Higher superadiabatic bases

In the general case of sinn pulse shape, Eq. (5) with arbitrary
n, the transition probability is given by a similar formula
as for the sin and sin2 pulses above; it is calculated in the
superadiabatic basis of order n + 1, wherein the singularity
in the sinn pulse shape emerges: The superadiabatic coupling
ϑ̇n+1(t) has a δ-function behavior at the turn-on and turn-off
times ti and tf. If it is negligibly small compared to the
superadiabatic splitting εn+1(t) at any other time in between,
the solution in the original bare basis will be similar to Eq. (28),

U(tf,ti) = Us
n+1(tf)Ua

n+1(tf,ti)Us
n+1(ti), (35)

with Ua
n+1(tf,ti) and Us

n+1(tδ) defined as Eqs. (14) and (17),
with the subscript 1 replaced by n + 1.

If ϑn+1(tf) = −ϑn+1(ti), as for the power-of-sine pulse
shapes (5) with odd n, we find from here for the transition
probability the expression,

P0→1 = sin2 2ϑ i
n+1 cos2 ηn+1 (odd n). (36)

If ϑ f
n+1 = ϑ i

n+1, as for the shapes (5) with even n, we find

P0→1 = sin2 2ϑ f
n+1 sin2 ηn+1 (even n). (37)

It is therefore important to calculate the magnitude of the
jumps of ϑn+1(t) at ti in the (n + 1)-st superadiabatic basis;
the value is readily found,

ϑ i
n+1 = 1

2
arctan

n!πn�0

�n+1T n
. (38)

By using the relation sin2(arctan x) = x2/(x2 + 1), we find

〈P0→1〉 = (n!πn�0)2

(n!πn�0)2 + (�n+1T n)2
, (39)

where we have dropped the oscillatory factors cos2 ηn+1

and sin2 ηn+1 with the dynamical phase ηn+1 in Eqs. (36)
and (37), and 〈P0→1〉 denotes the amplitude of these Rabi-
like oscillations. Obviously, Eq. (39) reduces to the Rabi
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formula (2) for n = 0, as it should be the case because the
rectangular shape is the n = 0 case of the sinn shapes (5).
We note that sinn pulses have been discussed, in a different
context, by Yatsenko et al. [20].

5. Condition for superadiabatic evolution

It is important to estimate the condition for superadiabatic
evolution during the excitation in order to have a criterion for
validity of our results. For the sinn pulse shapes (5) a simple
calculation gives

|�| �
(

n!nπn+1�0

2T n+1

) 1
n+2

∝ �
1

n+2
0 . (40)

E. Excitation line width

Equation (39), which is one of the central results in this
paper, allows us to find immediately the excitation line width,
which we define as the detuning range (−� 1

2
,� 1

2
) wherein

〈P0→1〉 > 1
2 . Obviously,

� 1
2

=
(

n!πn�0

T n

) 1
n+1

∝ �
1

n+1
0 . (41)

It is important that this value, as can easily be verified, is larger
than the boundary value in Eq. (40) for the superadiabatic
approximation. This implies that our approach provides the
correct value for the excitation line width.

The positive power of the peak Rabi frequency �0 in
Eq. (41) indicates power broadening; however, it is much
reduced compared to the Rabi model. For sin, sin2, and sin3

pulses we have, respectively,

� 1
2

=
(

π�0

T

) 1
2

∝ �
1
2
0 (n = 1), (42a)

� 1
2

=
(

2π2�0

T 2

) 1
3

∝ �
1
3
0 (n = 2), (42b)

� 1
2

=
(

6π3�0

T 3

) 1
4

∝ �
1
4
0 (n = 3). (42c)

As the smoothness parameter n increases, the power broad-
ening rapidly diminishes. We also note that, for fixed time
duration T , the peak Rabi frequency �0 required to produce
a certain pulse area A increases with n, as seen in Eq. (6)
and Fig. 2. These two opposite tendencies imply that for a
fixed value of the pulse area A, the right-hand side of Eq. (41)
possesses a minimum at a certain value of n [note that for
a fixed A, �0 depends on n, as in Eq. (6) for A = π ]. As
A increases this optimum n slowly increases, from n = 1 for
A � 3π , to n = 2 for A ∼ 5π , to n = 3 for A ∼ 15π , etc.

F. Quantum computation benchmark

Besides the line width at half maximum, formula (39)
allows us to estimate the detuning �qc beyond which the
transition probability falls below the value 10−4, which is the
usual quantum computing benchmark error. By requiring that
〈P0→1〉 = ε, with ε = 10−4, we find for a π pulse, for which

the peak Rabi frequency is given by Eq. (6), that

�qc = π

T

(
n! �(n/2 + 1)

�(n/2 + 1/2)

√
π (1/ε − 1)

) 1
n+1

. (43)

�qc has a shallow minimum in the range n = 4,5,6. We have
already seen in Fig. 3 that the analytic formula (39) describes
very accurately the transition probability P0→1 around the
quantum computation benchmark error value 10−4 for n = 1
and 2. We have found that this conclusion remains valid also
for larger n, i.e., Eq. (43) can be considered as a very accurate
estimate.

III. EXAMPLES

A. Two-state system

In order to verify the scaling law (41) for the sinn pulse
shapes of Eq. (5), we have plotted in Fig. 4 the post-pulse
transition probability P0→1 versus the detuning, and the
scaling, linear with respect to (�0T )1/(n+1), of the vertical axis
allows us to view the dependence of Eq. (41) as linear. Baring
the Rabi oscillations around resonance, a linear behavior
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FIG. 4. (Color online) Numerically calculated post-pulse transi-
tion probability P0→1 vs the detuning � and the peak Rabi frequency
�0 for sinn pulse shapes of Eq. (5), with n indicated in each frame.
The vertical axes are scaled linearly with respect to the corresponding
quantities (�0T )1/(n+1), which allows us to verify the dependence
� 1

2
∝ �

1/(n+1)
0 stemming from Eq. (41), which should appear linear

in each corresponding frame.
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FIG. 5. (Color online) Numerically calculated post-pulse transi-
tion probability P0→1 (in logarithmic scale) vs the detuning � for the
sinn pulse shapes of Eq. (5). The respective value of n for each curve
is indicated in the figure. The pulse area of each pulse is π .

is established in each frame, which confirms the universal
scaling law (41). Note the difference in the detuning range for
the different shapes. All sinn pulses produce much narrower
excitation profiles than the rectangular pulse (n = 0). The
narrowest profiles are obtained for n = 3 and 4, in line with
our analytic results above.

Figure 5 shows the post-pulse transition probability P0→1

versus the detuning for several sinn pulse shapes of Eq. (5) with
pulse area π . The transition probability for the rectangular
pulse (n = 0) does not fall below the mark 10−4 (even not
below 10−3) in the displayed detuning range (it does so for
� � 300/T ), while the sinn pulse shapes of Eq. (5) achieve
this even for moderately large detunings, e.g., for � � 22/T

for the sin4 pulse. As discussed above, the increase of this
detuning range for larger n (n = 9) is due to the larger peak
Rabi frequency �0 needed to produce an area π .

Figure 6 shows the post-pulse transition probability P0→1

versus the detuning for several truncated Gaussians (each
with an area of π ) with different values of τ . The figure
demonstrates the existence of an optimal value of τ at around
0.3T , in good agreement with the analysis in Sec. II C5.
Above it the excitation profile broadens due to the jumps of
the coupling at the turn-on and turn-off times. Below it the
excitation profile broadens due to the increased peak Rabi
frequency needed to keep the pulse area equal to π for a
squeezed pulse.
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FIG. 6. (Color online) The same as Fig. 5 but for truncated
Gaussians (20) with pulse area π . Here the labels denote the value of
τ for each curve.

B. Three-state system

The main difference of the partly smooth sinn pulse shapes
and the truncated Gaussians compared to the rectangular
pulse—the narrower excitation profile P0→1(�)—is most
advantageous in the presence of other states close to one of
the qubit states, the excitation of which must be avoided.
The V system of Fig. 1 is the simplest model system, which
allows us to examine the selectivity of excitation |0〉 → |1〉.
State |2〉 is situated near state |1〉, and the pulse driving the
transition |0〉 ↔ |1〉 can excite also the transition |0〉 ↔ |2〉
(generally with a different Rabi frequency). If the driving field
is resonant with the transition |0〉 ↔ |1〉 and detuned from the
transition |0〉 ↔ |2〉 by a detuning �, the Hamiltonian of this
V system reads

H = 1

2

⎡
⎢⎣

0 �(t) β�(t)

�(t) 0 0

β�(t) 0 2�

⎤
⎥⎦ , (44)

where the number β is the ratio of the coupling strength of
the transition |0〉 ↔ |2〉 relative to the one for the transition
|0〉 ↔ |1〉; in the simulations we take β = 0.3. Such a
situation arises in the excitation of many atoms and ions with
hyperfine structure (with energy splittings in the GHz range) by
nanosecond pulses. In order to avoid the unwanted excitation of
state |2〉 one has to use a sufficiently small peak Rabi frequency
�0 compared to the detuning �. If we want to invert the
transition |0〉 ↔ |1〉 by a π pulse, then the objective to suppress
unwanted excitation of state |2〉 imposes an upper limit on �0,
and hence a lower limit on the time duration T . Figure 7 shows
numerical simulations, which demonstrate the performance of
different pulse shapes for this purpose. A sufficiently large
detuning � eventually decouples the unwanted state |2〉 from
the dynamics and leaves the π pulse acting upon, and inverting
the desired transition |0〉 ↔ |1〉. The figure shows, for different
pulse shapes, how large the detuning � must be so that the
transition |0〉 ↔ |1〉 does not “feel” the presence of state |2〉.
The best performance is achieved with a truncated Gaussian
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FIG. 7. (Color online) Numerically calculated deviation of the
post-pulse transition probability P0→1 from 1 (in logarithmic scale)
vs the detuning � in the three-state V system shown in Fig. 1 for
the sinn pulses of Eq. (5) (thick solid curves), and for the truncated
Gaussian pulse of Eq. (20) (dashed curve). The respective values of
n for the sinn pulses and τ = 0.3T for the truncated Gaussian are
indicated on each curve. The peak Rabi frequency for the transition
|0〉 ↔ |1〉 is such that the pulse area of each pulse is π . The pulse
area for the transition |0〉 ↔ |2〉 is 0.3π for each pulse.
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0; 1
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0; 2

1; 2

FIG. 8. (Color online) Linkage patterns for qubit transitions in
a trapped ion. Each qubit state |0〉 and |1〉 is split into a ladder of
infinitely many harmonic sublevels, with a splitting equal to the trap
frequency ν. The notation |q; v〉 stands for the qubit state |q〉 dressed
with v phonons. Qubit driving at the carrier frequency (thick arrow)
may induce unwanted transitions to other (off-resonant) vibrational
states (thin arrows). The solid arrows indicate the transitions that are
taken into account in the numerical simulations.

with τ = τopt ≈ 0.3T , and sin and sin2 pulses; for these the
decoupling of state |2〉 (i.e., when its population drops below
the 10−4 benchmark) occurs for detunings that are by a factor
of over 3 lower compared to the one for the rectangular pulse.
For a fixed detuning �, this implies that sin and sin2 pulses and
a truncated Gaussian with τopt can invert the qubit, with an error
less than 10−4, over three times faster than a rectangular pulse.

C. Multistate system

The partly smooth pulses discussed above have similar
advantages over the rectangular pulse in more complex
multistate systems. As an example, we consider the states
of an ion qubit in a linear Paul trap, which are dressed by
a certain number of quantized motional quanta (phonons)
[21], as shown in Fig. 8. Each qubit state is split into an
infinite ladder of vibrational states, with the splitting equal to
the trap frequency ν. Qubit driving at the carrier frequency
(thick arrow) may induce also unwanted transitions to other
(off-resonant) vibrational states (thin arrows), which must be
suppressed. Again, this puts a lower limit on the pulse duration
T because the Rabi frequency �0 should be kept sufficiently
small compared to the trap frequency ν.

The Hamiltonian of the system composed of the first four
vibrational states linked with the solid arrows in Fig. 8 reads

H = 1

2

⎡
⎢⎢⎢⎣

0 �g 0 �b

�g 0 �r 0

0 �r 2ν �g

�b 0 �g 2ν

⎤
⎥⎥⎥⎦ , (45)

where the states are ordered as follows: |0; 0〉, |1; 0〉, |0; 1〉,
|1; 1〉. Here �g(t) = �(t) is the Rabi frequency of the carrier
transitions (associated with no change in the phonon number),
�r (t) = η�(t) is the Rabi frequency of the red-sideband
transition |0; v〉 → |1; v − 1〉, and �b(t) = η�(t) is the Rabi
frequency of the blue-sideband transition |0; v〉 → |1; v + 1〉.
Here η is the Lamb-Dicke parameter, which is the ratio
between the sizes of the ionic wave function and the light
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FIG. 9. (Color online) Numerically calculated error in the pop-
ulation inversion |0; 0〉 → |1; 0〉, resulting from the action of a
rectangular pulse (thick curve), sine and sin2 (thin curves) pulses
in the four-state system of Fig. 8. The area of each pulse is equal
to π .

field [21]. In the Lamb-Dicke limit, we have η � 1; we take
η = 0.1.

The objective here is to drive the carrier transition |0; v〉 →
|1; v〉 without exciting the other transitions. The problem is
that the driving pulse couples all other transitions, blue and
red sideband, albeit off-resonantly. The unwanted transitions
|0; 0〉 → |1; 1〉 and |1; 0〉 → |0; 1〉 have lower Rabi frequency
η�(t), which are attenuated by the Lamb-Dicke parameter η.
These unwanted transitions can be eliminated by ensuring that
their Rabi frequency η�(t) is far less than the trap frequency
ν. This upper limit upon �(t) sets a lower limit on the pulse
duration T , which ultimately slows the gate operation.

Figure 9 shows the error in the population inversion of the
transition |0; 0〉 → |1,0〉 for different pulse shapes in the pres-
ence of the other, unwanted states |0; 1〉 and |1; 1〉. The sin and
sin2 pulses demand, for fixed Rabi frequency �0, a factor of 3
lower trap frequency ν than a rectangular pulse; conversely, for
a fixed trap frequency ν, the sin and sin2 pulses allow one to use
a factor of 3 higher Rabi frequency, and hence one can speed up
the qubit manipulation by the same factor. Similar conclusions
apply for a truncated Gaussian pulse with optimal τ .

IV. CONCLUSIONS

We have demonstrated, by using the concepts of adia-
batic and superadiabatic bases, adiabatic evolution, sudden
transitions, and coherent population return, that the use of
partly smooth pulse shapes of finite duration (powers of
sine and truncated Gaussian) can speed up the manipulation
of qubits for quantum information processing as compared
to rectangular pulses. To this end, we have derived an
approximate expression for the transition probability induced
by such pulses, Eq. (39), which shows that these pulses have
much lower power broadening compared to rectangular pulses,
Eqs. (41) and (43). In the derivation we have used the fact that
the nonanalyticity of such pulses of finite duration shows up in
the (n + 1)-st superadiabatic basis, where the corresponding
superadiabatic coupling has a δ-function behavior at the
turn-on and turn-off times; this allowed us to readily estimate
the transition probability. The much reduced power broadening
of these sinn pulses makes them superior to the rectangular
pulse when there are unwanted states near the two qubit states:
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the sinn pulses and the truncated Gaussian have much higher
selectivity of excitation, which allows one to use much higher
values of the Rabi frequency, and hence much shorter pulse
durations. We have demonstrated this speed-up in three- and
four-state systems.
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