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Surface-grating deflection of fast atom beams

A. Zugarramurdi,1 M. Debiossac,1 P. Lunca-Popa,1 L. S. Alarcón,2 A. Momeni,1,3 H. Khemliche,1

P. Roncin,1 and A. G. Borisov1
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For energetic atomic beams grazingly incident at the surface along the low index directions, fast motion
parallel to the surface and slow motion perpendicular to the surface lead to the quantum diffraction pattern in
the scattered beam. In this experimental and theoretical joint study we show that when the incident beam is
misaligned with respect to an axial channel, the characteristic deformation of the diffraction pattern reflects an
overall deflection of the scattered beam from the specular direction. The deflection is maximum for the azimuthal
misalignment angles close to the rainbow angle and we show how this effect can be explained with the detailed
balance principle relating diffraction of misaligned and perfectly aligned beams. We also demonstrate that using
the detailed balance principle the diffraction charts for the incident beams aligned along the axial channel can be
reconstructed from the azimuthal incidence angle dependence of the data obtained with misaligned beams.
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I. INTRODUCTION

Interaction of swift particle beams with solid surfaces has
been thoroughly studied over the decades because of the
fundamental and practical interest. Developed analytical and
numerical tools successively explain scattering and sputtering
experiments within the classical framework of transport
and collision theories [1–4]. Indeed, the small de Broglie
wavelength of the projectile, as well as electron and phonon
excitations produced upon impact at surfaces, would be the
arguments for the classical behavior. In this respect, recent
observation of fast atom diffraction at monocrystal surfaces
upon grazing incidence [5–10] demonstrated that energy losses
and associated decoherence can be made small [11–13] leading
to the quantum behavior of the projectile beam. Observed
well-resolved diffraction patterns in the scattered beam opened
an avenue for the application of this technique as a powerful
tool for surface analysis [10,14,15]. The diffraction is possible
because, under grazing angles, the de Broglie wavelength
associated with the slow projectile motion perpendicular to the
surface is comparable to interatomic spacings at the surface.

Observation of grazing incidence fast atom diffraction at
surfaces (FAD, also referred to as GIFAD) prompted numerous
experimental and theoretical studies [7–12,16–18] mainly
addressing the case of the incident beam being perfectly
aligned along a low index direction at the surface. Here
we address the much less studied case where the incident
atom beam is misaligned with respect to the low index
direction at the surface. While for large misalignments the
diffraction is suppressed and planar surface channeling with
specular reflection is retrieved [10,19,20], the case of the
small misalignment allows us to observe the guiding and
beam deflection effects. Our experimental and theoretical
results for FAD of 4He projectiles from the LiF(001) surface
show controllable beam deflection in the direction of atomic
rows forming an axial channel (grating structure) at the
surface. Along with overall deflection of the beam, for specific
azimuthal incidence angles close to the rainbow angle efficient

perfect alignment can be reached where the intense diffracted
beam leaves the surface exactly following the low index
direction. Our results suggest that the surface scattering at
grazing angles can be used for coherent manipulation of fast
atom beams.

II. METHODS

The sketch of the studied system is presented in Fig. 1. The
beam of 4He projectiles with typical energies E ∼ 1 keV is
incident at LiF(001) surface at grazing polar angle �. Thus, the
perpendicular to the surface motion of projectiles is slow, with
corresponding momentum k⊥ = k sin(�), and energy E⊥ =
E sin2(�), where the total momentum is given by k = √

2ME

and M is the projectile mass (we use atomic units through
the text unless otherwise stated). The motion parallel to the
surface is fast with momentum component k‖ ∼ k, and energy
E‖ ∼ E. The beam is oriented at azimuthal angle � measured
with respect to the low index 〈110〉 direction at the surface.
The diffracted beams leave the surface at azimuthal angles
ψmn and polar angles φmn. The pair of indexes (m,n) defines
the diffraction order as we discuss below.

In our experiments the primary He+ ions are extracted
at the desired energy from a commercial ion gun. They are
neutralized in an effusive gas cell and resulting neutral fast
4He atoms are drastically collimated before interacting with
the surface in a UHV chamber at base pressure of some 10−11

mbar. The crystal surface is mounted with its normal direction
aligned with that of the manipulator rotation axis allowing
direct drive of the azimuth by a precision stepper motor with
a single step sensitivity below 0.01◦. The manipulator support
flange can also be tilted with respect to the beam axis for
the fine tuning of the incidence angle. The atoms reflected by
the surface hit a microchannel plate amplifier stacked onto a
phosphor screen located 740 mm downstream. The diffraction
pattern is captured online by a CCD camera providing a pixel
resolution of 4 × 10−3 deg. Each diffraction image provides
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FIG. 1. (Color online) (a) Sketch of the LiF(001) surface. We use
a coordinate system where y is along the 〈110〉 direction. The most
relevant low index directions are denoted by arrows. (b) Reciprocal
two-dimensional (2D) surface lattice together with the primitive
vectors. (c) Scattering geometry.

an independent absolute angular calibration: a fit through the
coordinates of the primary (nonscattered) beam spot and those
of the diffracted spots readily provides the coordinates of
the Laue circle, i.e., its radius, and center related to the �

and � angles. This analysis yields an absolute accuracy in
the 0.01◦ range. Finally, the LiF(001) sample was cleaved in
air and rapidly introduced into the UHV chamber. A mild
annealing to 500 K is sufficient to allow observation of intense
and well-resolved diffraction patterns. Further details on our
experimental procedure can be found elsewhere [6,7].

Present theoretical study is based on the time-dependent
wave packet propagation (WPP) approach as developed for
FAD [6,21,22]. The potential for He/LiF(001) projectile-
surface interaction has been obtained from the quantum
chemistry calculations [6] and was adjusted to include the
effect of the surface rumpling [16]. From WPP we obtain the
probabilities of the diffraction Rmn into the various (m,n)
diffraction orders. The diffraction order is defined by the
reciprocal lattice vector exchange with the surface such that
parallel to the surface momentum component of the diffracted
beam is given by k′

‖ = k‖ + mG1 + nG2. The primitive
reciprocal lattice vectors G1 and G2 of the LiF(001) surface are
shown in Fig. 1. Their absolute values are |G1| = |G2| = G,
where G = 1.170a−1

0 . The diffracted beams leave the surface
with perpendicular energies

E⊥(m,n) = E⊥ − (m2 + n2)

2M
G2 − (mkx + nky)

M
G, (1)

where kx = k‖ sin(�), and ky = k‖ cos(�) [see Fig. 1(a)].
In practice, for small misalignment angles between the

incident beam and 〈μν0〉 low index direction at the surface,

FIG. 2. (Color online) Diffraction charts for beams with total
energy E = 460 eV. Topmost panels: Theoretical results for the
diffraction as function of the incidence perpendicular energy E⊥ and
azimuthal exit angle (top axis) and momentum exchange �kx (bottom
axis) are shown for (a) the perfectly aligned and (b) misaligned
beam case. Bottom panels: Comparison between (c) experimental
and (d) theoretical diffraction probability charts at E⊥ = 120 meV as
function of the diffraction order and misalignment momentum (angle)
denoted in the bottom (top) axis.

experimental and theoretical results show that the diffraction
proceeds with reciprocal lattice vector exchange perpendicular
to the 〈μν0〉 direction. For example, for the 4He beam oriented
close to the 〈110〉 direction at the LiF(001) surface, only the
(m,n = 0) diffraction is possible and diffracted beams are
located on the single Laue circle. Indeed the n 
= 0 diffraction
is suppressed because it is associated with too large energy
exchange between slow motion in the (x,z) plane and fast
motion along the y coordinate [see Eq. (1)] [21,22]. The
fast motion and slow motion appear decoupled so that one
effectively deals with two-dimensional (2D) diffraction in the
plane perpendicular to the surface. The fast projectiles “feel”
the potential averaged along the axial channel, so that only
surface corrugation across the channel is resolved [6,21,23].
This forms the basis for the 2D axial surface channeling (ASC)
approximation in description of FAD experiments. It is worth
noting, however, that recent results show the possibility of
3D diffraction for the reconstructed surfaces with large period
along the fast motion direction [24,25].

III. RESULTS AND DISCUSSION

In Fig. 2 we show the calculated diffraction probabilities
Rm0 for the 460 eV 4He beam incident close to the 〈110〉
direction. The ASC approximation holds in this case and the
diffraction process is fully determined by E⊥, kx , and the
momentum change in x direction �kx = mG. In Figs. 2(a)
and 2(b) theoretical results are then shown as function of
E⊥ and �kx for fixed values of kx given by the beam
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misalignment angle. In Figs. 2(c) and 2(d) experimental and
theoretical data are presented as function of misalignment
kx and diffraction order (m = �kx/G) for fixed value of
E⊥ = 120 meV. Artificial broadening in �kx is applied to the
theoretical data to mimic the experimental broadening effects.
Note that while the diffraction probabilities are independent
of the fast motion along the 〈110〉 direction, the latter defines
the geometrical characteristics of the process such as the
azimuthal exit angles of the diffracted beams: tan(ψmn) =
(kx + mG)/ky .

For the perfectly aligned beam with � = 0◦ the symmetric
diffraction pattern as obtained in Fig. 2(a) is in full accord
with earlier published results [5,6,10]. For each E⊥ energy,
the range of the ψm,n=0 angles contributing to the diffraction
pattern is bounded by the rainbow angles �R , corresponding to
the maximum azimuthal scattering angles attained classically.
The diffracted beams leaving the surface close to the rainbow
angle are most intense reflecting the classical divergence of the
scattering intensity at �R [26]. With increasing misalignment
�, the diffraction pattern becomes asymmetric as shown in
Fig. 2(b). For � > 0, there is less diffracted beams with
m > 0 as compared to m < 0 beams. Indeed, the diffraction
with m > 0 is reduced because it corresponds to larger
final momentum along the x axis and to larger change
of the perpendicular energy E⊥(m,0) − E⊥ [22]. Thus, the
reciprocal lattice vectors are preferentially exchanged in the
direction opposite to kx [20]. For large misalignment angles �

the energy exchange between parallel and perpendicular to the
surface motion given by Eq. (1) is too large. The diffraction
pattern shrinks and eventually only specular reflection is
observed [10,19].

Figures 2(c) and 2(d) extend the analysis of the character-
istic asymmetry of the diffraction pattern upon misalignment
of the incident beam (see also Refs. [19,20]). At that point
we underline the excellent agreement between calculated
and measured diffraction probabilities. This is while the
calculations are performed for the perfect rigid surface and
experimental data is affected by inelastic and further decoher-
ence processes. These are present and increase in magnitude
with increasing momentum exchange between the projectile
and the surface. The diffraction pattern gradually evolves from
well-defined spots located on the Laue circle [see Fig. 1(c)] to
stripes elongated in the z direction together with a progressive
broadening along the x direction. The experimental results
shown in this paper are obtained with low incidence angles
(�1◦) where well resolved diffraction peaks are observed from
which the full intensity has been extracted. It follows from
Figs. 2(c) and 2(c) that for positive (negative) misalignment
diffraction orders with negative (positive) m prevail. That is,
diffraction with mkx < 0 dominates, and the flux of outgoing
particles is preferentially distributed among diffraction orders
pointing in the direction of the axial channel. In overall
the kx momentum component is reduced, and the outgoing
beam appears deflected from the specular direction towards
the low index direction at the surface. It is noteworthy that
the average outgoing polar angle will be in this case larger
than � since for mkx < 0, Eq. (1) gives E⊥(m,0) > E⊥.
Observe that the maximum momentum exchange �kx = ∓5G

is reached at misalignment kx = ±5G close to the rainbow
angle. It corresponds to the diffracted beam leaving the surface

FIG. 3. (Color online) Mean deflection angle as function of
the azimuthal incidence angle. Experimental results (dots) for two
scattering conditions (see legend) are compared with theoretical
calculations (solid lines). The left (right) axis corresponds to the
〈110〉 (〈100〉) direction denoted by a vertical line.

perfectly aligned with the 〈110〉 direction. Similar results are
obtained for the incident beam oriented close to the 〈100〉
direction.

Let us introduce a classical measure of the asymmetry of
the diffraction pattern. It is given by the mean (azimuthal)
deflection angle defined as � = ψ − � with

ψ =
open∑

m,n

Rmnψmn, (2)

where the summation runs over all open diffraction orders
with E⊥(m,n) > 0 [see Eq. (1)]. Provided the validity of the
ASC approximation, � is intimately linked with the mean
momentum exchange perpendicular to the low index direction
[20]. With present definitions of geometry, and for scattering
close to the 〈110〉 direction, one has ψ ≈ mG/k‖, where m =∑open

m mRm0. Basically, m is the mean of the distribution given
by the data shown in Figs. 2(c) and 2(d) taken along the vertical
line at fixed kx .

In Fig. 3 we show measured and calculated mean deflection
angle � as function of the azimuthal incidence angle � for the
4He beam incident at LiF(001) surface. The � range displayed
here covers two main low index directions, and the rest of the
data can be obtained by symmetry considerations. The two
data sets displayed in Fig. 3 correspond to different incidence
conditions as specified in the legend. Experimentally, the
mean deflection angle is obtained with Eq. (2) using fitted
intensities of the diffraction orders. The associated statistical
error is below 0.01◦, however the result is easily affected by
systematic errors due to detector inhomogeneity, background
noise level, and chosen boundaries of the diffraction spots.
The precise determination of these has not been attempted in
this work. This being said, we believe that the present level of
precision is enough for the purpose of the paper. Interestingly,
we have found that ψ can also be accurately estimated with a
simple running average through all the pixels of the diffraction
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patterns. This latter treatment can be performed online and,
for example, inserted in a control loop for automated target
positioning.

In agreement with data shown in Figs. 2(c) and 2(d), for
large misalignment from the low index direction the incident
beam is specularly reflected at the surface so that no deflection
occurs (� = 0). As the orientation of the beam � approaches
the low index 〈μν0〉 direction at the azimuth angle �〈μν0〉,
the mean deflection angle shows a characteristic dependence
with misalignment: (i) The mean deflection angle is positive
� > 0 for � − �〈μν0〉 < 0, (ii) no deflection occurs for
the perfectly aligned beam with � = 0, and (iii) � turns neg-
ative for � − �〈μν0〉 > 0. The misalignment is thus reduced
in the scattered beam, which is deflected towards the closest
low index direction. With the present incidence conditions
the mean deflection angle can reach 0.22◦. However, � is
always smaller than the misalignment with, in overall, � ∼
−0.38(� − �〈110〉) and � ∼ −0.09(� − �〈100〉) in the small
misalignment range close to the low index direction where
the linear relation holds. Due to the larger surface corrugation
probed by the projectiles, the deflection for the 〈110〉 axial
channel is larger than for the 〈100〉 channel. It is also interesting
to mention that the characteristic dependence of the mean
deflection angle on the azimuthal misalignment provides an
alternative way of the � angular calibration. Indeed, even
if the calibration of angles is wrong (or unknown), the �(�)
curves measured near the main symmetry directions cross zero
with a steep slope allowing to relate � with crystallographic
directions at the surface.

The largest deflection is reached at the optimum misalign-
ment incidence angle close to the rainbow angle �R . Indeed,
for the aligned beam �R is the maximum azimuthal diffraction
angle that carries high intensity of the outgoing beam. From
the principle of detailed balance [27] it follows that the
maximum misalignment angle at which the incident beam is
efficiently deflected into the direction of the axial channel is
also given by �R . Indeed, the probability of the diffraction
with k‖ → k′‖ = k‖ + mg1 + ng2 equals to the probability
of the inverse process k′

‖ → k‖ = k′
‖ − mg1 − ng2, where

both processes are considered at the fixed total energy E.
Let Rmn to describe the diffraction probability for the beam
incident at the surface along the 〈μν0〉 low index direction
with total energy E and perpendicular energy E⊥. The
corresponding diffracted beam leaves the surface at azimuthal
angle ψmn with perpendicular energy E⊥(m,n). From the
detailed balance principle it follows then that Rmn also
describes the probability of perfectly aligned exit for the beam
incident with misalignment angles � = ±ψmn, total energy
E, and perpendicular energy E⊥(m,n). Obviously, the largest
Rmn correspond to the rainbow angles.

In Fig. 4 the above discussion is illustrated with experi-
mental and theoretical data for the 4He beam incident close
to the 〈110〉 direction at LiF(001) surface. In Fig. 4(a) we
show the probability of the perfectly aligned exit (along the
axial channel) as function of the incident beam azimuthal
misalignment angle �. The perpendicular energy of the
incident beam is 250 meV. The perfect alignment of the
(−m,0) diffracted beams with ψ−m0 = 0 is only possible at
discrete misalignment incidence angles �m = arcsin(mG/k‖)
such that kx = mG. The perfectly aligned beam leaves the

FIG. 4. (Color online) Illustration of the detailed balance princi-
ple for the diffraction of the 1 keV 4He beam incident close to the
〈110〉 direction at the LiF(001) surface. (a) Probability of the perfectly
aligned exit (along the axial channel) as function of the azimuthal
misalignment incidence angle � with E⊥ = 250 meV. Results are
compared with the inverse scattering process where the incident beam
is aligned and energy corrected (see main text). (b) Comparison of
the probability of aligned exit for misaligned incidence shown as
function of the misalignment incidence angle, and Rm0 diffraction
probabilities for the incidence along the 〈110〉 direction (aligned).
Rm0 are plotted as function of the azimuthal exit angles ψm0 with
E⊥ = 250 meV.

surface with perpendicular energy E⊥(m,0) = 250 meV +
(mG)2/2M as follows from Eq. (1). We also show the
experimental data obtained with perfectly aligned beam for
the probability of the diffraction into the (m,0) diffraction
orders. Results are shown as function of the outgoing azimuthal
angle ψm0 = arcsin(mG/k‖). To comply with the detailed
balance, the intensity of each diffraction order has been mea-
sured at the particular perpendicular energy E⊥ = E⊥(m,0),
while keeping the total energy fixed. The data sets obtained
with misaligned and aligned beams coincide. Interestingly,
Fig. 4(a) demonstrates that with detailed balance principle, the
diffraction charts obtained with perfectly aligned beams can
be reconstructed from the data on the aligned exit as function
of the beam misalignment.

Finally, Fig. 4(b) demonstrates the importance of the
perpendicular energy correction. Theoretical results obtained
for the probability of aligned exit with misaligned beam at
E⊥ = 250 meV [same as in Fig. 4(a)] are compared with
calculated and measured probabilities of the diffraction for the
perfectly aligned beam with E⊥ = 250 meV. While for small
reciprocal lattice vector exchange the perpendicular energy
correction is not important and all data sets coincide, for large
reciprocal vector exchange the data sets obtained with aligned
and misaligned beams at fixed perpendicular energy differ.

012904-4



SURFACE-GRATING DEFLECTION OF FAST ATOM BEAMS PHYSICAL REVIEW A 88, 012904 (2013)

IV. SUMMARY AND CONCLUSION

In summary, with the example of 4He scattering from
the LiF(001) surface, we demonstrated controllable surface
deflection of fast atom beams at grazing incidence geometry.
When the incident beam is misaligned with respect to the
low index direction, atomic rows guide the projectiles leading
to the characteristic deformation of the diffraction pattern
and overall deflection of the beam in the direction of the
axial channel. For small misalignments, the mean deflection
angle � is proportional to the misalignment angle � with
� ≈ 0.1� − 0.4�. The largest deflection is achieved for the
azimuthal misalignment angles equal to the rainbow angle
ψR for the perfectly aligned beam, and deflection efficiency
drops for higher misalignments. Thus the 2D grazing scattering
at monocrystal surfaces can be used for the deflection of

fast projectile beams, similar to the 3D guiding of swift
projectiles channeling through bent monocrystals as used in
high-energy physics [28–30]. Importantly, for small incidence
angles a large fraction of the diffracted beams preserve
quantum coherence. The results of our study thus suggest that
surface scattering at grazing angles can be used for coherent
manipulation of fast atom beams. For example, incidence of
two coherent misaligned beams with � = ±�R can allow for
efficient coherent beam combining into the beam aligned along
the axial channel.
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