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Role of projectile electrons for target-recoil-charge-state production in
intermediate-energy B2+-Ne collisions

Gerald Schenk,* Marko Horbatsch, and Tom Kirchner
Department of Physics and Astronomy, York University, Toronto, Ontario, Canada M3J 1P3

(Received 31 May 2013; published 24 July 2013)

We apply an independent electron model to study q-fold target-charge-state production in 25–600 keV/nucleon
B2+-Ne collisions for which experimental and theoretical results were published recently [W. Wolff et al.,Phys.
Rev. A 84, 042704 (2011)]. The model treats projectile and target electrons using a common potential and
makes use of a single-determinant wave function for the combined system. The calculated total cross sections for
positive recoil ion production as well as for Neq+ production (q = 1, . . . ,4) determined in coincidence with an
unchanged projectile charge state agree well with experiment where available, i.e., in the 30–400 keV/nucleon
energy range. At energies below 200 keV/nucleon the projectile electrons are shown to play a crucial role in
reproducing the experimental data for q = 1, . . . ,4. For the q � 2 channels the inclusion of projectile electron
contributions is needed even at energies above 200 keV/nucleon in order to reproduce the experimental data. As
expected, the predictions for the q = 5 recoil charge state overestimate the experimental data due to a failure of
the independent electron model for this extreme channel.
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I. INTRODUCTION

Collisions of atoms with ions which carry electrons are
common in nature and have become the subject of detailed
experimental investigation [1–10]. Quantities that were studied
include total recoil-charge-state production [2,3], free-electron
production [2], q-fold recoil production [4], charge-state
correlated cross sections [5–9], as well as projectile-angle
differential cross sections [10]. For fast, distant collisions
one might expect these collisions to be very similar to bare-ion
impact with the correct effective charge. For close collisions
(both fast and slow) this assumption needs to be looked
at. Collisions with active projectile electrons are, however,
difficult to describe theoretically, in particular at intermediate
energies (several keV/nucleon to 1 MeV/nucleon) where
electron-transfer processes have to be considered.

An example of such a system is B2+-Ne with three projectile
electrons in the initial state. For this system Wolff et al. [11]
measured total cross sections for target ionization processes
coincident with unchanged projectile charge state in the
energy range from 0.75 to 4 MeV (mboron = 11 u). The same
article also presents results from a (perturbative) continuum-
distorted wave with eikonal initial state (CDW-EIS) [12,13]
calculation. To deal with the dressed projectile an effective
charge was defined based on the momentum transfer and found
through the first-order Born approximation [14]. Based on
an independent-particle-model (IPM) description the method
yields single-particle ionization probabilities. Total cross
sections for multiple-target ionization were obtained using
multinomial combinatorics [11]. Other CDW-EIS calculations
involving dressed projectiles were published in Refs. [15–18].

In this work, we address the B2+-Ne collision system using
the two-center basis generator method (TC-BGM) [19]. Our
calculation is also based on an IPM, but it is nonperturbative
and it allows the projectile electrons to participate actively and
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undergo transitions. Each active electron is subject to a mean-
field potential representing the electron-electron interaction
and the Coulomb potentials of both centers. Propagating the
system for all independent initial conditions leads to the wave
function of the combined system on the level of a single
determinant.

Transition probabilities for specific collision channels are
calculated by projecting this wave function onto final states,
which are also represented by single determinants [20,21].
At the level of this final-state analysis we have a choice to
consider both target and projectile electrons or to neglect the
latter, i.e., to consider the target electrons only. Comparing
the results of both analyses with each other and with the
experimental data sheds light on the role the projectile
electrons play in the collision. In contrast with an IPM based
on multinomial statistics the present work deals explicitly with
Pauli correlations.

Atomic units (h̄ = me = e = 4πε0 = 1) are used through-
out the article, unless stated otherwise.

II. METHOD

The collision problem is treated by the semiclassical
impact-parameter approximation using a straight-line trajec-
tory for the motion of the nuclei. The electronic system is
treated quantum mechanically within the single-determinant
IPM. The electron-electron interaction is incorporated through
the mean field of the electrons. It gives rise to effective
potentials vt

ee and v
p
ee in the Hamiltonian

ĥ(t) = −1

2
� − Zt

rt
− Zp

rp
+ vt

ee(rt) + vp
ee(rp). (1)

Here Zt and Zp are the charge numbers of the target and
projectile nuclei, respectively. Since we work in the center-
of-mass system, the distances of the active electron to the
target nucleus rt and to the projectile nucleus rp both depend
on time.
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The effective target potential vt
ee consists of a Hartree term

and an exchange term. The Hartree potential represents the
screening due to the charge density of all target electrons. The
exchange term compensates for the self-interaction contained
in the Hartree term. In our calculations we use an exchange
potential resulting from the optimized potential method (OPM)
[22]. For the effective projectile potential v

p
ee only the Hartree

term is considered; i.e.,

vp
ee(rp) =

∫
2
∣∣ψB2+

1s (r)
∣∣2 + ∣∣ψB2+

2s (r)
∣∣2

|r − rp| d3r, (2)

with (normalized) 1s and 2s orbitals obtained from an OPM
calculation for B2+(1s22s) [22]. This choice of potentials
results in the following asymptotic behavior: −1/rt for the
target, and −2/rp for the projectile. This is correct for active
target electrons before the collision. For an active projectile
electron this potential choice may lead to an overestimation
of processes removing population from projectile states. Such
processes play only an indirect role in target ionization, namely
through transfer ionization processes and projectile-charge-
state coincident channels. A more detailed discussion of this
matter can be found in Refs. [23,24].

With the Hamiltonian (1) the system can be propagated
using a set of single-particle equations

i∂tψi(r,t) = ĥ(t)ψi(r,t), i = 1, . . . ,K, (3)

each corresponding to one of the initial conditions. We solve
these equations using a finite basis expansion. The basis
consists of atomic neon eigenstates (2s to 4f ), the 1s to 4f

eigenstates of the projectile Hamiltonian − 1
2� − Zp

rp
+ v

p
ee(rp),

and pseudostates generated with the TC-BGM [19] from target
states. Not included in the basis is the target 1s state, as its
role is insignificant [11]. The pseudostates are generated from
the target states by applying powers ν of a regularized
projectile potential operator. A total of 126 pseudostates are
included, up to a maximum hierarchy level of ν = 6, to ensure
convergence with respect to basis size.

Using the same Hamiltonian and the same basis for all
active electrons ensures that the propagated orbitals remain
orthogonal throughout the collision and can be combined at
the final time to form a single Slater determinant. When this
determinant is projected onto many-electron states which are
also represented by single Slater determinants, exclusive tran-
sition probabilities to these final configurations are obtained as
a function of impact parameter b. Note that the antisymmetry
property of Slater determinants ensures that the Pauli principle
is respected.

Typically, a large number of final configurations contribute
to an experimentally accessible collision channel, e.g., to one
of the charge-state coincidences measured by Wolff et al.
[11]. In such cases the inclusive-probabilities scheme [20]
provides a way to calculate the desired probabilities without
carrying out the large summations over all contributing final
configurations explicitly. Its key idea is the insight that one can
express the inclusive probability to find q out of N electrons
in a fully specified subconfiguration, while the remaining
N − q electrons are not observed, as a q × q determinant of
the one-particle density matrix. Probabilities that correspond to
charge-state coincidences can then be calculated as (ordered)
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FIG. 1. Total cross section for positive ion production σ̃+ as
defined in Eq. (4) on the basis of the q = 1, . . . ,5 cross sections σ̃q .
The experimental data are from Table I of Wolff et al. [11] and are
added according to Eq. (4). Present theory with final-state analysis
that considers active target and projectile electrons (solid line), and
target electrons only (dashed line). Target-only CDW-EIS [11] (dotted
line).

sums over these inclusive probabilities, which reduces the
computational cost tremendously.

This determinant analysis for a single-center BGM cal-
culation using a coupled mean-field approach to address the
projectile electrons is described in Ref. [7]. Its application to
analyzing a TC-BGM calculation is described in Ref. [25]. We
perform the analysis considering all target electrons, except
those of the K shell, and all projectile electrons, namely by
solving Eq. (3) for the 1, . . . ,K initial conditions: Ne (2s↑↓,
2p0↑↓, 2p−1↑↓, 2p+1↑↓), B2+ (1s↑↓, 2s↑). The results of
this 11-electron calculation are referred to as BGM-T + P.

For comparison purposes a final-state analysis considering
the eight target electrons only is also performed and labeled
as BGM-T in the following. The latter calculation is based
on the same TC-BGM calculation, but it ignores transition
amplitudes from projectile initial conditions. From an IPM
perspective it is thus similar in spirit to the statistical analysis
of the CDW-EIS calculation in Ref. [11], except that it accounts
for Pauli correlations within the target.

III. RESULTS

We begin the comparison of theoretical results and exper-
iment with an inclusive channel of the collision in Fig. 1: the
positive-ion-production cross section σ̃+ from the neon target
in coincidence with the final projectile charge state of B2+,
defined as a weighted sum

σ̃+ =
5∑

q=1

qσ̃q (4)

of total cross sections

σ̃q = 2π

∫ bmax

0
P̃q(b)b db (5)

for q-fold recoil ion production B2+ + Ne0 → B2+ + Neq+.
In Eq. (5) we chose bmax = 12 a.u. The sum in Eq. (4) is
truncated at the highest available experimental value of q.
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Note that this channel is inclusive in the recoil charge, but is
projectile-charge-state specific.

The total cross section σ̃+ is shown as a function of the
projectile kinetic energy per nucleon (bottom axis), while
the top axis provides as a reference the relative velocity in
atomic units. Above 200 keV/nucleon the BGM-T model
results (dashed line) are in good agreement with those from the
CDW-EIS model (dotted line). Both are slightly higher than
experiment. The BGM-T results deviate from the CDW-EIS
calculations at energies below 200 keV/nucleon. A possible
cause for the discrepancy might be limitations of the (pertur-
bative) CDW-EIS model, which is not expected to be valid
below 100 keV/nucleon due to its limitations in representing
single-electron dynamics in a two-center situation with the
possibility of electron transfer. However, at 100 keV/nucleon
and below, the BGM-T calculations also disagree substantially
with the experiment.

The present calculation which takes target and projectile
electrons into account in the final-state analysis, BGM-T + P
(solid line), does a better job at low energies. It is also more
consistent with experiment over the entire energy range. The
slight underestimation of the two lowest-energy experimental
data points raises the question whether an improved dynamical
calculation using time-dependent response [26] would yield
better agreement.

A look at the total cross sections σ̃q for q-fold recoil
ion production provides a more detailed picture, shown in
Fig. 2 for q = 1, . . . ,5. The BGM-T + P results for single
ionization (q = 1) fall short of the experiment at the lowest
energies, which is also reflected in the σ̃+ results discussed
above. For q = 2 and q = 3, however, such a shortfall at
low energies does not appear: while the BGM-T model fails
to describe the collisions at low energies, BGM-T + P is
in good agreement with the experiment for all energies. At
about 200 keV/nucleon the BGM curves intersect, and the
BGM-T + P results are above the BGM-T data at low energies,
and below at high energies. An explanation for the latter can be
found in the nonzero probability for direct projectile electron
loss at high energies. At low energies the indistinguishable
nature of electrons, which is accommodated in our Slater
determinant description, allows for the increase compared to
the BGM-T calculation and results in closer agreement with
the experimental data.

More concretely, we find that a transfer ionization process,
in which capture of a target electron by the projectile is accom-
panied by projectile electron loss to the continuum, contributes
significantly to q-fold recoil ion production without change of
the B2+ charge state in this region. In principle, we have to
be careful with such contributions, since the single-particle
potential employed has asymptotic properties for projectile
electrons which make their removal possibly too easy. This
was noted recently in the context of He+ collisions with water
molecules [23,24]. For the present case, however, we find
that the BGM-T + P calculations follow the experimental data
better than the pure target calculations. This lends support to
the notion that—at least in the case of the present collision
system—projectile electron removal does indeed contribute
significantly to the channel presented. A physical reason
for the difference between the two collision systems with
projectile electrons is that the present B2+-Ne system is less
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FIG. 2. (Color online) Total cross sections σ̃q for q-fold recoil
ion production coincident with (unchanged) projectile charge state:
B2+ + Ne0 → B2+ + Neq+ as functions of projectile energy. The
experimental data are from Wolff et al. [11]. Present theory with
final-state analysis that considers active target and projectile electrons
(BGM-T + P) (solid line), and target electrons only (BGM-T) (dashed
line). Target-only CDW-EIS [11] (dotted line).

asymmetric in electron occupation number on projectile and
target.

There is a known limitation of IPM calculations describing
multiple-target ionization: they typically work well as long
as the final target charge state does not exceed that of the
projectile by much more than 1. This limitation of the IPM
was found in previous work for He2+-Ne [26], p-Ar and He2+-
Ar [27], C4+-Ne [28], and more recently in p-H2O collision
calculations [29]. It is also reflected in the present results. For
q = 3 the agreement of the BGM-T + P calculation with the
experimental data is very good. For q = 4 the experiment is
somewhat overestimated, but the BGM-T + P curve resembles
the overall structure of the experimental points rather well.
For q = 5 the calculation overestimates the measurements by
about a factor of 5 and differs in shape.

In Fig. 3 we return to an inclusive quantity, which is related
to the total recoil ion production shown in Fig. 1. The average
charge

〈q〉 =
∑qmax

q=1 qσ̃q∑qmax
q=1 σ̃q

= 1 +
∑qmax

q=1(q − 1)σ̃q∑qmax
q=1 σ̃q

(6)
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FIG. 3. Average recoil ion charge 〈q〉 as defined in Eq. (6) on
the basis of the q = 1, . . . ,4 cross sections σ̃q . Experimental data
from Wolff et al. [11]. Present theory with final-state analysis that
considers active target and projectile electrons (solid line), and target
electrons only (dashed line). Target-only CDW-EIS [11] (dotted
line).

is defined by dividing this total cross section by the sum
of individual recoil-ion-production cross sections to remove
some uncertainty associated with absolute cross-section deter-
minations. The sums are truncated at qmax = 4 as in Ref. [11].
Equation (6) does represent an average charge state obtained in
ionizing collisions, while averaging over impact parameters:
high-charge-state probabilities occur for small b, then q = 1
dominates for large b.

It is interesting to observe that this quantity emphasizes
the differences between the models. The inclusion of active
projectile electrons (BGM-T + P) leads to an increased recoil

charge for v � 2 a.u., since projectile electron loss makes
room for enhanced transfer of electrons from the target. For
v � 3 a.u., on the other hand, the inclusion of active projectile
electrons results in a reduction of the recoil charge state. From
Fig. 2 we conclude that this is primarily due to loss of projectile
electrons affecting predominantly high-target-charge states.
Such loss processes occur in close collisions (b < 1 a.u.),
where multiple-target ionization also happens. In contrast,
single-target-ionization probabilities are high for a much wider
range of impact parameters.

IV. CONCLUSIONS

Full two-center IPM calculations for the B2+-Ne collision
system were carried out using the basis generator method.
They were analyzed within an inclusive single-determinant
framework using two points of view: with and without the
inclusion of active projectile electron participation, labeled as
BGM-T + P and BGM-T, respectively. The comparison with
experimental data reveals that charge-exchange processes and
projectile electron loss to the continuum play a significant role
at collision energies below 100 keV/nucleon, and are also
noticeable at high energies. The latter is particularly true for
recoil charge-state production to q = 3,4 (in coincidence with
B2+ → B2+). It is remarkable that the inclusive results shown

in Figs. 1 and 3 are also strongly affected.
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