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Calculation of the relativistic rise in electron-impact-excitation cross sections for highly charged ions
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Exact relativistic plane-wave Born (RPWB) matrix elements of the Møller interaction are incorporated in
the “analytic Born subtraction technique” and employed in the relativistic convergent close-coupling method.
Application to the calculation of high-energy electron-impact-excitation cross sections of highly charged
hydrogenlike ions demonstrates the “Bethe rise,” an effect that is manifest in Bethe’s original 1932 work
on relativistic high-energy, electron-impact excitation. The result represents an improvement over Bethe’s
relativistic high-energy theory developed in the 1930s in that (i) both target and projectile electrons are represented
relativistically with Dirac spinor wave functions and (ii) the dipole approximation plus additional assumptions
are not employed in the RPWB scattering amplitude of the Møller interaction.
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I. INTRODUCTION

Recently, there has been a resurgence in the importance
of the Møller interaction [or, equivalently, the generalized
Breit interaction (GBI)] in bringing theory into alignment
with experiment for the physics of highly charged ions.
For example, this was necessary in the polarization of
x rays emitted during electron-impact excitation of highly
charged ions [1,2], dielectronic and radiative recombination
effects [3–5], electron-impact-ionization experiments [6–8],
and electron- and proton-impact excitation experiments [9].
For electron-impact excitation of highly charged hydrogenlike
ions, Walker [10], Fontes et al. [11], and Moores and Pindzola
[12] have demonstrated that the Møller interaction or GBI
can increase electron-impact-excitation cross sections by up
to 50% in comparison to calculations that employ only the
Coulomb interaction.

In the 1930s Bethe employed the Møller interaction in a
seminal paper [13] that investigated relativistic high-energy,
electron-impact-excitation cross sections. Bethe employed
various approximations, such as (i) the dipole approximation
in the scattering amplitude, (ii) setting spinor matrix elements
of Dirac α matrices to v/c, and (iii) capitalizing on the fact that
small momentum transfer (forward scattering) dominates for
high-impact energies, which allowed analytic simplification of
the integrated cross-section formula. Bethe was able to produce
a formula which contains the famous “Bethe rise” term,
1
v2 ln( 1

1−β2/c2 ), present in electron-impact excitation, ioniza-
tion, and stopping-power theory. Bethe’s work formed the plat-
form for further investigations by Møller [14], Fano [15–17],
and Inokuti [18]. The latter publications all involved working
in the dipole approximation. Electron-impact-ionization inves-
tigations by Scofield [19], Anholt [20], and Bote and Salvat
[21] and stopping-power calculations by Cohen [22] moved be-
yond the dipole approximation. For electron-impact excitation,
Najjari and Voitkiv [23] have recently presented relativistic
distorted- and plane-wave calculations comparing equivelocity
electron- versus proton-impact excitation of highly charged
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ions. However, similar to previous electron-impact-excitation
studies [10–12] the investigation only extended to energies
several threshold units (≈6) above threshold. At these low
energies the Bethe rise stemming from the Møller interaction
is not manifest in electron-impact-excitation cross sections for
low-Z ions and is only just beginning to manifest for very
highly charged ions such as U91+.

Here we apply a technique, known as analytic Born
subtraction, to Møller-interaction calculations that allows
high-orbital-angular-momentum partial waves to be accounted
for and allows us to present results to arbitrarily high energies,
with the dramatic Bethe rise demonstrated for high-Z ions
up to energies around 20 threshold units. The sections of this
paper are organized as follows: Sec. II describes the physics
underpinning the Møller interaction, Sec. III describes how the
analytic Born subtraction technique can be employed with the
Møller interaction, and Sec. IV contains results and discussion.

II. THE PHYSICS OF THE MØLLER INTERACTION

In 1931 Møller [24] presented a paper in which the scat-
tering of two electrons was modeled in a relativistic manner;
the electromagnetic field potential Aμ was treated classically
as the Liénard-Wiechert potentials and, using correspondence
principle arguments (employed by Bohr, Landau, and others
at the time), incorporated the classical field in a quantum-
mechanical scattering calculation. Roqué [25] and Kragh [26]
provide useful historical descriptions of Møller’s work. Møller
worked in the Lorenz gauge (this is not a spelling error; see
Lorenz’s original work [27] and Bladel [28] for a discussion
of the Lorenz/Lorentz confusion). Following this publication,
Bethe and Fermi [29] produced one of the most fundamental
papers in the history of QED, where they derived the Møller
interaction from quantum electrodynamics via quantizing the
electromagnetic field and treating it as a sum of harmonic
oscillators. They showed that the first-order corrections to the
Coulomb interaction were equivalent to the Breit interaction
at low energies and the Møller interaction at both low and
high energies. Thus Bethe and Fermi’s expression for the
interaction between two electrons, when the field Aμ mediating
the interaction is quantized as a sum of harmonic oscillators, is
known as the “generalized Breit interaction” [30]. Bethe and
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Fermi, who worked in the Coulomb gauge, showed explicitly
that their on-shell interaction matrix elements were equivalent
to the Lorenz gauge matrix elements originally obtained by
Møller. The gauge invariance of the matrix elements, and
the importance of the on-shell case, has been studied in
further detail by Hata and Grant [31]. An interesting aspect of
the derivations underpinning the generalized Breit interaction
presented by Bethe and Fermi [29] is that “self-interaction”
terms appear in intermediate steps; Bethe and Fermi neglected
these in the 1932 publication, but they were employed by Bethe
15 years later in his famous 1947 calculation of the Lamb shift
in atomic hydrogen [32].

III. INCORPORATING THE MØLLER INTERACTION IN
THE ANALYTIC BORN SUBTRACTION TECHNIQUE

The underlying machinery of the relativistic convergent
close-coupling (RCCC) method is described in detail in [33,
34]. The analytic Born subtraction technique (or “Kummer
transformation” or “top-up contribution”) is described for the
case of the Coulomb interaction by Fontes and Zhang [35] (see
also Fursa et al. [34] and Sampson et al. [36]). The application
of this technique to the Møller interaction is essentially the
same as in the case of the Coulomb interaction. However,
it is considerably more complicated to manipulate the exact
expression for the Møller scattering amplitude into a form that
can be used to calculate the corresponding cross sections due
to the extra spinor algebra associated with the Dirac matrices
in the Møller interaction.

The analytic Born subtraction technique works in the
following way. At low energies, plane-wave Born calculations
are not valid, and more accurate relativistic distorted-wave
(RDW) [11], or relativistic convergent close-coupling [34],
calculations are required. As the projectile energy increases,
the plane-wave Born calculations become more accurate in
the limit of very high energies. At intermediate and high
energies and beyond, it is extremely difficult to calculate
RDW or RCCC cross sections because a high-l partial-wave
expansion is required in order to obtain a converged result.
However, in this energy range, the individual plane-wave Born,
partial-wave matrix elements also become progressively more
accurate for lower and lower partial waves as the energy
increases. Therefore the plane-wave Born matrix elements
can be used to provide a high-angular-momentum top-up
contribution to the cross sections. From a more fundamental
perspective, the method is based on the fact that, for large
angular momenta, the Tl matrix elements approximate the Vl

matrix elements. That is, in the solution of the Lippmann-
Schwinger equation, T = V + V GT , we can set Tl ≈ T B

l =
Vl , where the B superscript denotes Born. In terms of partial
cross sections, σl ≈ σ B

l , where σl is the partial cross section
and σ B

l is the relativistic plane-wave Born partial cross section.
Implementation of the analytic Born subtraction technique
proceeds as follows:

σtot =
N∑

l=0

σl +
∞∑

l=N+1

σl ≈
N∑

l=0

σl +
∞∑

l=N+1

σ B
l . (1)

Now

σ B =
N∑

l=0

σ B
l +

∞∑
l=N+1

σ B
l ⇒

∞∑
l=N+1

σ B
l = σ B −

N∑
l=0

σ B
l . (2)

Substituting Eq. (2) into Eq. (1), we have

σtot ≈
N∑

l=0

σl +
∞∑

l=N+1

σ B
l ≈

N∑
l=0

σl + σ B −
N+1∑
l=0

σ B
l

≈
N∑

l=0

(
σl − σ B

l

) + σ B. (3)

This technique allows the high partial-wave (N + 1 → ∞)
contribution to the total cross section to be accounted for by
the relativistic plane-wave Born contribution. The calculation
of the exact relativistic plane-wave Born (RPWB) cross section
σ B requires evaluation of the RPWB matrix elements of
the Møller interaction. Appendix A contains the explicit
evaluation of plane-wave Born matrix elements of the Møller
interaction; the added complexity, compared to the Coulomb-
interaction case, stems from the presence of the α · α term
in the Møller interaction. We note that a significant amount of
complexity illustrated in the Appendix was avoided by Bethe in
his famous 1932 paper [13]. He employed the dipole approx-
imation to the scattering amplitude, bypassed all the spinor
algebra of the Dirac matrices (by setting α = v/c and assuming
that the incident and scattered electron energies were equal),
and assumed low momentum transfer (forward scattering),
which allowed him to simplify the integrated cross section.

The exact Møller RPWB calculations were checked by
two methods. First, the plane-wave Born cross section is the
limit of the sum of the partial-wave Møller interaction cross
sections (σ B = ∑∞

l=0 σ B
l ). Second, Najjari and Voitkiv [23] in

their recent publication presented plane-wave Born results for
energies up to a few (≈6) threshold units above the excitation
transition energy, and we could check our RPWB results
against their work. Excellent agreement was found with both
the first and second consistency checks.

We applied the analytic Born subtraction technique for the
Møller interaction in the RCCC method to the calculation of
1s1/2 → 2p3/2 electron-impact excitation of the hydrogenlike
Ni27+, Xe53+, and U91+. In Ref. [37] the QED intricacies of
employing the Møller interaction (a first-order interaction) in
a nonperturbative formalism are addressed. In the same work
[37] it has been shown that the effects of close coupling are to
introduce a series of sharp resonant peaks in the cross sections
on the distorted-wave Born background. We note that it was
erroneously indicated in [37] that these resonance peaks can
influence effective collision strengths obtained by integrating
over a Maxwellian distribution of velocities. This is not the

TABLE I. Calculated 1s1/2 → 2p3/2 energy thresholds for Ni27+,
Xe53+, and U91+ ions.

Target Threshold (keV)

Ni27+ 8.1
Xe53+ 31.3
U91+ 102.6
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FIG. 1. (Color online) Z = 28 1s1/2 → 2p3/2 electron-impact-
excitation cross section. Present theory is described in the text. RDW
results of Fontes and Zhang are described in Ref. [40]. RDW and
RPWB results of Najjari and Voitkiv are from Ref. [23]. Experiment
is from Thorn et al. [42].

case because these resonances will be significantly radiatively
damped [38,39]. Therefore in this paper we present only the
background, first-order, distorted-wave Born results.

IV. RESULTS

The 1s1/2 → 2p3/2 excitation thresholds for each ion
species are listed in Table I. In the RCCC method, N = 25
partial waves were used for each ion at all energies, and
then the analytic Born subtraction technique was applied to
provide the high-l top-up contribution. The 1s1/2 → 2p3/2

electron-impact-excitation cross section for Ni27+ up to 20
threshold units (160 keV) is presented in Fig. 1 . “Kummer”
denotes Coulomb- or Møller-interaction results obtained with
the analytic Born subtraction technique indicated by Eq. (3);
that is, distorted partial waves were used up to l = N and then
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FIG. 2. (Color online) Z = 28 1s1/2 → 2p3/2 electron-impact-
excitation cross section. Present theory is described in the text. RDW
results of Fontes and Zhang are described in Ref. [40]. RDW results
of Najjari and Voitkiv are from Ref. [23]. Experiment is due to Thorn
et al. [42].
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FIG. 3. (Color online) Z = 54 1s1/2 → 2p3/2 electron-impact-
excitation cross section. Present theory is described in the text. RDW
results of Fontes and Zhang are described in Ref. [40]. RDW and
RPWB results of Najjari and Voitkiv are from Ref. [23]. Experiment
is from Widmann et al. [43].

RPWB partial waves were used for N + 1 = l � ∞. “RPWB”
denotes exact, Coulomb- or Møller-interaction RPWB results
σB obtained by integrating the exact, analytic RPWB scat-
tering matrix elements, as exemplified in the Appendix for
the Møller interaction. These exact RPWB results essentially
contain relativistic plane-wave partial waves for all possible
values of l and should become progressively more accurate
as the incident-electron energy increases. The results denoted
“Fontes and Zhang” were computed using the Coulomb and
GBI interactions in the factorized, relativistic distorted-wave
approach described in [40]. We note, as described in Sec. II,
that the “GBI” and “Møller” results are equivalent for the
present calculations. The results denoted “Najarri and Voitkiv”
are the recently published relativistic distorted-wave results of
Najjari and Voitkiv [23]. These latter results are presented in
order to provide a cross-check from an independent calculation
and to reinforce the consistency between the methods. For the
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FIG. 4. (Color online) Z = 92 1s1/2 → 2p3/2 electron-impact-
excitation cross section. Present theory is described in the text. RDW
results of Fontes and Zhang are described in Ref. [40]. RDW and
RPWB results of Najjari and Voitkiv are from Ref. [23].
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TABLE II. Onset of the Bethe rise for 1s1/2 → 2p3/2 excitation
cross sections in both absolute and threshold units.

Target Energy (keV) Energy (u)

Ni27+ 600 74
Xe53+ 400 13
U91+ 250 2.5

Ni27+ target it was found that the Bethe rise did not manifest
until the projectile energy reached approximately 600 keV.
Therefore Fig. 2 shows the electron-impact-excitation cross
section for higher projectile energies with a log scale on
the energy axis. Note that the Bethe rise is evident in the
Møller-interaction calculation but not the Coulomb-interaction
calculation, which is expected to exhibit a near-constant
behavior with increasing energy [41], as can be seen in Fig. 2.
(The latter reference refers to electron-impact ionization, but
the same concept is also valid for excitation.)

In Figs. 3 and 4 the electron-impact-excitation cross
sections for Xe53+ and U91+ are presented with a linear energy
scale up to 20 threshold units. The Bethe rise for the Xe53+

and U91+ targets begins at approximately 400 and 250 keV,
respectively, and is most prominent for U91+. We again note
that in both Figs. 3 and 4, the Coulomb-interaction calculations
do not exhibit a rise in the cross sections but should instead
display the expected near-constant behavior at sufficiently high
energies. Table II lists the energy at which the onset of the rise
occurs in the Møller-interaction calculations of the 1s1/2 →
2p3/2 excitation cross section for each ion. The energies are
presented in both absolute units (in keV) and in threshold units,
u, where the latter are dimensionless values that are obtained
by dividing the impact energy by the transition energy. We
note that as the Z of the target increases, the onset of the rise
occurs at lower absolute projectile energies. Moreover, the
onset occurs at significantly lower energies, when expressed
in threshold units, as Z increases, which could have important
consequences for the collisional-radiative modeling of high-Z
plasmas.

The rise in the electron-impact-excitation cross sections
remains to be confirmed by experiment. Research in this area
will be of interest.

V. CONCLUSION

The exact RPWB matrix elements of the Møller interaction
are incorporated in the analytic Born subtraction technique and
employed in the RCCC method. Application to the calculation
of high-energy electron-impact-excitation cross sections for
highly charged hydrogenlike ions demonstrates the Bethe rise
manifest in Bethe’s original 1932 work. The main difference
between the Møller RPWB matrix elements presented here
and those in Bethe’s 1930s work is that the exact scattering
amplitude is retained in the current work, with the complete
exponential and the full spinor algebra of the Dirac α matrices
intact, while Bethe approximated the exponential with the
dipole term and set the α matrix elements to v/c. Further work
is encouraged to determine the range of applicability of the
work of Bethe [13] and Inokuti [18] with respect to target-Z
range and projectile-energy range. These investigations are

important in the field of high-temperature plasma modeling.
It is anticipated that the Bethe rise in the high-energy region
of electron-impact-excitation cross sections of highly charged
hydrogenlike ions could be measured to test the accuracy of
the theoretical results presented in this paper.
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APPENDIX: RPWB MATRIX ELEMENTS OF THE
MØLLER INTERACTION

Let r1 denote the projectile electron coordinates and r2

denote the target electron coordinates. The Møller interaction
is

V M
12 = e2

r12
[1 − α(1) · α(2)]eiωr12/c, (A1)

where ω = |Ei − Ef | and Ei and Ef denote the initial and
final kinetic energies associated with the incident and scattered
electrons, respectively. The Dirac alpha matrices are

α =
(

0 σ

σ 0

)
. (A2)

The final plane-wave state of the projectile is

〈r1|kf μf 〉 = 1

(2π )3/2
V

μf

f eikf ·r1 , (A3)

where

V
μf

f =
√

Wf + c2

2Wf

(
χμf

cσ ·kf

Wf +c2 χ
μf

)
(A4)

and

Nf =
√

Wf + c2

2Wf

. (A5)

The initial plane-wave state of the projectile is

〈r1|kiνi〉 = 1

(2π )3/2
Uν

i eiki ·r1 , (A6)

where

Uν
i =

√
Wi + c2

2Wi

(
χν

cσ ·ki

Wi+c2 χ
ν

)
(A7)

and

Ni =
√

Wi + c2

2Wi

. (A8)
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Note that W = mc2 + E is the total energy of a projectile
electron and

σ · pf = σxpf sin θ cos φ + σypf sin θ sin φ + σzpf cos θ.

(A9)

As we are dealing with a spherically symmetric poten-
tial, we can set φ = 0, and consequently, phase terms in-
volving φ cancel in conjugate pairs, i.e.,

∫
ψ∗

f V ψid
3r =∫ · · · e−imφV eimφ · · · d3r = ∫ · · · V · · · d3r . Now we have

σ · pf = σxpf sin θ + σzpf cos θ (A10)

and

σxχ
μ = χ−μ, σyχ

μ = 2isμχ−μ, σzχ
μ = 2sμχμ,

(A11)

where 2sμ = ±1.

σx =
(

0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 1

)
.

(A12)

Now the matrix element of the Møller interaction is

〈φf (r2)kf μf | 1

r12
[1 − α(1) · α(2)]eiωr12/c|φi(r2)kiμi〉

= 〈φf (r2)kf μf | 1

r12
eiωr12/c|φi(r2)kiμi〉

+ 〈φf (r2)kf μf |−α(1) · α(2)eiωr12/c

r12
|φi(r2)kiμi〉

= Vterm1 + Vterm2 . (A13)

Consider

Vterm1 = 〈φf |
∫

1

(2π )3/2
V

μf †
f e−ikf ·r1

× eiωr12/c

r12

1

(2π )3/2
U

νi

i eiki ·r1d3r1|φi〉

= 1

(2π )3
V

μf †
f U

νi

i 〈φf |
∫

e−ikf ·r1

× eiωr12/c

r12
eiki ·r1d3r1|φi〉. (A14)

The integral can be simplified with the Bethe trick [18]:∫
e−ikf ·r1

eiωr12/c

r12
eiki ·r1d3r1 =

∫
eiq·r1

eiωr12/c

r12
d3r1

= 4π

q2 − ω2/c2
eiq·r2 , (A15)

where q = ki − kf . Therefore

Vterm1 = 1

(2π )3
V

μf †
f U

νi

i

4π

q2 − ω2/c2
〈φf |eiq·r2 |φi〉. (A16)

Now

〈φf |eiq·r2 |φi〉 = 4π
∑
λμ

Y λ∗
μ (q̂)iλ〈Rf |jλ(qr2)|Ri〉

× (−1)jf −mjf

(
jf λ ji

−mjf
μ mji

)

×〈κf |∣∣Yλ
μ(r̂2)

∣∣|κi〉, (A17)

where the Wigner-Eckart theorem has been employed in the
last step. Now in Eq. (A16)

V
μf †
f U

νi

i = Nf Ni

{
δμf νi

+
(

cpf

Wf + c2

)(
cpi

(
2sνi

)
Wi + c2

)

× [
sin θδ−μf νi

+ pf cos θ
(
2sμf

)
δμf νi

]}
. (A18)

Combining Eqs. (A17) and (A18), we have

Vterm1 = Nf Ni

{
δμf νi

+
(

cpf

Wf + c2

) (
cpi

(
2sνi

)
Wi + c2

)

× [
sin θδ−μf νi

+ pf cos θ
(
2sμf

)
δμf νi

]} 4π

q2 − ω2/c2

× 4π
∑
λμ

Y λ∗
μ (q̂)iλ〈Rf |jλ(qr2)|Ri〉

× (−1)jf −mjf

(
jf λ ji

−mjf
μ mji

)
〈κf |∣∣Yλ

μ(r̂2)
∣∣|κi〉.

(A19)

Note, in the above, j = |κ| − 1/2 and l = j + |κ|
2κ

. We now
evaluate the second term

Vterm2 = 〈φf (r2)kf μf |−α(1) · α(2)eiωr12/c

r12
|φi(r2)kiμi〉.

(A20)

Now

α(1) · α(2) =
∑
q ′

(−1)q
′
α1

q ′ (1)α1
−q ′ (2), (A21)

where the spherical tensors α1
q ′ are

α1
0 = αz (A22)

and

α1
±1 = ∓ (

αx ± iαy

)
√

2
, (A23)

so we have

Vterm2 = −1

(2π )3

(4π )(4π )

q2 − ω2/c2

∑
q ′

(−1)q
′
V

μf †
f α1

q ′ (1)Uνi

i

×
∑
λμ

iλY λ∗
μ (q̂)〈φf |jλ(qr2)Yλ

μ(r̂2)α1
−q ′ (2)|φi〉.

(A24)

Now the ket |φf 〉 = |Rf jf mjf
〉 becomes in position space (U

denotes the upper component, and L denotes the lower)

(
RU (r2)f χ

mjf

κf

iRL(r2)f χ
mjf

−κf

)
(A25)
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and similarly for |φi〉 = |Rijimji
〉. Using the index β = +1

and β = −1 to denote the upper and lower components,
respectively, we have

〈φf |jλ(qr2)Yλ
μ(r̂2)α1

−q ′ (2)|φi〉

=
∑

β

iβ
∫

r2
2 dr2jλ(qr2)Rβ(r2)f R−β(r2)i

× 〈
κf (β)mjf

∣∣σ 1
−q(2)Yλ

μ(r̂2)
∣∣κi(−β)mji

〉
, (A26)

where |κ(β)mj 〉 = |lκ(β)1/2 : jmj 〉 and β = +1, − 1. Now〈
κf (β)mjf

∣∣σ 1
−q(2)Yλ

μ(r̂2)
∣∣κi(−β)mji

〉
= 〈

jf mjf
: lκf (β)1/2

∣∣σ 1
−q(2)Yλ

μ(r̂2)
∣∣jimji

: lκi (β)1/2
〉

(A27)

can be obtained by coupling σ 1
−q(2)Yλ

μ(r̂2) together as a
spherical tensor as follows: first, introduce for convenience

the renormalized spherical harmonic

Yλ
μ(r̂2) =

√
2λ + 1

4π
Cλ

μ(r̂2). (A28)

We have

σ 1
−q(2)Yλ

μ(r̂2) = σ 1
−q(2)

√
2λ + 1

4π
Cλ

μ(r̂2)

=
√

2λ + 1

4π

∑
LM

[σ 1Cλ]LMCLM
1−q ′,λμ, (A29)

where CLM
1−q ′,λμ is a Clebsch-Gordan coefficient. Now, utilizing

the Wigner-Eckart theorem,〈
κf (β)mjf

∣∣[σ 1Cλ]LM
∣∣κi(−β)mji

〉
= (−1)jf −mjf

(
jf L ji

−mjf
M mji

)
〈jf ||[σ 1Cλ]L||ji〉.

(A30)

This can be simplified as [see Edmonds [44], Eq. (7.1.5)]

〈jf : lf ,1/2||[σ 1Cλ]L||ji : li ,1/2〉 = 〈1/2||σ 1||1/2〉〈lκf (β)

∣∣|Cλ|∣∣lκi (−β)
〉
[(2jf + 1)(2ji + 1)(2L + 1)]1/2

×

⎧⎪⎨
⎪⎩

lκf (β) lκi (−β) λ

1/2 1/2 1

jf ji L

⎫⎪⎬
⎪⎭ . (A31)

The full equation then becomes

Vterm2 = −1

(2π )3

(4π )(4π )

q2 − ω2/c2

∑
q ′

(−1)q
′
V

μf †
f α1

q ′ (1)Uνi

i

∑
λμ

iλY λ∗
μ (q̂)

∑
β

iβ
∫

r2
2 dr2jλ(qr2)Rβ(r2)f R−β(r2)i

×
√

2λ + 1

4π

∑
LM

CLM
1−q ′,λμ(−1)jf −mjf

(
jf L ji

−mjf
M mji

)
〈1/2||σ 1||1/2〉〈lκf (β)||Cλ||lκi (−β)〉

× [(2jf + 1)(2ji + 1)(2L + 1)]1/2

⎧⎪⎨
⎪⎩

lκf (β) lκi (−β) λ

1/2 1/2 1

jf ji L

⎫⎪⎬
⎪⎭ , (A32)

where

〈1/2||σ 1||1/2〉 =
√

6 (A33)

and

〈
lκf (β)

∣∣|Cλ|∣∣lκi (−β)
〉 = (−1)lκf (β)

[(
2lκf (β) + 1

)(
2lκi (−β) + 1

)]1/2
(

lκf (β) λ lκi (−β)

0 0 0

)
. (A34)

The spinor matrix elements of the Dirac matrices (as spherical tensors) are

V
μf †
f α1

q ′ (1)Uνi

i = Nf Ni

(
χμf †cpi

(
2sνi

)
Wi + c2

+
{
cpf [sin θχ−μf + cos θ

(
2sμf

)
]χμf

}†
Wf + c2

)
σ 1

q ′χ
νi . (A35)

For σ 1
q ′χνi we have

q ′ = −1 ⇒ σ 1
−1χ

νi = (σx − iσy)χνi

√
2

=
(
χ−νi − i2isνi

χ−νi
)

√
2

=
(
1 + 2sνi

)
χ−νi

√
2

,

q ′ = 1 ⇒ σ 1
1 χνi = −(σx + iσy)χνi

√
2

= −(
χ−νi + i2isνi

χ−νi
)

√
2

= −(
1 − 2sνi

)
χ−νi

√
2

, (A36)

q ′ = 0 ⇒ σ 1
0 χνi = σzχ

νi = 2sνi
χνi .
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Therefore the total interaction is

V M
12 = Vterm1 + Vterm2 = −1

(2π )3

(4π )(4π )

q2 − ω2/c2

∑
q ′

(−1)q
′
V

μf †
f α1

q ′ (1)Uνi

i

∑
λμ

iλY λ∗
μ (q̂)〈φf |jλ(qr2)Yλ

μ(r̂2)α1
−q ′ (2)|φi〉

+ −1

(2π )3

(4π )(4π )

q2 − ω2/c2

∑
q ′

(−1)q
′
V

μf †
f α1

q ′ (1)Uνi

i

∑
λμ

iλY λ∗
μ (q̂)

∑
β

iβ
∫

r2
2 dr2jλ(qr2)Rβ(r2)f R−β(r2)i

×
√

2λ + 1

4π

∑
LM

CLM
1−q ′,λμ(−1)jf −mjf

(
jf L ji

−mjf
M mji

)
〈jf |〈1/2||σ 1||1/2〉〈lκf (β)

∣∣|Cλ|∣∣lκi (−β)
〉

× [(2jf + 1)(2ji + 1)(2L + 1)]1/2

⎧⎪⎨
⎪⎩

lκf (β) lκi (−β) λ

1/2 1/2 1

jf ji L

⎫⎪⎬
⎪⎭ , (A37)

with insertion of Eqs. (A33), (A34), and (A35) for 〈lκf (β)||Cλ||lκi (−β)〉, 〈1/2||σ 1||1/2〉, and V
μf †
f α1

q ′ (1)Uνi

i , respectively.

[1] C. J. Bostock, D. V. Fursa, and I. Bray, Phys. Rev. A 80, 052708
(2009).

[2] C. J. Bostock, D. V. Fursa, and I. Bray, Can. J. Phys. 89, 503
(2011).

[3] N. Nakamura, A. P. Kavanagh, H. Watanabe, H. A. Sakaue,
Y. Li, D. Kato, F. J. Currell, and S. Ohtani, Phys. Rev. Lett. 100,
073203 (2008).

[4] S. Fritzsche, A. Surzhykov, and T. Stöhlker, Phys. Rev. Lett.
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