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Experimental determination of p-wave scattering parameters in ultracold 6Li atoms
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We report the experimental determination of the scattering parameters for a p-wave Feshbach resonance in a
single-component Fermi gas of 6Li atoms in the lowest spin state. The time scale of the cross-dimensional
relaxation reflects the elastic-scattering rate of the atoms, and scattering parameters are determined from
the scattering rate as a function of magnetic field by taking into account the momentum distribution and
inhomogeneous density profile of the atoms in a trap. Precise determination of the scattering parameters for a
p-wave Feshbach resonance is an important step toward the realization of a p-wave superfluid in an ultracold
atomic gas.
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I. INTRODUCTION

Trapped fermionic atoms with tunable interactions have
opened up possibilities to study novel phenomena in quantum
fluids. In particular, superfluidity in strongly interacting
fermion systems is one of the most important areas of research
due to its relevance to high-Tc superconductivity, neutron
matters, and so on. So far, s-wave Feshbach resonances
have been widely used to study the crossover between
a Bose-Einstein condensate (BEC) and a Bardeen-Cooper-
Schrieffer (BCS) superfluid [1,2]. Recently, it has become
possible to derive the thermodynamic properties of uniform
fermions with a divergent s-wave scattering length from the
thermodynamics of a harmonically trapped system, enabling
the direct comparison of experimental results with many-body
theories [3–5].

Not only can the strength and the sign (repulsive or
attractive) of the interactions in an s-wave channel be con-
trolled, but it is possible to control the atomic interaction
in a collision with nonzero angular momentum. It is known
that superfluidity with nonzero partial-wave pairing arises in
several condensed-matter systems [6–8]. An ultracold atomic
gas is a unique system to study p-wave superfluids since
a fermion system with purely p-wave interactions can be
prepared using a p-wave Feshbach resonance in a single-
component Fermi gas of atoms. Therefore, it is considered
with confidence that the superfluidity emerges due to the
formation of p-wave pairs in such a system. Furthermore,
the tunability of p-wave interactions will enable exploration
of the evolution of superfluid properties from a BEC of
p-wave molecules to a BCS superfluid [9–12]. With precise
control of experimental parameters and the capability of direct
observation of the motions of single atoms through absorption
imaging, we may be able to deepen our understanding of the
microscopic mechanism of pair formation and the emergence
of p-wave superfluidity in a strongly interacting fermion
system. However, strong inelastic collision losses near p-wave
Feshbach resonances have made the realization of a p-wave
superfluid one of the biggest challenges in the field of trapped
Fermi gases [13–19].

Interactions among ultracold atoms through a p-wave
channel can be described by the low-energy expansion of
the p-wave scattering amplitude given by the effective-range

theory [20]:

fp(k) = k2

− 1
V (B) + kek2 − ik3

. (1)

Here, V (B) and ke are the scattering volume and the second
coefficient in the effective-range expansion, respectively. V (B)
has the form of a resonance V (B) = Vbg[1 + �B/(B − Bres)]
near a Feshbach resonance, with Vbg, �B, and Bres being
the background scattering volume, resonance width, and
resonance magnetic field, respectively [21]. Typically, the
transition temperature of a p-wave superfluid is higher for
a larger p-wave scattering volume [22]. Since the background
p-wave scattering volume is not large enough to achieve
a realizable critical temperature, it is important to utilize
a Feshbach resonance to increase the scattering volume.
However, a single-component Fermi gas of atoms near a
p-wave Feshbach resonance suffers from three-body inelastic
collision losses, which shows a clear contrast to the fact that a
two-component Fermi gas of atoms near an s-wave Feshbach
resonance is highly stable against three-body collision losses
because of the Pauli principle. Since the enhancements of
elastic collisions and strong inelastic collision losses are
inextricably linked near a Feshbach resonance, it is necessary
to determine precisely the p-wave scattering parameters and
find the optimum experimental conditions to realize p-wave
superfluidity. In this paper, we report the experimental deter-
mination of the scattering parameters for the p-wave Feshbach
resonance in a single-component Fermi gas of 6Li atoms in the
lowest spin state at 159 G [13–15,17–19]. The magnetic-field
dependence of the p-wave elastic-scattering cross section
is measured by a widely used cross-dimensional relaxation
method [23]. By applying a theory which takes into account
an inhomogeneous density profile and atomic momentum
distribution, we determine the scattering parameters from the
measured magnetic-field dependence of the p-wave elastic-
scattering cross sections.

This article is organized as follows. Section II A describes
our experimental setup for the preparation of a single-
component degenerate Fermi gas of 6Li atoms in the lowest
spin state. In Sec. II B, we discuss the observation of the
p-wave Feshbach resonance from an atomic loss feature and
Sec. II C describes how we determine the scattering
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parameters for the p-wave Feshbach resonance from the
elastic-scattering cross sections measured in the cross-
dimensional relaxation method. In Sec. III, we present a
summary and outlook of this work.

II. EXPERIMENT

A. Preparation of ultracold 6Li atoms

In our experiment, we employed an all-optical method
of creating a degenerate Fermi gas of 6Li atoms in the
hyperfine ground state of |F,mF 〉 = |1/2,1/2〉(≡|1〉) and
|F,mF 〉 = |1/2,−1/2〉(≡|2〉). Atoms in a magneto-optical
trap were compressed by reducing the cooling laser detuning
and increasing the magnetic-field gradient within 20 ms and
were then transferred into a cavity-enhanced optical dipole
trap [18,24]. A cavity-enhanced optical trap was realized by
placing a 400-mm cavity in a confocal configuration. The
1064-nm laser power in the cavity was enhanced by factor of
100 to create a trap depth of kB × 1 mK with a beam waist
of 260 μm. We then transferred the atoms into a single-beam
optical trap with a beam waist of 35 μm. A radio-frequency (rf)
field was applied to make the population equal in the |1〉 and
|2〉 states. Evaporative cooling was performed at 300 G, where
the absolute value of the scattering length between |1〉 and |2〉
states is at a local maximum. A temperature of T/TF ∼ 0.1
with 6 × 105 atoms was achieved.

To prepare a single-component Fermi gas of 6Li atoms
in the |1〉 state, we adiabatically ramp the magnetic field to
215 G, where the |2〉 − |2〉 p-wave Feshbach resonance is
located, and remove the atoms in the |2〉 state by enhanced
three-body collision loss for |2〉 state atoms. We checked that
we prepared atoms purely in state |1〉 using a conventional
Stern-Gerlach measurement. The number of remaining atoms
in |2〉 was confirmed to be less than 0.1% of the number of
atoms in the |1〉 state. After the preparation of pure |1〉 state
atoms, we set the magnetic field to |1〉 − |1〉 p-wave Feshbach
resonance at around 159 G.

Since the current provided by a commercial power supply
typically has ripple noise on the order of 0.1%, the magnetic
field created by the current has the same amount of fluctuation.
In order to reduce the magnetic-field fluctuation, we stabilize
the current running in the coils by controlling the current
in a bypass circuit added in parallel to the coils. With the
stabilization, the current fluctuation is reduced to 5 × 10−5

of the current value, which corresponds to a magnetic-field
fluctuation of 8 mG.

B. Determination of the p-wave Feshbach resonance
from atomic loss features

Figure 1 shows the atomic loss measured when atoms in
state |1〉 are held in a trap for various magnetic fields. Since
atoms are purely in the lowest-energy state, |1〉, atomic loss
is only due to three-body collisions. The vertical axis shows
the fraction of atoms remaining after the 50-ms holding time,
and the horizontal axis shows the magnetic-field detuning
from the p-wave Feshbach resonance at Bres = 159.17(5) G
[13–15,17–19]. Bres was determined from the frequency to
drive an rf transition from |1〉 to |2〉 at the Feshbach resonance
magnetic field. Data for five different temperatures: 1.3, 1.7,
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FIG. 1. (Color online) Fraction of atoms remaining after 50-ms
holding time near the |1〉 − |1〉 p-wave Feshbach resonance as a
function of magnetic-field strength. The atomic loss feature becomes
broader at the higher magnetic-field side at higher temperature
because of the wider spread of the momentum distribution. The
sharp edge at the lower magnetic-field side of the atomic loss feature
indicates the position of the Feshbach resonance.

2.3, 2.7, and 3.6 μK, are shown with black crosses, red closed
circles, green open circles, blue open squares, and orange open
triangles, respectively. Since atom pairs with high relative
momentum (namely, high collision energy) have a higher
Feshbach resonance field, an asymmetry appears in the loss
feature due to the spread of atomic energy distribution. When
we increase the temperature of the atoms, the atomic loss
feature broadens only toward the higher magnetic-field side.
The edge of the loss feature in the lower magnetic-field side is
always sharp for all temperatures, as shown in Fig. 1. The sharp
edge of the loss feature corresponds to the p-wave Feshbach
resonance for the atomic pairs with zero kinetic energy. We
determine the p-wave Feshbach resonance magnetic field from
the sharp edge at the lower magnetic-field side of the atomic
loss feature.

C. Measurement of elastic-scattering cross section

In order to determine the unknown scattering parameters,
Vbg,�B, and ke in the scattering amplitude function [Eq. (1)],
we measure the p-wave elastic-scattering cross section near the
|1〉 − |1〉 p-wave Feshbach resonance. The elastic-scattering
cross section is given by the scattering amplitude as σ =
12π |fp(k)|2. In our experiment, we determine the elastic-
scattering cross section using a cross-dimensional relaxation
method [23]. In this measurement, we first prepare a dipole-
trap laser with an elliptical beam waist so that the trap
frequencies in the two radial directions are different by
20%. When we modulate the trapping-laser intensity with
a frequency exactly twice the trap frequency in one of two
radial directions, we can excite the atomic motion in the
resonant radial direction, such that there is additional kinetic
energy in one direction, resulting in an anisotropic momentum
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FIG. 2. Experimental time chart of the magnetic field. The
magnetic field is swept quickly toward the lower-field side of the
resonance (Bres) to avoid adiabatic creation of p-wave molecules.
Then, the trapping laser intensity is modulated for 3 ms with twice
the trap frequency in one direction to add kinetic energy. The magnetic
field is set close to the resonance (Bhold) where the elastic collision
rate is measured. After holding the atoms at Bhold, the magnetic field
is quickly swept to zero when atoms are released from the trap.

distribution. At this time, absorption images after the time of
flight (TOF) show anisotropic expansion of the cloud. When
we hold the atoms in the trap after the parametric excitation,
we see the time evolution of the aspect ratio of the cloud
reaching unity. This is because the interatomic scattering
transfers the kinetic energy from one direction to another,
forcing the system to reach thermal equilibrium. The time of
this thermalization is determined by the elastic collision cross
section, and therefore the measurement of this energy-transfer
rate as a function of the magnetic field gives us information
about the scattering parameters. It is known that a p-wave
Feshbach resonance has a doublet structure which originates
from a magnetic dipole-dipole interaction between two atoms
in a p-wave molecular state [25]. Since the splitting of the two
resonances is predicted to be small (on the order of mG [13])
compared with the width of the resonance and smearing of the
resonance in the magnetic field due to the momentum spread
of the atoms, we treat the p-wave Feshbach resonance as a
single resonance in this work.

Figure 2 shows the experimental sequence for the mag-
netic field in the measurement of the elastic-scattering cross
sections. After the preparation of the atoms in the |1〉 state,
the magnetic field is above the p-wave Feshbach resonance
Bres. We sweep the magnetic field to somewhere far below
Bres (where the interatomic p-wave interaction is negligibly
small) as fast as possible to avoid adiabatic creation of p-wave
Feshbach molecules [18]. Then the trapping-laser intensity is
modulated with twice the trap frequency in one direction for
τmod = 3 ms, which increases the kinetic energy of the atoms
in one of the two radial directions. After holding the system
for 5 ms to let the atomic motion dephase, the magnetic field
is changed quickly to Bhold, where the thermalization time is
measured. Measurement of the atomic momentum distribution
is done by absorption imaging after releasing the atoms from
the trap when the magnetic field is turned off.

Figures 3(a)–3(c) show the momentum distribution ob-
served in TOF images before applying the parametric exci-
tation, just after applying the excitation, and after holding the
atoms for longer than the thermalization time, respectively.
As shown in Fig. 3(b), the expanded cloud becomes elliptical,
indicating that the resonant modulation of the trapping laser
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FIG. 3. (Color online) Time evolution of the anisotropy of the
momentum distribution measured after a 4-ms TOF. (a) Momentum
distribution measured before the parametric excitation. Atoms are
seen to expand isotropically. (b) Momentum distribution measured
just after the parametric excitation. The momentum distribution is
wider in the vertical direction than in the horizontal direction in the
image. (c) Momentum distribution after reaching thermal equilibrium
due to interatomic scattering. Momentum distribution is observed to
be isotropic again. (d) A typical time evolution of an aspect ratio as a
function of hold time Thold.

intensity increases the kinetic energy of the atoms in the
vertical direction. After holding the atoms long enough to reach
thermal equilibrium due to interatomic p-wave scattering,
the kinetic energies in the vertical and horizontal directions
become equal and the momentum distribution of the atoms
becomes isotropic again [Fig. 3(c)]. Figure 3(d) shows the
typical time evolution of the aspect ratio of the atomic
cloud in the absorption images. The red markers show the
experimental data, and the solid curve shows the fitting result
with an exponential decay curve to the data. The aspect
ratio gradually decreases due to thermalization by p-wave
scatterings and finally reaches unity after a long holding time.
The time evolution of the aspect ratio can be described by
1 + A exp(−γ Thold), where A is an amplitude of excitation
and γ is a thermalization rate. The ratio of kinetic energies
in the two orthogonal directions is proportional to the square
of the aspect ratio, EV /EH � 1 + 2A exp(−γ Thold). There-
fore the thermalization rate γ actually indicates the rate of
energy transfer from one radial direction to the other.

Figure 4 shows the measured thermalization rate as a
function of the magnetic-field detuning. The measurements
were done for the atomic clouds at four different temperatures.
Red, blue, black, and green markers show the results using the
atoms at 1.5, 2.0, 3.0, and 3.8 μK, respectively. The zero of the
magnetic-field detuning Bres was determined from the atomic
loss measurement shown in Fig. 1. The thermalization rate
drastically increased by more than three orders of magnitude
above zero magnetic-field detuning, and the range of the
magnetic field where fast thermalization is observed gets wider
at higher temperature. Error bars include both the statistical
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FIG. 4. (Color online) Thermalization rate as a function of
magnetic field measured near the p-wave Feshbach resonance for
four different temperatures. Markers show the experimental data, and
solid curves show the fitting result using Eq. (2). The zero of the
magnetic-field detuning is determined from the loss measurement
shown in Fig. 1.

errors and the effect of underestimation of the rate due to
atomic losses within the thermalization time scale [26]. In this
experiment, T/TF is always chosen to be larger than 1.0 so that
the momentum distributions of the atoms are well described
by Boltzmann distributions.

In order to determine the parameters in the scattering
amplitude from the data shown in Fig. 4, we fit the data
to a theoretical curve which takes into account the thermal
averaging effect [25,27]. The number of two-body scattering
events per unit volume per unit time is given by n × nσ (E)vr ,
where n, σ (E), and vr are the atomic density, the elastic-
scattering cross section for the relative scattering energy E,
and the relative velocity, respectively. The collision energy
E is defined to be E = 1

2μv2
r , with μ being a reduced mass.

The elastic-scattering cross section is expressed in terms of the
scattering amplitude as σ (E) = 12π |fp(E)|2. The experimen-
tal data shown in Fig. 4 show the rate of energy transfer from
one radial direction to the other, which can be calculated by the
product of the collision energy E and the number of two-body
scattering events per unit time n2σ (E)vr . The energy transfer
rate is given by γ = 2

α
〈n2σ (E)vrE〉/kBT [27], where α = 4.1

is the average number of p-wave scatterings per atom required
for thermalization. The bracket indicates the thermal averaging
of the value, which is obtained by integrating over phase space
after multiplying by the phase space distribution function [27].
Since n is the function of the position �x, and σ (E), vr = pr/μ,
and E = p2

r /2μ are the functions of the relative momentum
pr , the value of 〈n2σ (E)vrE〉 can be written as [27]

〈n2σ (E)vrE〉�x, �p = 〈n2〉�x〈σ (E)vrE〉 �p

= nmean ×
√

8

μπ
(kBT )−3/212π

×
∫

|fp(E)|2E2 exp(−βE)dE, (2)

where nmean = 1
N

∫
n(�x)2d �x is the mean density. The mean

density is determined from the atomic density profile.
The red, blue, black, and green curves in Fig. 4 are the fitting

results for the experimental data with the atoms at T = 1.5,
2.0, 3.0, and 3.8 μK, respectively. When we fit the data with
the theoretical curve, Vbg�B, ke, and the offset value of the
thermalization rate γoffset are taken as the fitting parameters. Vbg

and �B are only determined as a product of two values because
the magnetic-field measurement region is small compared with
�B and so the first term in the parentheses (namely, the
nonresonant part of the scattering volume) in V (B) = Vbg[1 +
�B/(B − Bres)] is negligible [28]. The offset values for the
thermalization rate are finite because the anharmonicity of
the trapping potential causes mixing of the motions in the two
radial directions, which in turn creates an offset thermalization
rate. This anharmonicity effect is larger when the trapping
potential is tighter. Since we control the temperature of the
atoms by changing both the tightness of the trap potential and
the extent to which we conduct evaporative cooling, the effect
of anharmonicity depends on the experimental conditions, as
does the offset value of the thermalization rate. From the
fitting, we find Vbg�B = −2.8(3) × 106a3

0 (in Gauss) and
ke = 0.058(5)a−1

0 . These values agree reasonably well with
the theoretical calculation results of Vbg�B = −1.45 × 106a3

0
(in Gauss) [29], −1.7 × 106a3

0 (in Gauss) [30], and ke =
0.048(3)a−1

0 [29]. If we use the predicted value of �B = 40 (in
Gauss) [30], we get abg = V

1/3
bg = −41a0. This value agrees

reasonably well with the theoretically predicted values of
−35a0 [22], −38a0 [31], and −35.3a0 [32]. The measured
magnetic-field dependence of the scattering volume is also
consistent with the calculation by Lysebo and Veseth [33].

III. CONCLUSION AND OUTLOOK

We have experimentally determined the scattering parame-
ters for a p-wave Feshbach resonance in a single-component
Fermi gas of 6Li in the lowest spin state. The cross-dimen-
sional relaxation technique was used to measure the thermal-
ization time of the excitation applied to a cloud. From the
analysis, which takes into account an inhomogeneous density
profile and momentum distribution of the atoms, we were
able to derive the unknown scattering parameters used to
form an expression for the elastic collision cross sections.
The determined parameters show reasonable agreement with
theoretical calculations. Since strong atomic loss near a
p-wave Feshbach resonance prevents us from realizing a
p-wave superfluid in an atomic gas, it is important to know
the magnetic-field dependence of the scattering volume and
inelastic loss rate precisely.

Since the magnetic-field dependence of the scattering
volume has been determined, we may be able to experimentally
confirm the universal property in three-body collisions. Suno
et al. predicted that the three-body collision coefficient has
a |V (B)|8/3 dependence in an identical fermion system, in
contrast to the |a|4 dependence in an identical boson system
[34]. Recently, Nishida et al. predicted a “super Efimov
effect,” which is expected to appear as an enhancement of
three-body collision losses in a two-dimensional system [35].
The scattering parameters determined in this work will help us
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to experimentally confirm such unique features in three-body
collisions.

Finally, a p-wave Feshbach resonance is composed of two
resonances split by the magnetic dipole-dipole interaction.
In this work, we analyzed the data based on the theoretical
prediction that the splitting is much smaller than the features
of the enhancement of the cross-dimensional relaxation. To
identify such a fine doublet structure of the p-wave Feshbach
resonance, an optical lattice can be used to confine the atoms in
one or two dimensions and realize the situation in which only
one of the two resonances becomes effective. There is also
a theoretical proposal that trapping atoms in two dimensions
helps to achieve a higher good-to-bad collision ratio near a

p-wave Feshbach resonance [36] and is a promising means of
realizing p-wave superfluids in ultracold atomic gases. This
will be a future challenge.
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