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Charge transfer and association of Na+ with 87Rb atoms from extremely low to intermediate energies
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The nonradiative charge-transfer processes in Na+ + 87Rb(5s) collisions have been investigated by using the
quantum-mechanical molecular-orbital close-coupling method and the two-center atomic-orbital close-coupling
method for the energy range of 10−4–5 and 0.3–100 keV/u, respectively. The radiative charge-transfer, radiative-
decay, and radiative-association processes have been investigated by using the fully quantum, optical-potential,
and semiclassical methods for the energy range of 10−18–0.2 eV/u. The nonradiative charge-transfer processes
dominate the collisions for energies above 0.2 eV/u and radiative-decay processes dominate in the lower-energy
region. At the very low collision energies of 10−18–10−3 eV/u, the radiative-association process is more important
than the radiative charge-transfer process. Most importantly, it is found that the radiative cross sections exhibit
Langevin behavior as E−1/2 for energies less than 10−2 eV/u.
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I. INTRODUCTION

Alkali-metal ion-atom collisions at cold temperatures have
received considerable attention because of their importance
in the cooling and trapping of atoms and molecules and in
the investigations of cold plasmas [1–3]. Since the magneto-
optical traps have been developed, trap loss in the form
of molecular ions has been observed [4]. The populations
of alkali-metal atoms and ions and their emission spectra
are significantly influenced by charge-transfer or association
processes in the collisions. These characteristic spectra are
important for studying the charge transport and diagnosing the
density of laboratory cold plasmas.

A number of studies aimed at understanding these dy-
namical processes for Na+ colliding with Rb(5s) atoms have
been performed. Lee et al. [2] have measured single-electron
capture differential cross sections for collision energies at 2,
5, and 7 keV by using magneto-optical trap-target recoil ion
momentum spectroscopy (MOTRIMS). The ratio between the
capture cross sections to Na(3s) and Na(3p) was inferred
from the measurements. Later, Blieck et al. [3] developed
the MOTRIMS apparatus and measured the differential cross
sections with a low-background level for Na+ colliding with
trapped 87Rb atoms at 2 keV. Lee et al. [2] and Lin et al. [5]
have calculated the cross sections using an atomic-orbital
close-coupling (AOCC) method for collisions at 2, 5, and
7 keV. These earlier works focused mainly on the energy region
of several keV where the direct charge transfer dominates. As
is well known, the cooling of neutral atoms and atomic ions
with the currently available technology of laser cooling is
possible down to the submillikelvin temperature regime, and
forms cold molecular ions by atom-ion cold collisions [6,7].
The radiative-decay (including radiative charge transfer and
radiative association) process may become dominant in the
energy region. Usually, the radiative decay is a process with
much lower probability because the time needed to emit the
photon from the excited state (∼10−8 s) is much longer and the
typical cross section (five orders of or smaller than the elastic

scattering cross section) is much smaller. There are cases,
however, where the formation of bound, excited molecular
ions can make a contribution to the observed spectra, and
the radiative process is a possible mechanism to explain the
experimental findings [6]. Especially when the final state has a
deep potential well, the contribution from radiative association
to total radiative decay is important and this could result in a
large radiative-association cross section, which could provide
an efficient way to produce cold ions through collisions with
neutral gas. Furthermore, there exist many disputations about
the range of applicability for the Langevin formula [8,9].
Schuessler et al. [10] have verified energy dependence E−1/2

of the charge-transfer cross section for collisions of He+ with
Cs atoms at energies from 0.1 to 1 eV by experiment. Hadjar
et al. [11] have observed the Langevin-type ion-atom collisions
of Ne2+ with Ne atoms in the energy range from 0.3 to
10 eV. However, they both deal with the direct charge-transfer
cross sections, whereas investigations of radiative decay in the
extremely low energy (cold) region are sparse.

In the present work, we shall study the collisions of Na+
with 87Rb(5s) atoms in the energy region from 10−18 eV/u
to 100 keV/u. Several processes are investigated, namely, the
nonradiative charge-transfer process,

Na+ + Rb(5s) → Na(3s,3p) + Rb+, (1)

radiative charge-transfer process,

Na+ + Rb(5s) → Na(3s) + Rb+ + hν, (2)

and radiative-association process,

Na+ + Rb(5s) → NaRb+(X2�+) + hν. (3)

The nonradiative charge-transfer cross sections are calculated
by using the full quantum-mechanical molecular-orbital close-
coupling (QMOCC) method in the energy range of 10−4–
5 keV/u and by the two-center atomic-orbital close-coupling
(TC-AOCC) method in the energy range of 0.3–100 keV/u.
The radiative-decay cross sections are calculated by using
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TABLE I. Asymptotic separated-atom energies for the states of NaRb+.

Energy (cm−1)

Asymptotic atomic states Molecular states NIST [17] MRD-CI Error

Na(3s 2S) + Rb+(4p6) 1 2�+ −7759 −7758 1
Na+ + Rb(5s 2S) 2 2�+ 0 0 0
Na(3p 2P ) + Rb+(4p6) 3 2�+ 9206 9212 6
Na(3p 2P ) + Rb+(4p6) 1 2� 9206 9212 6
Na+ + Rb(5p 2P ) 4 2�+ 12698 12703 5
Na+ + Rb(5p 2P ) 2 2� 12698 12703 5

the optical-potential and semiclassical method, respectively,
for the energy range of 10−18–0.2 eV/u. The radiative
charge-transfer cross sections are calculated by using the fully
quantum method for the energy range of 10−18–3 × 10−3 eV/u.
The radiative-association cross sections are obtained by sub-
tracting the radiative charge-transfer part from total radiative-
decay cross sections. The molecular structure data (potential
curves, radial and rotational couplings, and dipole transition
matrix elements) required in the scattering calculations have
been calculated using the ab initio multireference single-
and double-excitation configuration interaction (MRD-CI)
method.

The rest of the paper is organized as follows. Section II
describes the molecular potential and coupling data utilized
in the scattering calculations, while Sec. III discusses the
scattering calculation approach. Section IV presents the results
of the scattering calculation. A brief summary is given in
Sec. V. Atomic units are used throughout unless otherwise
noted.

II. ELECTRONIC STRUCTURE CALCULATIONS

In the present study, ab initio multireference configuration
interaction calculations are carried out for adiabatic potential
energies of four 2�+ states in A1 (C2v) symmetry and two 2�

states in B1 symmetry of the NaRb+ system by employing the
MRD-CI package [12,13]. For the sodium and rubidium atoms,
effective core potentials (ECP) [14,15] are used to describe the
corresponding inner-shell electrons. The remaining (highest)
inner-shell (2s and 2p for Na, 4s and 4p for Rb) and valence
electrons (3s for Na, 5s for Rb) are considered explicitly in
the ab initio self-consistent field (SCF) and CI calculations.
The ECP-adapted (6s, 4p) and (5s, 5p) Gaussian basis
sets and the added diffuse basis (1s, 2p, 2d, 1f ) and (1s,
1p, 4d, 2f ) are utilized to describe the highest inner-shell
electrons and the valence electrons of the Na and Rb atoms,
respectively. The linear dependency in the basis set for the short
internuclear distance region has been checked. The correlation
coefficients are smaller than 10−4 and there are no serious
linear correlations. A threshold of 2 × 10−10 Hartree is applied
in the selection of the configuration wave functions. The errors
in the asymptotic energies of the relevant electronic states
are given in Table I. Good agreement is obtained with the
present theoretical results and the experimental measurements.
The obtained electronic wave functions are then employed
to calculate radial and rotational couplings by using finite
differentiation and analytical approaches, respectively [16].

In Fig. 1, the calculated adiabatic potential energy curves
for the lowest four 2�+ and two 2� molecular states are
presented as a function of internuclear distance, where the
2 2�+ state represents the initial channel in Na+ + Rb(5s)
collisions. A relatively strong avoided crossing exists at about
5.0 a.u. between 3 2�+ and 4 2�+ states. For an internuclear
distance less than 10 a.u., the potential curves of the 1 2�

state and the 2 2�+ state approach each other quickly with
decreasing of R, and the rotational coupling between them
becomes somewhat important.

In Table II, the present calculated spectroscopic constants,
including equilibrium positions Re and depths of potential
wells De, are compared with the available theoretical calcula-
tions [18,19]. It can be observed that the depth of the potential
well of the ground state by Valance [18] is much smaller than
the present result as well as the one of Bellomonte et al. [19],
which is possibly due to the fact that the linear combination
of atomic orbitals (-molecular orbitals) (LCAO-MO) trial
wave function applied in Valance’s calculation [18] is not
sufficiently accurate. The present potential wells are found to
be much deeper than the one-active-electron calculations by
Valance [18]. The reason for the above discrepancies is that in
our ab initio multielectron calculations, a close encounter and
interaction in the region of molecular coupling will lead to the

FIG. 1. (Color online) Adiabatic potential curves for NaRb+ as a
function of internuclear distance. Solid lines denote the 2�+ states;
dotted lines the 2� states. The 1 2�+, 2 2�+, 3 2�+, 4 2�+, 1 2�,
and 2 2� states correspond to the Na(3s) + Rb+, Na+ + Rb(5s),
Na(3p) + Rb+, Na+ + Rb(5p), Na(3p) + Rb+, and Na+ + Rb(5p)
channels in the asymptotic region, respectively.
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TABLE II. Equilibrium positions Re (a.u.) and depths De (eV) of
potential wells for the 2�+ and 2� states of NaRb+.

Bellomonte
Molecular Present Valance [18] [19]

states Re De Re De Re De

1 2�+ 8.0 0.531 8.0 0.310 7.5 0.60
2 2�+ 13.5 0.132 14.0 0.094
3 2�+ 16.0 0.215 17.0 0.066
4 2�+ 22.0 0.124 22.0 0.038
1 2� 9.5 0.150

electronic excitation out of an inner shell, which indicates that
one-active-electron calculations are not reliable in the critical
small-R region [20].

In Fig. 2, the radial coupling matrix elements are presented
as a function of internuclear distance, which have been
calculated by finite difference approximation,

AR
ij = 〈ψi | ∂

∂R
|ψj 〉 = lim

�R→0

1

�R
〈ψi (R)| ψi (R + �R)〉 ,

(4)

with the step size of 0.0005 a.u. It is evident that the positions of
the peaks in radial couplings are consistent with the avoided
crossings of the adiabatic potentials, as shown in Fig. 1. It
can be seen that the initial channel of 2 2�+ state is coupled
with the 1 2�+ state at internuclear distance about 11.5 a.u.,
which drives the electronic transition to the Na(3s) + Rb+
state at low collision energies. There are two maxima in the
2 2�+–3 2�+ coupling at the internuclear separations of about
2.7 and 6.0 a.u., and this coupling plays an important role in
high-energy collisions. A very sharp peak is observed near
R = 5.0 a.u. for the 3 2�+–4 2�+ coupling. The 4 2�+ channel
will play an important role in collision-excitation processes at
high energies, which are not considered in the present study.

In Fig. 3, some important rotational coupling matrix
elements of Aθ

ij = 〈ψi |iLy |ψj 〉 are presented as a function of
internuclear distance. The rotational couplings approach zero
at a large internuclear distance for the two states belonging
to different configurations, such as the 2 2�+–1 2� coupling.

FIG. 2. (Color online) Radial coupling matrix elements for NaRb+.

FIG. 3. (Color online) Rotational coupling matrix elements for
NaRb+.

Otherwise, the couplings will approach a constant value if
the two states belong to the same configuration, such as the
3 2�+–1 2� coupling. Note that the 2 2�+–1 2� coupling
plays a significant role in electron capture to the Na(3p) + Rb+
channel. In Fig. 4, the dipole transition moment between the 1
2�+ and 2 2�+ states is presented, and a broad maximum can
be observed for R at about 11.5 a.u., which corresponds to the
position of the avoided crossing between the two states. The
dipole transition moment is responsible for the radiative-decay
processes in the collisions.

III. SCATTERING CALCULATIONS

A. QMOCC method for nonradiative charge transfer

The QMOCC method used to describe the nonradiative
charge transfer in ion-atom collisions has been formulated
by Zygelman and Dalgarno [21] and Kimura and Lane [22],
and here we only outline it briefly. It involves solving
a coupled set of second-order differential equations using
the log-derivative method [23]. In the adiabatic representa-
tion, transitions between channels are driven by elements

FIG. 4. Dipole matrix element for NaRb+.
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(radial AR and rotational Aθ ) of the vector potential A( �R),
where �R is the internuclear distance vector. Since the adiabatic
description contains first-order derivatives, it is numerically
convenient to make a unitary transformation [21,24] to a
diabatic representation,

U (R) = W (R)[V (R) − P (R)]W−1(R), (5)

where U (R) is the diabatic potential matrix, V (R) is the
diagonal adiabatic potential, W (R) is a unitary transformation
matrix, and P (R) is the rotational matrix of the vector potential
A( �R).

The coupled set of second-order differential equations is
solved by employing the diabatic potentials and couplings.
The charge-capture cross section from initial channel i to the
final channel j is given by

σ(i→j ) = π

k2
i

∑
J

(2J + 1)|SJ |2i,j , (6)

where ki is the initial momentum, J is the total angular
momentum, and scattering matrix S is

SJ = [I + iKJ ]−1[I − iKJ ], (7)

where I is the identity matrix, and the K matrix is obtained
from the scattering amplitude after a partial-wave decom-
position [21]. We have not included electron translational
factors [25] used to modify the molecular eigenfunctions to
remove asymptotic couplings between atomic states. Hence,
we have limited our QMOCC collisions to the energy region
of E � 5 keV/u.

B. TC-AOCC method for nonradiative charge transfer

The TC-AOCC equations are obtained by expanding the
total electron wave function � in terms of bound atomic
orbitals of the two atomic centers multiplied by plane-wave
electron translational factors (φA,φB),

�(�r,t) =
∑

i

ai(t)φ
A
i (�r,t) +

∑
j

bj (t)φB
j (�r,t), (8)

and by inserting this expansion into the time-dependent
Schrödinger equation to generate the coupled equations for
the state amplitudes [26]. In the present calculations, the
straight-line approximation is adopted for the relative nuclear
motion. The frozen core approximations for the Na+ and Rb+
ions are employed. The interaction of the active electron with
the ionic cores for Na+ and Rb+ can be expressed as [2]

VNa+ (r) = −1

r
− 1

r
(10 + 17.9635r)e−3.5927r , (9)

VRb+ (r) = −1

r
− 1

r
(36 − 1.975r)e−2.34113r . (10)

The resulting first-order coupled equations for the amplitude
ai(t) and bj (t) are

i(
·
A +S

·
B) = HA + KB, i(

·
B +S† ·

A) = K̄A + H̄B,

(11)

where A and B are the vectors of the amplitudes ai and bj ,
respectively. S is the overlap matrix (S† is its transposed form),
H and H̄ are direct coupling matrices, and K and K are

the electron exchange matrices. After solving the system of
coupled equations (11), the cross section for 1→j electron-
capture transitions is calculated as

σcx,j = 2π

∫ ∞

0
|bj (+∞)|2bdb, (12)

where b is the impact parameter. The sum of σcx,j over j gives
the corresponding total electron transfer cross section. In the
present close-coupling calculations, we have a set of 32 atomic
states with l � 3 in the Na center. Similarly, a set of 15 atomic
states with l � 2 is used for the Rb target.

C. Fully quantum method for radiative charge transfer

In the present work, we use the fully quantum-mechanical
approach [27,28] to calculate the radiative charge transfer. The
radiative charge-transfer cross section can be given by

σ =
∫ ωmax

ωmin

dσ

dω
dω, (13)

with

dσ

dω
= 8

3

(
π

kA

)2
ω3

c3

∑
J

[
JM2

J,J−1(kA,kX)

+ (J + 1)M2
J,J+1(kA,kX)

]
, (14)

where ω is the angular frequency of the emitted photon, c is
the speed of light, the subscripts A and X denote the upper
and the lower states, respectively, and

MJ,J ′(kA,kX) ≡
∫ ∞

0
dRf A

J (kAR)D(R)f X
J ′ (kXR), (15)

where D(R) is the dipole matrix element; kA and kX are the
entrance and exit momenta, respectively,

kA =
√

2μ [E − VA(∞)],
(16)

kX =
√

2μ [E − VX(∞)] − h̄ω,

with E the relative collision energy in the center-of-mass
frame. The partial wave f i

J (kiR) (i = X, A) is the regular
solution of the homogeneous radial equation{

d2

dR2
− J (J + 1)

R2
− 2μ[Vi(R) − Vi(∞)] + k2

i

}
f i

J (kiR) = 0,

(17)

and is normalized asymptotically according to

f i
J (kiR) =

√
2μ

πki

sin

(
kiR − Jπ

2
+ δi

J

)
. (18)

where δi
J (i = X, A) is the phase shift.

D. Optical-potential and semiclassical methods
for radiative decay

The optical-potential method [27,29] is adopted to obtain
the total cross sections for radiative decay, including both
the radiative charge transfer and the radiative association.
During the ion-atom collisions, the transition probability
is represented by the imaginary part of a complex optical
potential. The scattering wave FA( �R), where R is the
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internuclear distance and the subscript A denotes the initial
upper molecular state (A 2�+), is obtained by solving the
Schrödinger equation,[

− 1

2μ
∇2

⇀
R

+ VA(R) − E

]
FA( �R) = i

2
A(R)FA( �R), (19)

where E is the collision energy in the entrance channel, μ is
the reduced mass, and A(R) is the transition probability for
the radiative transition given by

A(R) = 4

3
D2(R)

|VA(R) − VX(R)|3
c3

, (20)

where VA(R) and VX(R) are the adiabatic potential energy for
the upper A 2�+ and the lower X 2�+ states, respectively.
D(R) is the transition dipole matrix element between the
A 2�+ and X 2�+ states.

The cross section for collision-induced radiative decay can
be written as

σ (E) = π

k2
A

∞∑
J

(2J + 1)[1 − exp(−4ηJ )], (21)

where ηJ is the imaginary part of the phase shift for the J th
partial wave of the radial Schrödinger equation which is given
in the distorted-wave approximation by

ηJ = π

2

∫ ∞

0
dR

∣∣f A
J (kAR)

∣∣A(R). (22)

In order to extend our radiative-decay calculations to higher
energies, replacing the summation in Eq. (21) and applying
the JWKB approximation, one obtains the expression for the
semiclassical cross section

σ (E) = 2π

√
2μ

E

∫
pdp

∫ ∞

R
ctp
A

dR
A(R)√

1 − VA(R)
/
E − p2

/
R2

,

(23)

where p is the impact parameter and R
ctp
A is the classical

turning point in the incoming channel [27]. For large energies
(E � VA), the double integral is nearly energy independent,
and therefore σ (E) varies as E−1/2. The difference between
the total radiative-decay and the radiative charge-transfer cross
section is the cross section for radiative association.

IV. RESULTS AND DISCUSSION

A. Nonradiative charge transfer

The QMOCC and AOCC methods have been applied to
investigate the nonradiative charge-transfer collisions of Na+
with 87Rb atoms. The total and state-resolved cross sections
are obtained for the energy range of 10−4–100 keV/u. As
shown in Fig. 5, the total nonradiative charge-transfer cross
sections obtained are compared with the results of the AOCC
method by Lee et al. [2]. In the overlapping energy region of
0.08–5 keV/u, there is generally good agreement between
the present QMOCC and AOCC results and the AOCC
calculations of Lee et al. [2]. In the low-energy region for
E < 1 keV/u, the slow decrease of the charge-transfer cross
section results from the relatively strong 2 2�+–1 2� rotational
coupling of this collision system, as discussed in Sec. II.

FIG. 5. (Color online) Total nonradiative charge-transfer cross
sections for the Na+ + 87Rb collisions. Shown are the present
QMOCC results (solid line with open circles); present AOCC results
(solid line with open downward triangles); AOCC results of Lee
et al. [2] (solid line with open upward triangles).

In Fig. 6, the state-resolved cross sections for electron
capture to the Na(3s) and Na(3p) states are presented and
compared with the AOCC results of Lee et al. [2]. The present
QMOCC and AOCC calculations to the Na(3p) state are in
good agreement with the results obtained by Lee et al. [2] in
the overlapping energy region of 0.08–5 keV/u. The present
AOCC calculation to the Na(3s) state and the AOCC result
by Lee et al. [2] are in good agreement at the energy of
0.3 keV/u. The QMOCC calculations to the Na(3s) state
exceed the present AOCC results for energies above 0.3 keV/u.
This difference is probably due to the fact that we have treated
the potentials and couplings for R < 1.5 a.u. by extrapolation;
they are not very accurate for the QMOCC calculations in the
relatively high-energy region. Therefore, different and reliable

FIG. 6. (Color online) State-resolved nonradiative charge-
transfer cross sections for the Na+ + 87Rb collisions. Shown are
present QMOCC results: 3s (open squares) and 3p (open circles);
present AOCC results: 3s (dotted line) and 3p (dashed line); AOCC
results of Lee et al. [2]: 3s (solid squares) and 3p (solid circles).
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FIG. 7. Transition probability between 1 2�+ and 2 2�+ states as
a function of internuclear distance.

experimental measurements and theoretical calculations are
required to verify these results for this energy region.

B. Radiative decay, radiative charge transfer,
and radiative association

In the present calculation, the upper A and the lower X

states in Eqs. (14)–(23) correspond to the 2 2�+ and the 1 2�+
states, respectively. In this case, one only need consider the
radiative processes from the initial channel of 2 2�+ state to
the lower 1 2�+ state, which is dominated by the long-range
polarization interaction. In the radiative calculation, the values
of Rmax for matching the boundary conditions are increased
from 500 to 2000 a.u. for collision energies varying from 0.2 to
10−18 eV/u, respectively. Beyond R = 50 a.u., the potentials
of the 1 2�+ and 2 2�+ states are described by the long-range
form

VL(R) = −1

2

[
C4

R4
+ C6

R6
+ C8

R8

]
, (24)

where C4, C6, and C8 are the dipole, quadrupole, and octopole
polarizabilities of Na(3s) and Rb(5s) atom, respectively [30].
Based on the obtained potentials, the transition probability
A(R) is computed by using Eq. (20), and the result is shown
in Fig. 7. There are two peaks near R of 2.60 and 5.90 a.u.,
respectively. The transition probability approaches zero as the
internuclear distance increases beyond 15 a.u.

Using the optical-potential method, the radiative-decay (in-
cluding the radiative charge-transfer and radiative-association)
cross sections are calculated for energies from 10−18 to
5 × 10−3 eV/u, as shown in Fig. 8. For higher energies,
the computational cost increases rapidly and a semiclassi-
cal calculation has been performed by using Eq. (23) for
collision energies of 5 × 10−4–0.2 eV/u. In the overlapping
energy range of 5 × 10−4–5 × 10−3 eV/u, except for the
shape resonance behavior, the semiclassical cross sections
are in good agreement with the optical-potential results.
The resonant structures, appearing in the energy region of
10−9–10−3 eV/u, are attributed to the presence of quasibound
or virtual rotational-vibrational levels in the entrance channel.
Apart from the resonance structures, the cross sections increase

FIG. 8. (Color online) Comparison of the radiative-decay and
nonradiative charge-transfer cross sections for Na+ + 87Rb collisions.
Radiative-decay cross sections are obtained by the optical-potential
method (solid line) and the semiclassical method (solid line with
solid upward triangles), respectively, and nonradiative charge-transfer
cross sections (solid line with open circles) are obtained by QMOCC
method.

monotonically as the collision energies decrease. Most inter-
estingly, the radiative-decay cross sections are well described
by the classical E−1/2 Langevin cross-section behavior [31] for
collision energies from 10−18 to 10−2 eV/u in the asymmetric
Na+ + Rb collisions.

For the convenience of comparison, the nonradiative
charge-transfer results are also displayed in Fig. 8. For
energy less than 0.1 eV/u, the radiative-decay processes
are dominant and the nonradiative charge-transfer processes
are negligible, where the electronic transitions are driven
through the weak avoided crossing between the 1 2�+ and
2 2�+ states at an internuclear distance of R = 11.50 a.u.
The large radiative-decay cross section provides a good way
for ion cooling through collisions with cold neutral gas at
extremely low energy. As the collision energy increases, the
nonradiative charge-transfer cross sections increase steeply
and become dominant for energies larger than 0.2 eV/u, where
the electronic transitions occur mainly through the rotational
coupling between the 2 2�+ and 1 2� states.

In Fig. 9, the radiative charge-transfer cross sections are
presented along with the radiative-decay cross sections and
the radiative-association cross sections for the energy range
of 10−18–3 × 10−3 eV/u. In the present calculations, the
radiative charge-transfer cross sections are calculated from
the fully quantum-mechanical approach using Eq. (13) and the
radiative-association cross sections are obtained by subtracting
the radiative charge-transfer part from the radiative-decay
cross sections. It can be found that the radiative-association
cross sections are about one order of magnitude larger
than the radiative charge-transfer results and the radiative
association dominates the radiative-decay processes. For the
NaRb+ system, a deep well (∼0.531 eV) exists for the 1 2�+
state at small internuclear distance and more quasibound
vibrational levels can be formed. As the collision energy
increases, the difference between the radiative-association
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FIG. 9. (Color online) Comparison of the radiative charge-
transfer (dashed line), radiative-decay (solid line), and radiative-
association (dotted line) cross sections in the Na+ + 87Rb collisions
for the 2 2�+–1 2�+ transition.

and charge-transfer cross sections decreases quickly. With
increasing collision energy, the effective angular momentum
quantum numbers increase and the well in the effective
potentials V eff

J (R) = V (R) + J (J + 1)/2μR2 of the 1 2�+
state will disappear at a relatively large value of J , causing the
radiative-association cross sections to decrease quickly.

V. CONCLUSION

The nonradiative charge-transfer processes in
Na+ + Rb(5s) collisions have been investigated by using the
QMOCC and TC-AOCC methods for the energy range of

10−4 eV/u–5 keV/u and 0.3–100 keV/u, respectively. Good
agreement has been obtained between the two calculations for
the total and the dominant-channel capture cross sections in
the overlapping energy range. The radiative-decay process is
investigated by using the optical-potential and semiclassical
methods in the collision energy range of 10−18–5 × 10−3 eV/u
and 5 × 10−4–0.2 eV/u, respectively, and the two calculations
join each other smoothly at ∼10−3 eV/u. The radiative
charge-transfer cross sections are calculated by using the
fully quantum method in the energy range of 10−18–3 × 10−3

eV/u and the radiative-association results are obtained
by subtracting the radiative charge-transfer part from the
radiative-decay cross sections. It has been found that the
nonradiative charge-transfer process dominates at energies
above 0.2 eV/u, and the radiative process becomes dominant
for energies below 0.1 eV/u. At the very low collision energies
of 10−18–10−3 eV/u, the radiative-association process is
more important than the radiative charge-transfer process.
The radiative cross sections are very large, behaving as E−1/2

and they vary approximately as the Langevin cross-section
formula for a polarization potential for incident energy less
than 10−2 eV/u.
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