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Modified effective-range theory (MERT) was developed in the 1960s to describe electron and positron scattering
from atoms. The theory was frequently used to extrapolate measured total cross sections down to the zero-energy
region, which is inaccessible experimentally. However, the applicability of the model was usually limited to the
very low energy range where experimental data to be extrapolated are rare. We have proposed [Idziaszek and
Karwasz, Phys. Rev. A 73, 064701 (2006)] a different way of employing MERT by exploiting the properties
of an analytical solution of the Schrödinger scattering equation with the long-range polarization potential. This
alternative approach allows the validity of MERT to be extended to higher energies. At present we are applying
this procedure for electron and positron scattering on He, H2, Ar, and CH4. The scattering amplitude and the
effective-range parameters for s and p partial waves are obtained through a fitting inversion procedure applied to
integral cross sections spanning most or all of the elastic region. The derived parameters are then used to obtain
differential and momentum transfer cross sections; the agreement with experiments is very good.
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I. INTRODUCTION

Renewed interest in electron scattering from atoms and
molecules in the gas phase has been triggered by several
factors. The imminent construction of industrial thermonuclear
reactors requires modeling of low-temperature edge plasmas
[1,2]. Cross sections for atomic targets such as H, He, Be, Li,
and C and molecules such as H2, BeH2, and CH4 should be
determined. Secondly, a new roadmap in the semiconductor
industries, requiring more precise plasma etching, aims to
substitute CF4 with more complex molecules, for which
cross sections are still unknown. Thirdly, the interaction with
electrons is also important in atmospheric environments—
the policies for the reduction (and removal) of greenhouse
pollutants require costly economic actions. Knowledge of
cross sections in the low (and very low) energy region, hardly
accessible experimentally, is a key factor in all these practical
implementations.

Due to the complexity in describing short-range interaction
potential, low-energy electron collisions are still the subject of
intensive theoretical effort (see [3] and references therein). On
the other hand, positrons, being twin particles to electrons
but with positive charge, constitute an alternative probe
of the same scattering problem [4,5]. Since no exchange
interaction is present in positron scattering, they are easier
to treat theoretically. The long-range polarization potential
dominating at the limit of zero energy is attractive for both (i.e.,
electron and positron) projectiles while the short-range static
potential is attractive for electrons and repulsive for positrons.
As a result the positron cross sections at low (i.e., a few eV)
collision energies are generally lower than those of electrons.
Whereas in the very low region (below 1 eV) the opposite can
happen—due to specific relations in the dominating s-wave
phase shift, cross sections for positrons can be higher than
for electrons. This is, in fact, the case of targets such as
Ar, N2, and H2 [6]. Nevertheless, in analogy to electrons,
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an accurate theoretical analysis of positron scattering at
very low energies is not an easy task since the interaction
depends greatly on relatively small variations in the combined
polarization-correlation potential [7].

Modified effective-range theory (MERT) for elastic elec-
tron and positron scattering from atoms and molecules was
proposed a half century ago [8,9]. Due to its simplicity MERT
has gained considerable popularity and has been frequently
used to extrapolate measured cross sections to the very
low energy range and very small scattering angles that are
inaccessible experimentally [10–13]. In the standard approach
the extrapolation relies on the effective-range expansion of
scattering phase shifts of partial waves in powers of the
projectile momentum k. An intrinsic drawback of such a
procedure is the quick divergence of the k series with rising
energy. Therefore, the applicability of the original MERT is
limited to a very low energy range where the available cross-
section data (to be extrapolated) are sparse. This limitation has
been studied extensively by Buckman and Mitroy [14], who
concluded that the theory is valid only below 1 eV in noble
gases.

In [15] we proposed an alternative approach to the MERT
series: Phase shifts were obtained solving analytically the
Schrödinger equation with long-range polarization potential
using Mathieu functions, and the effective-range expansion
was introduced only for the short-range part of the interaction
potential. In [15] we analyzed particularly the experimental
positron-scattering total cross sections for Ar and N2 up to
1 eV. Successively, in [16] we tested the new MERT approach
for electron scattering from N2 up to an energy of about
10 eV, showing that even in so-called shape resonances a
dominant role can be attributed to the long-range polarization
potential.

In the present paper we perform a more extensive MERT
analysis of electron and positron scattering from light atomic
and molecular targets: He, H2, Ar, and CH4, using different
sets of recent experimental total cross sections (TCS). The
two latter targets show a Ramsauer-Townsend (R-T) minimum
for electrons [17,18]. For positrons, all four targets show a
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rise of TCS in the zero-energy limit. The search for the R-T
minimum in positron scattering was formulated in previous
experiments [19]. Here we perform a systematic analysis of
this problem.

To validate our approach the parameters of the scattering
potential (scattering lengths and effective ranges for single
partial waves: s, p, and d for heavier targets) derived from
different experimental sets of integral elastic cross sections
(obtained from TCS by subtracting inelastic channels) are
further used to calculate elastic differential cross sections
(DCS) and momentum transfer cross sections (MTCS) using
a wide experimental database.

The paper is organized as follows: In Sec. II we describe
briefly the principles of modified effective-range theory. In
particular, we compare the standard versions of MERT with
the latest approach [15]. Section III describes the choice of
experimental data used for fitting procedures and comparisons.
Section IV is devoted to MERT analysis of electron and
positron scattering from selected targets. The main conclu-
sions are summarized in Sec. V, including advantages and
limitations of current MERT analysis. Finally, two appendixes
give more details about MERT.

II. MODIFIED EFFECTIVE-RANGE THEORY

Effective-range theory (ERT) was developed primarily
to calculate phase shifts of the wave function in nuclear
scattering [20,21]. Later it was adapted to electron and positron
scattering from atoms that are dominated by long-range
isotropic polarization force at very low energies. Since the
original energy expansion of scattering phase shifts given
by ERT breaks down for long-range potential, O’Malley
et al. [8,9] introduced an extended approach called modified
effective-range theory (MERT). Since that time MERT has
been widely used by experimentalists to extrapolate the
zero-energy cross sections and/or to compare beam- and
swarm-derived electron-scattering data in noble gases [22–30]
and highly symmetric molecules such as CH4 [10,31] and
CF4 [12].

In typical MERT analysis, the partial-wave scattering phase
shifts are expressed as a series of the projectile (electron or
positron) momentum k containing few adjustable parameters.
In the basic version, so-called MERT4, there are four fitting
parameters and the phase shifts related to particular partial
waves are given as [32]

tanη0(k) = −Ak

[
1 + 4

3
αk2 ln(k)

]
− π

3
αk2 + Dk3 + Fk4,

(1)

tanη1(k) = π

15
αk2 − A1k

3, (2)

tanηl(k) ≈ παk2

8(l − 1/2)(l + 1/2)(l + 3/2)
, for l > 1, (3)

where l is the angular momentum quantum number, α is the
dipole polarizability of the target, A is the s-wave scattering
length, and D, F , and A1 are additional fitting parameters.
Here Eq. (3) is exact at the low-energy limit [8], and this result
can be also reproduced using a first-order Born approximation.

The total cross sections (TCS) and momentum transfer cross
sections (MTCS) are given by the partial-wave expansions as

σt = 4π

k2

∞∑
l=0

(2l + 1) sin2 ηl(k), (4)

σm = 4π

k2

∞∑
l=0

(l + 1) sin2[ηl(k) − ηl+1(k)], (5)

while the differential cross sections (DCS) can be calculated
from

dσ

dω
= 1

k2

∣∣∣∣∣
∞∑
l=0

(2l + 1) exp(iηl) sin(ηl)Pl(cos θ )

∣∣∣∣∣
2

, (6)

where Pl(x) are the Legendre polynomials and θ is the
scattering angle.

Ali and Fraser [33] introduced higher-order terms in
expansions of p-wave (l = 1) and d-wave (l = 2) phase shifts
resulting from short-range components of polarizability. Using
these results Buckman and Mitroy [14] introduced MERT5 and
MERT6 with five and six fitting parameters, respectively. This
allows the applicability of MERT to be extended to higher
energies, although still below 1 eV.

In order to extend the valid energy region to represent
the s-wave (l = 0) phase shift, O’Malley and Crompton [24]
proposed to add another parameter in Eq. (1)—see Eq. (A8)
in Appendix A. Recently, Kurokawa [29] and Kitajima [30]
showed that only when using the s-wave phase shift in this
modified form was it possible to fit MERT reasonably well up
to 1 eV with all their recent experimental cross-section data
for noble gases. Extended MERT versions with five, six, and
seven fitting parameters are described in detail in Appendix A.

The present authors develop an alternative way of employ-
ing MERT [15]. The Schrödinger equation with long-range
polarization potential (r−4) was solved in an analytical way
using Mathieu functions, while the effective-range expansion
was introduced exclusively for the short-range potential.
Accordingly, using the Mathieu functions one can find the
following analytical expression for the scattering phase shift
of each partial wave [8]:

tanηl = m2 − tan2δl + B̃l tan δl(m2 − 1)

tan δl(1 − m2) + B̃l(1 − m2 tan2 δl)
, (7)

where δl = π (ν − l − 1/2)/2, and m and ν are energy-
dependent parameters which have to be determined numeri-
cally from analytical properties of Mathieu functions. We have
already described this procedure in detail in Refs. [15,16].
Nevertheless for self-consistency of this paper we recall it
briefly in Appendix B.

The contribution of short-range interaction is hidden in
the parameter B̃l(k) related to the phase shift induced by
the short-range potential [15,16]. This parameter is expanded
around zero energy for each partial wave separately: B̃l(k) ≈
Bl (0) + RlR

∗k2/2 + · · ·, where Rl can be interpreted as the
effective range for a given partial wave. Here R∗ =

√
αe2μ/h̄2

denotes a typical length scale related to the r−4 interaction,
where e is the elementary charge, μ is the reduced mass of the
projectile/target system, and h̄ is the Planck constant. In the
particular case of l = 0, B0 (0) can be expressed in terms of
s-wave scattering length as B0 = −R∗/A.
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The number of partial waves necessary to be treated by
Eq. (7) can be estimated by comparing the energy of the
projectile with the height of the centrifugal barrier Eb (l) =
1/4E∗l2 (l + 1)2 for the r−4 interaction [34], where E∗ =
h̄2/2μR∗2 is the effective energy. The particle can penetrate the
inner (short-range) part of the potential only when E > Eb (l).
In most cases, the elastic TCS can be described considering
only the contribution of s- and p-wave phase shifts and
sometimes, for heavier targets, also the d-wave phase shift.
The small contributions related to the higher partial waves are
described using an approximation by Eq. (3).

III. CHOICE OF EXPERIMENTAL DATA

As an experimental database we use total cross sections
(TCS) that can be measured in an absolute way. Differential
cross sections (DCS) bring much more information but they
need normalization procedures, while momentum transfer
cross sections (MTCS) require more fitting parameters.
TCS extending in recent electron and positron experiments
[29,35–37] well below 1 eV should therefore assure better
certainty on the MERT results. As far as electron scattering is
concerned, rather good agreement on TCS has been obtained
(see [17,18]). In this paper we will limit the analysis of
electron scattering to three beam experiments extending to
the lowest energies: time-of-flight data from Bielefeld [10,11]
and Canberra [26] as well as the photoelectron-based data by
the Tokyo group [29] extending down to 60 meV.

Positron experiments are much more tedious and they use
a variety of methods to obtain a sufficient signal-to-noise
ratio. The early experiments from Wayne State University
(Detroit) [19] were based on a long (109 cm), curved scattering
cell and a weak guiding magnetic field. The energy resolution
of that machine was good (probably 0.1–0.2 eV) and the
angular resolution was moderate (better than 10◦–20◦). As
shown by the group from Canberra [38] for Ar, the Detroit data
can be qualitatively brought into agreement at the low-energy
limit with their recent data [36] if a correction by some
+ 20% for the angular resolution is made. The recently
developed Canberra positron apparatus [36] uses a strong
magnetic field (500 G) so the cross sections have to be
deconvoluted, extrapolating the measured signal to the zero
field. Another early setup, from Tokyo Yamaguchi University
[39], used a weak magnetic field (3.6–27 G), 7-cm-long
scattering cell but wide (6–9 mm diameter) entrance and
exit apertures. As a consequence, the measured cross sections
were underestimated at their low-energy limit. However, as we
showed in detailed analysis for benzene and N2, the Tokyo data
can be brought into good agreement with recent experiments
[40] if a correction for the angular resolution is performed.
The original apparatus developed at Trento University [41]
used a scattering cell length (10 cm) similar to Suoeka’s
but much narrower (1.5 mm diameter) apertures; the guiding
field was about 9 G. As we showed for N2 and benzene, the
possible angular resolution corrections are below 1% in the
whole (0.4–20 eV) energy range. More recently a modified
configuration of the Trento apparatus [42] was introduced.
It uses a very short (2.4 cm) scattering cell and probably a
low counting rate (in the order of 1 e+/s). As pointed out by
Mitroy and co-workers [43], the results of Zecca et al. [42] for

H2 from this recent experimental configuration disagree with
other measurements and theories.

IV. MERT ANALYSIS OF ELECTRON
AND POSITRON CROSS SECTION

A. Helium

Helium is considered a benchmark in electron scattering as
the agreement between experiments and theories is generally
very good. However, there are still only a few experimental
TCS data sets available below 1 eV; see [17]. The low
dipole polarizability α = 1.407a3

0 [44] provides relatively high
effective energy E∗ = 9.671 eV. Therefore, the d wave (l = 2)
needs an energy of at least Eb(2) ≈ 87 eV to overcome the
repulsion of the centrifugal barrier. Thus, two partial waves, s

and p, should be sufficient to explain TCS in the whole energy
range for elastic scattering of electrons, E < 20 eV (below the
first electronic excitation), and positrons, E < 15 eV (below
the positronium formation threshold).

The experimental results of Buckman and Lohmann [26]
were chosen as the electron input TCS data to be extrapolated.
The fitting results using an unweighted least-squares method
are shown in Fig. 1(a). The corresponding parameters of
the effective-range expansion are given in Table I. It can
be seen clearly that the present MERT is able to reproduce
TCS in the whole elastic scattering region. The overwhelming
contribution comes from the s wave, and the derived scattering
length A = −R∗/B0 ≈ 1.186a0 stays in perfect agreement
with the other experimental and theoretical results; see [17]
and references therein. Note that the scattering length A is
numerically equal here to the value of R∗, the characteristic
distance of the r−4 interaction. Since the contribution of the
effective-range correction (R1) in the p wave is rather small,
one cannot fully rely on results for this parameter derived from
the fitting procedure. Nevertheless, using the parameters given
in Table I, one can calculate the momentum transfer cross
section (MTCS), shown in the inset of Fig. 1(a), staying in
pretty good agreement with experimental data. The maximum
discrepancy with the results of Ref. [45] is less than 4%.

Furthermore, the calculated scattering s-wave and p-wave
phase shifts (η0 and η1) have been used to determine differen-
tial cross sections (DCS). The comparison of these calculations
with experimental data [46–49] is shown in Figs. 1(b)–1(d).
Two solely partial waves reproduce the experimental DCS very
well at 5 eV. At 20 eV, in order to get a reasonable agreement,
we take into account additionally the contribution of 100 higher
partial waves (l > 1) using the approximation by Eq. (3).
However, at 12 eV the addition of higher partial wave phase
shifts does not improve the agreement with the experiment.
Probably, in an intermediate energy range of elastic scattering
(10–12 eV), the explicit inclusion of the d-wave exact phase
shift would be needed. Maybe some shape resonance can play
a role at this energy domain. However, it proves to be difficult
to find the d-wave phase shift when using TCS data solely:
The contribution from d wave to TCS is negligible and its
numerically obtained value is unstable.

Positron-scattering cross sections from helium are much
more fuzzy. All four sets of data [35,50–52] available below
1 eV indicate a rise in the total cross sections towards zero
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FIG. 1. (Color online) MERT analysis for electron scattering from helium: (a) total cross section versus energy. Experimental data (dots)
are from Ref. [26]. The inset shows MERT calculations of momentum transfer cross section compared with experimental data from Ref. [45].
(b)–(d) Differential cross section versus scattering angle at 5, 12, and 20 eV, respectively. Experimental data are from Refs. [46] (open
circles), [47] (filled dots), [48] triangles, and [49] (stars).

energy but they differ in absolute values by up to a factor of
4. In Fig. 2(a) we compare MERT fits using two partial waves
to the most recent data of Sullivan et al. [52] and Karwasz
et al. [35] (the resonant structure present in the latter data
has been omitted for the purpose of fit). The fitting has been
performed up to a projectile energy of 15 eV. The fitting
parameters are given in Table I. In particular, the scattering
lengths are −0.45a0 and −0.59a0, for the data of Sullivan et al.
and Karwasz et al., respectively. These values are in reasonably
good agreement with results predicted by other approaches,
varying from −0.47a0 to −0.57a0 (for example, see [53,54]).
The other three parameters, B1, R0, and R1, are significantly

TABLE I. Parameters of the effective-range expansion for elec-
tron and positron scattering from helium: A = −R∗/B0 (scattering
length), B1 (zero-energy contribution for p-wave), R0 (s-wave
effective range), and R1 (p-wave effective range). The charac-
teristic distance is R∗ = 1.186a0 and the characteristic energy
is E∗ = 9.671 eV.

A R0 R1

(units of a0) B1 (units of a0) (units of a0)

e−-He Ref. [26] 1.186 −20 0.01 −100

e+-He Ref. [35] −0.59 −1.29 −0.28 1.16
e+-He Ref. [52] −0.45 −0.71 −1.45 0.29

different for the two experimental data sets although they keep
the same sign.

Even if the two considered TCS sets are different, both of
them indicate the existence of the R-T minimum: The s-wave
phase shift (η0) goes through zero at about 2–3 eV, as shown
in Fig. 2(b). Moreover, η0 stays in reasonably good agreement
with the results of the stochastic variational method of Zhang
and Mitroy [54] and the ab initio calculations of Van Reeth
and Humberston [55]. Furthermore, we show that the d-wave
phase shift of the latter work can be well reproduced using the
approximation by Eq. (3). It is evident from Fig. 2(b) that the
important difference between the MERT and ab initio results
appears only for the p-wave phase shifts at higher energies,
E > 2 eV.

B. Argon

Argon is a target with a higher polarizability (α = 11.23a3
0

[44]) than helium and thus is characterized by much lower
effective energy E∗ = 1.212 eV. Consequently, the d wave
needs only Eb(2) ≈ 10.9 eV to overcome the repulsion
of the centrifugal barrier. This value is comparable with
the ionization potential of argon (15.8 eV). Therefore, the
contribution of the d wave can play an important role at
higher energies of the elastic scattering region. Indeed, we
have checked that at least three partial waves are needed in
order to reproduce experimental TCS for electrons up to 10 eV.
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FIG. 2. (Color online) MERT analysis for positron scattering from helium: (a) total cross section versus energy. Experimental data are from
Ref. [35] (triangles) and Ref. [52] (squares). The s- and p-wave contributions are shown only for data of Ref. [52]. (b) The scattering phase
shifts versus energy. Solid lines and dashed lines are MERT calculations for s-wave and p-wave phase shifts based on TCS data of Refs. [35]
and [52], respectively. Additionally, the dotted line represents the d-wave phase shift estimate obtained from Eq. (3). Present calculations are
compared with theoretical results of Zhang and Mitroy [54] and Van Reeth and Humberston [55].

In Fig. 3(a) we show that the MERT fits to the data
measured by Ferch et al. [11], Buckman and Lohmann [26],
and Kurokawa et al. [29]. Some discrepancies are visible only
in the region of the R-T minimum if compared to data by
Buckman and Lohmann and in the region 0.1–0.3 eV using
data by Kurokawa et al. The corresponding parameters of the
effective-range expansion are given in Table II. All obtained
values are quite close for these three sets except for the s wave
of data by Kurokawa et al. It stays somehow in agreement
with the work of Kurokawa et al. [29], who analyzed their
data using the standard version of MERT. They could obtain
good agreement only when using a modified (empirically
found) equation for the s-wave phase shift [see Eq. (A8)
in Appendix A] proposed by O’Malley and Crompton [24].
The derived scattering lengths A, namely −1.5a0 for Ferch
et al. and Buckman and Lohmann, and lower, −1.4a0 for
Kurokawa et al., are in good agreement with results available
in the literature. The latter varies in the range from −1.46a0 to
−1.63a0, according to different determinations—theoretical,
beam, and swarm experiments [17].

In the further analysis MTCS and DCS were calculated.
For the purposes of this study the scattering phase shifts
obtained from the TCS of Ferch et al. were used, but also
the data of Buckman and Lohmann assure similarly good
results. In addition to MERT-derived η0, η1, and η2, we used

100 higher partial waves, the contributions of which were
estimated using Eq. (3). Figure 3(b) presents calculated MTCS
compared with the swarm-derived data of Milloy et al. [56]
and Haddad and O’Malley [57]. In general the agreement has
to be judged as good except for the region of the R-T minimum,
where the present theoretical depth is shallower by about 20%.
Furthermore, in Fig. 3(c) we compare MERT calculations of
DCS with the low-energy data of Weyhreter et al. [58]. To
the best of our knowledge, these data are as yet the only
available experimental DCS measured in the region of R-T
minimum. In addition, an example of MERT calculations at
higher energy, E = 5 eV, compared with experiments [59–62]
is shown in Fig. 3(d). From the obtained results it is clear
that the current MERT reproduces experimental data sets very
well despite significant variations of DCS over the considered
energy range.

For positron scattering the three recent sets of data, from
Karwasz et al. [6], Jones et al. [36], and Zecca et al. [63],
have been used for MERT analysis. In Fig. 4(a) we show the fits
performed up to 5 eV, below the positronium formation thresh-
old. In this range of energy only two partial waves are sufficient
to find reasonably good agreement with all experimental data
sets. The obtained parameters of the effective-range expansion
are given in Table II. In particular, the s-wave scattering lengths
are −5.52a0, −4.11a0, and −4.66a0, respectively, and these

TABLE II. Parameters of the effective-range expansion for electron and positron scattering from argon: A = −R∗/B0 (the scattering
length), B1 (zero-energy contribution for p-wave), B2 (zero-energy contribution for d wave), R0 (s-wave effective range), R1 (p-wave effective
range), and R2 (d-wave effective range). The characteristic distance is R∗ = 2.351a0 and the characteristic energy is E∗ = 1.212 eV.

A (units of a0) B1 B2 R0 (units of a0) R1 (units of a0) R2 (units of a0)

e−-Ar Ref. [26] −1.51 −0.44 0.21 −0.38 0.06 0.30
e−-Ar Ref. [11] −1.50 −0.49 0.27 −0.40 0.10 0.36
e−-Ar Ref. [29] −1.40 −0.46 0.26 −0.66 0.10 0.27

e+-Ar Ref. [6] −5.52 −4.34 – 0.94 4.76 –
e+-Ar Ref. [36] −4.11 −3.67 – −1.47 1.97 –
e+-Ar Ref. [63] −4.66 −0.65 – −0.97 −8.00 –
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FIG. 3. (Color online) MERT analysis for electron scattering from argon: (a) total cross section versus energy. Experimental data are
from [11] (open circles), [26] (filled dots), and [29] (squares). The s- and p-wave contributions are shown only for data of Ref. [26].
(b) Momentum transfer cross section versus energy; swarm-derived data are from [56] (filled dots) and [57] (dotted line). (c) Differential cross
section versus scattering angle in the region of R-T minimum compared with data of Weyhreter et al. [58]. (d) Differential cross section versus
scattering angle at 5 eV; experimental data are from [59] (diamond), [60] (open cricles), [61] (squares), and [62] (filled dots).

values stay in agreement with other published results spanning
the range −2.8a0 to −5.3a0 (see [63] and references therein).
The existence of the R-T minimum is indicated only by the
fit to the data of Karwasz et al., and the derived scattering
phase shifts are in good accord with the theoretical results
of McEachran et al. [64], as shown in Fig. 4(b). The fits to
the other two data sets provide only the local minimum of

the s-wave phase shifts (not shown here) in the same energy
region in such a way that there is no sign change of η0.

C. Molecular hydrogen

Molecular hydrogen polarizability is α = 5.314a3
0 [44],

giving the characteristic range R∗ = 2.305 eV similar to argon.
However, the effective energy E∗ = 2.561 eV is lower and
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FIG. 4. (Color online) MERT analysis for positron scattering from argon: (a) total cross section versus energy. Experimental data are from
Ref. [6] (open circles), [36] (squares), and [63] (filled dots). The s- and p-wave contributions are shown only for data of Ref. [6]. (b) The
scattering phase shifts versus energy; solid lines and dashed lines are the MERT calculations for s-wave and p-wave phase shifts based on TCS
data of Ref. [6]. Additionally, the dotted line represents the d-wave phase shift estimate by Eq. (3). Present MERT calculations are compared
with theoretical results of McEachran et al. [64].
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FIG. 5. (Color online) MERT analysis for electron scattering from molecular hydrogen: (a) total cross section versus energy. Dots represent
the recommended data from Ref. [66]. (b)–(d) Differential cross section versus scattering angle at 1, 5, and 10 eV, respectively. Experimental
data are from [67] (filled dots), [68] (squares), [69] (stars), [70] (open circles), [71] (triangles), and [72] (asterisks).

consequently the corresponding Eb(2) ≈ 23 eV. As a result
the d-wave contribution is expected to be small compared to s

and p waves in the energy region E<10 eV where the elastic
scattering channel is dominant for both electrons and positrons.
Moreover, we assume that the contribution of nonspherical
(quadrupole) potential is small in the considered energy range
[65]. In Fig. 5(a) we compare the present MERT fit with
recommended TCS [66] for electrons. Indeed, the agreement
using only two partial waves is very good. The s-wave
contribution dominates up to about 1 eV, while at the cross

section’s maximum (3–4 eV) both the s wave and the p wave
give similar contributions. The corresponding parameters of
the effective-range expansion are given in Table III. Again the
obtained values provide DCS [including the contribution of
100 higher partial waves calculated with Eq. (3)] remaining
in very good accord with available experimental data sets
[67–72]; see Figs. 5(b)–5(d).

In Fig. 6 we compare the data of Karwasz et al. [6] and
of Hoffmann et al. [73], for positron scattering. The derived
MERT parameters are given in Table III. Both sets indicate
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FIG. 6. (Color online) MERT analysis for positron scattering on molecular hydrogen: (a) total cross section versus energy. Experimental
data are from Ref. [6] (filled dots), [37] (triangles), and [73] (stars). The s- and p-wave contributions are shown only for data of Ref. [6].
(b) The scattering phase shifts versus the energy. Straight lines are calculations of s-wave phase shifts and dashed lines of p-wave phase shifts
using TCS of Refs. [6] and [73]. Additionally, dotted line represents d-wave phase shift estimate by Eq. (3).
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FIG. 7. (Color online) MERT analysis for electron scattering on methane: (a) total cross section versus energy. Experimental data from [10]
(filled dots) and [76] (open circles). These data have been subtracted by interpolated vibrational cross sections of Schmidt [31] (dashed line).
(b) Momentum transfer cross section versus energy; swarm-derived data are from [31] (filled dots), [77] (squares), and [78] (triangles). (c)–(f).
Differential cross section versus the scattering angle at 0.2, 0.7, 1, and 1.5 eV, respectively. Experimental data are from [77] (filled dots), [79]
(open circles), and [80] (squares).

TABLE III. Parameters of the effective-range expansion for
electron and positron scattering from molecular hydrogen: A =
−R∗/B0 (the scattering length), B1 (zero-energy contribution for p

wave), R0 (s-wave effective range), and R1 (p-wave effective range).
The characteristic distance is R∗ = 2.305a0 and the characteristic
energy is E∗ = 2.561 eV.

A R0 R1

(units of a0) B1 (units of a0) (units of a0)

e−-H2 Ref. [66] 1.30 0.38 −0.92 1.75

e+-H2 Ref. [6] −3.13 −1.99 −0.12 −0.90
e+-H2 Ref. [73] −2.51 −1.94 0.29 −2.51

the existence of an R-T minimum. The scattering length is
−3.13a0 for Karwasz et al. and smaller at −2.51a0 for the
data by Hoffmann et al.; this is understandable as the latter
data are declared to be underestimated in the low-energy limit
due to the weak angular resolution of the Detroit apparatus.
Nevertheless, both results are close to the value of −2.7a0

obtained from the ab initio calculations of Zhang et al. [43]
For comparison purposes we show also in Fig. 6 the

more recent data of Zecca et al. [37]. However, no reasonable
four-parameter MERT fit was possible for this data set. It has
been already noted by Zhang et al. [43] that the data of Ref. [37]
disagree strongly with the theoretical values calculated by the
confined variational method [43] and by the Kohn variational
method [74], underestimating significantly the scattering
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FIG. 8. (Color online) MERT analysis for positron scattering from methane: (a) total cross section versus energy. Experimental data are
from Ref. [83] (squares), [84] (filled dots), and [85] (triangles). The s- and p-wave contributions are shown only for data of Ref. [84]. (b) The
scattering phase shifts versus the energy. Straight lines are calculations of s-wave phase shifts and dot-dash lines of p-wave phase shifts using
TCS of Refs. [83] and [84]. Additionally, the dotted line represents the d-wave phase shift estimate by Eq. (3).

length. In our previous paper [75] we showed that the data by
Zecca et al. for HCOOH and H2O measured with the original
Trento setup (i.e., with the 10-cm-long scattering cell) can
be brought into good agreement with ab initio theories if the
experimental data are shifted by + 0.2 eV. It does not seem to
be the case for their H2 data—such a shift brings the scattering
length A obtained from the data of Zecca et al. [37] to −2.54a0,
closer to the value of Zhang et al. of −2.7a0, but the “scattering
length” for the p wave 1/B1 becomes unphysically large.

D. Methane

Knowledge of scattering cross sections for methane (CH4)
is particularly important for tokamak plasma modeling. It has
already been shown [10,31] that due to the high symmetry
of the molecule the parametrization of scattering phase shifts
using MERT is possible for this material. The polarizability of
CH4 is very high, α = 19.0a3

0 [31], and thus the characteristic
distance for the polarization interaction is long (4.36a0) and
the effective energy is quite low, E∗ = 0.72 eV. TCS for
electron scattering shows a Ramsauer-Townsend minimum at
energies similar to those in Ar. However, in order to obtain
integral elastic cross sections the vibrational excitation has
to be subtracted because it constitutes about 40% of TCS at
0.5 eV. To do this we used vibrational cross sections derived
from the drift coefficient by Schmidt [31]. In this work we limit
our MERT analysis to energies E < 2 eV, where the chosen
vibrational excitation cross-section data are available.

We have found that only the two first partial waves are
sufficient to reconstruct the experimental TCS of Ferch et al.
[10] and Lohmann and Buckman [76] in the considered energy
range; see Fig. 7(a). The corresponding fitting parameters,
given in Table IV, are very similar for both data sets.
Consequently, both of them give similar minima in momentum
transfer cross sections of about 0.3 × 10−20 m2 at 0.3 eV; see
Fig. 7(b). The current MTCS calculations agree only mod-
erately with the swarm-derived results [31,77,78]; however,
swarm experiments are rather old and gas purity is extremely
important while measuring drift coefficients in molecular
gases. More comparisons will be made in the upcoming work.

We checked also that, with the help of parameters given
in Table IV, it is possible to repeat the DCS experimental

results quite well [77,79,80] in the whole energy range below
2 eV. Examples of DCS calculations in methane are shown
in Figs. 7(c)–7(f). Similarly as for previous targets, MTCS
and DCS were obtained using MERT-derived phase shifts, η0

and η1, and the contributions of higher partial waves were
estimated using Eq. (3). Our DCS results are also in very good
agreement with the phase-shift analysis of Sohn et al. [77]
as well as the ab initio calculations of Jain et al. [81] and
Gianturco et al. [82], although the latter work provides lower
cross sections at small angles.

For positron scattering (see Fig. 8), two partial waves
are sufficient to reproduce the data of the Tokyo [83] and
Detroit [84] groups below the positronium formation threshold
(E < 6 eV). Both data give very similar p-wave phase shifts
[in Fig. 8(b) only one dot-dash curve is shown for the sake
of clarity]; however, the fit to the Tokyo results provides
no Ramsauer-Townsend minimum (no zero at s-wave phase
shift). We note that these data were obtained with a relatively
high-strength guiding magnetic field and they differ from the
Detroit data at the lowest energy measured. Similarly as for
molecular hydrogen, we did not manage to approximate the
most recent TCS of Zecca et al. [85] with any reasonable
MERT fit. The positron TCS of Zecca et al. were measured
on the same version of apparatus as their H2 data, i.e., using a
very short scattering cell.

TABLE IV. Parameters of the effective-range expansion for
electron and positron scattering from methane: A = −R∗/B0 (the
scattering length), B1 (zero-energy contribution for p-wave), R0

(s-wave effective range), and R1 (p-wave effective range). The
characteristic distance is R∗ = 4.36a0 and the characteristic energy
E∗ = 0.72 eV.

A R0 R1

(units of a0) B1 (units of a0) (units of a0)

e−-CH4 Ref. [10] −2.76 −0.69 −0.34 0.36
e−-CH4 Ref. [76] −2.68 −0.84 −0.53 0.50

e+-CH4 Ref. [83] −5.65 −2.82 −1.22 −3.05
e+-CH4 Ref. [84] −8.5 −2.44 −0.25 −4.49
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V. CONCLUSIONS

Modified effective-range theory in the analytical form [15]
proves to be a powerful tool in analyzing electron and positron
cross sections in the low (even up to 10 eV) energy region.
Using only a few partial waves within the potential barrier
of the target we are able to approximate complex short-range
effects and reproduce quite well the integral cross sections.
The parameters of the effective-range expansion derived from
total elastic cross sections can be used to calculate momentum
transfer and differential cross sections, being in very good
agreement with available experimental results and some
ab initio calculations. In this way only four (six) parameters,
i.e., the scattering lengths and the effective ranges for the s and
p partial waves (sometimes also the d wave), are sufficient to
characterize low-energy scattering from atomic and nonpolar
molecules (where the small contribution due to the nonspheri-
cal nature of the target can be neglected). However, one has to
be careful when using MERT since the derived effective-range
parameters are very sensitive to the choice of experimental
data. Clearly, the k2 terms in the expansion, representing
the effective-range corrections, are relatively small in the
low-energy regime in comparison to the leading contribution
due to the s-wave scattering length and the p-wave zero-energy
contribution. Consequently, the effective-range parameters can
be strongly affected by measurement uncertainties in the
experimental data in the low-energy domain.

Surprisingly, in positron scattering all four targets, i.e.,
helium, argon, molecular hydrogen, and methane, show zeros
in the s-wave contributions, which should be classified as
the existence of Ramsauer-Townsend minima postulated at
the dawn of positron experiments by Kauppila and Stein
et al. [19] These minima are untypical when compared
with the Ramsauer-Townsend effect in electron scattering
as they occur at relatively high energies and both p and
d partial waves bring significant contributions to the cross
sections. Characteristically, in the R-T minimum (for both
electrons and positrons) the minimum of the s-wave shift
is accompanied by the local maximum of the p-wave shift.
Thus, the p wave is responsible for the depth of the R-T
effect. Nevertheless, these preliminary conclusions should be
confirmed by experiments with better energy resolution, much
below 10 meV. Experimental data points in lower energies
could correct the MERT parameters provided in this paper and
thus change energy variations of each partial wave.
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APPENDIX A: STANDARD MERT

Modified effective-range theory (MERT) was proposed by
O’Malley et al. [8,9] at the beginning of the 1960s. They
obtained the low-energy expansions of the scattering phase
shifts for electron and positron collisions with atomic and
highly symmetric nonpolar molecular targets. These expan-
sions were used to parametrize low-energy collision cross
sections using four fitting parameters included in expressions

given by Eqs. (1)–(3) [32] and known as the MERT4 version of
the original theory. Later higher-order terms in the expansions
for p-wave and d-wave phase shifts were introduced by Ali
and Fraser [33]. Using these results Buckman and Mitroy [14]
proposed a version of the modified effective-range theory with
five fitting parameters—MERT5:

tanη0(k) = −Ak

[
1 + 4

3
αk2 ln(k)

]
− π

3
αk2 + Dk3 + Fk4,

(A1)

tanη1(k) = a1αk2 − A1k
3 + (b1α

2 + c1αq)k4 + Hk5, (A2)

tanηl(k) = alαk2 + (blα
2 + clαq)k4 for l � 2, (A3)

where A is the scattering length and D, F , A1, and H

are additional parameters. Here αq is the difference of two
components, the static quadrupole polarizability and the
nonadiabatic dipole polarizability, which is calculated from
the nonadiabatic correction. Generally αq is very small because
these two components are opposite in sign and are of almost
the same magnitude. Coefficients al , bl , and cl are given by

al = π

(2l + 1) (2l − 1) (2l + 3)
, (A4)

bl = π [15 (2l + 1)4 − 140 (2l + 1)2 + 128]

[(2l + 1) (2l − 1) (2l + 3)]3 (2l + 5) (2l − 3)
, (A5)

cl = 3al

(2l + 5) (2l − 3)
. (A6)

Moreover, since MERT5 was not sufficient to describe the
d-wave phase shift for some noble gases in a satisfactory way,
Buckman and Mitroy proposed also an MERT6 version by
adding the sixth fitting parameter, A2, in the formula with
l = 2 [14]:

tanη2(k) = a2αk2 + (b2α
2 + c2αq)k4 + A2k

5. (A7)

Another extension of standard MERT was proposed by
O’Malley and Crompton [24] in order to enlarge the valid
energy region for representation of the s-wave phase shift. It
was done by adding the seventh parameter, G, in Eq. (A1):

tanη0(k) = −Ak
[
1 + 4

3αk2 ln(k)
] − π

3 αk2 + Dk3 + Fk4

1 + Gk3
,

(A8)

Equation (A8) becomes identical to Eq. (A1) at k → 0.

APPENDIX B: ANALYTICAL APPROACH TO MERT

The long-range polarization interaction of a charged parti-
cle (electron, positron) with an atom (or a neutral molecule) is
described by the following Schrödinger equation in the relative
coordinate [8]:[

∂2

∂r2
− l(l + 1)

r2
+ β

r4
+ k2

]
�l(r) = 0, (B1)

where β = αe2μ/h̄2. The effective potential is composed of
a centrifugal barrier l (l + 1) r−2 and a long-range (r → ∞)
dipole polarization term βr−4. To solve Eq. (B1) we substitute
r = √

R∗e−z/
√

k and �l (r) = ψ (r)
√

r/R∗, which yields
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Mathieu’s modified differential equation [8]:

∂2ψ

∂z2
− [a − 2q cosh 2z] ψ = 0, (B2)

where a = (l + 1/2)2 and q = kR∗. Two linearly independent
solutions, Mv (z) and Tv (z), can be expressed in the following
form:

Mv (z) =
∞∑

n=−∞
(−1)ncn(v)J2n+v(2

√
q cosh z), (B3)

Tv (z) =
∞∑

n=−∞
(−1)ncn(v)Y2n+v(2

√
q cosh z), (B4)

where v is the characteristic exponent, and Jv (z) and Yv (z)
are Bessel and Neumann functions, respectively.

The characteristic exponent appearing in Eq. (7) for the
scattering phase shift can be calculated numerically from

cos πv = 1 − �(1 − cos π
√

a), (B5)

where � is an infinite determinant (independent of v):

� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
...

...
...

...
...

· · · 1 γ−2 0 0 0 · · ·
· · · γ−1 1 γ−1 0 0 · · ·
· · · 0 γ0 1 γ0 0 · · ·
· · · 0 0 γ1 1 γ1 · · ·
· · · 0 0 0 γ2 1 · · ·

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (B6)

where γn = q/(4n2 − a). Typically, determinant � converges
very fast, and it is sufficient to take relatively small matrices
to calculate it [34].

To determine the remaining unknown parameter m in
Eq. (7) it is necessary to exploit the asymptotic properties
of Mv (z), Tv (z), and Wv (z), as described in detail in
Refs. [15,16,34]. Here Wv (z) is a different representation for
the solutions of Mathieu’s equation:

Wv (z) =
∞∑

n=−∞
cn (v) e(2n+v)z, (B7)

where cn are the same coefficients as used in Eqs. (B3) and
(B4). The parameter m is defined as

m = κ lim
z→0+

Wv (z) /W−v (z) , (B8)

where κ = Mv (z) W−v (z) /M−v (z) Wv (z) is a constant pref-
actor determined for some moderate values of the argument
z ≈ 1. To find unknown cn coefficients in the wave functions
we substitute the ansatz (B3) and (B4) into Eq. (B2) in order
to obtain the recurrence relation

[(2n + v)2 − a]cn + q (cn−1 + cn+1) = 0, (B9)

which can be solved in terms of continued fractions. To do this
we introduce h+

n = cn/cn−1 and h−
n = c−n/c−n+1 for n > 0,

which, when substituted into Eq. (B9), gives the continued
fractions

h+
n = − q

qh+
n+1 + dn

and h−
n = − q

qh−
n+1 + d−n

, (B10)

where dn = (2n + v)2 − a. In practice, to find numerical
values of the coefficients cn, we set h+

n′ = 0 and h−
n′ = 0 for

some sufficiently large n′ and calculate h+
n and h−

n up to n = 1.
Then cn = h+

n h+
n−1 · · · h+

1 c0 and c−n = h−
n h−

n−1 · · ·h−
1 c0,

where, for the purpose of the calculations, it is convenient
to assume c0 = 1.
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