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Iterative approach to line-shape calculations based on the transport-relaxation equation
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The iterative approach to the line-shape calculations from the transport-relaxation equation was modified to
allow its application for low pressures down to the Doppler limit. In our approach functions and operators are
decomposed in the Burnett basis. This technique was applied to experimental data presenting the consistency
between the line-shape model and measured spectrum corresponding to a signal-to-noise ratio higher than 9 × 104.
Implications for precise molecular spectroscopy as well as for Doppler-width thermometry and spectroscopic
Boltzmann constant determination are discussed.
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I. INTRODUCTION

Realistic line-shape calculations, which can go beyond
analytical models [1–8], require numerical solutions of the
transport-relaxation equation with ab initio in spirit collision
operator derived from interaction potential [9–17]. The most
common methods of numerical solving of the transport-
relaxation equation are based on the direct discretization of
the velocity space [18–21] or decomposition of operators and
functions in some basis, typically Burnett functions [9–14,
17,22–24]. These two approaches lead to a conversion of an
integral transport-relaxation equation into a system of linear al-
gebraic equations [10,13,17,19,23]. They appear effective for
line-shape calculations and experimental spectra interpretation
at middle and high pressures of perturber gases [11,20,24–31].
However, it was reported that the accuracy of these approaches
dramatically falls down for a low-pressure range, where the
Doppler broadening is dominant [14,21,22,28,31,32]. Very
recently, Tran et al. [21] used first-order approximation to
overcome this problem, see also [33], exploring analogy
between Dicke narrowing and line mixing [34].

More advanced line-shape models, which are able to
handle both Dicke narrowing and speed-dependent effects,
are strongly desired for high-quality spectra interpretation in
the low-pressure range. First of all, it was shown that data
analysis for experiments on optical determination of the Boltz-
mann constant [35–38] requires spectral line profile models
providing relative accuracy of order of 10−6 for pressures
down to a few Pa [39–41]. Very recently, Moretti et al. [42]
demonstrated spectroscopic determination of the Boltzmann
constant with relative accuracy at a level of 10−5, in which
Dicke narrowing and speed-dependent effects were taken
into account simultaneously. In addition, a cavity ring-down
spectroscopy, recently allowed to obtained extremely high
signal-to-noise ratio (SNR) of line-shape measurements for
very low pressures [43], that together with other experimental
achievements [44–50] opens a door for line-shape models tests
with unprecedented accuracy.

In this paper we present an iterative method of the
transport-relaxation equation solving applicable to a wide
range of pressures including very low pressures down to
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the Doppler limit. We modified an iterative approach given
by Nienhuis [33] and implemented for the Keilson-Storer
model by Shapiro et al. [18], which at the low-pressure
regime appears ineffective. It is shown that this technique is
able to provide spectral line profiles with relative accuracy
better than 10−6 for a number of physical models such as
Gauss profile, Voigt profile, Nelkin-Ghatak profile, Galatry
profile, Billiard-Balls profile, Blackmore profile, and also
speed-dependent versions of these profiles. Finally, we have
applied our iterative technique to a high SNR spectral line
profile of the R7 Q8 16O2 B-band rovibronic transition [43]
presenting the consistency between the line-shape model and
experimental data corresponding to SNR higher than 9 × 104.

II. ITERATIVE APPROACH
TO TRANSPORT-RELAXATION EQUATION

The problem of spectral line profile determination within
the impact approximation can be handled in terms of the
stationary solution of the transport-relaxation equation [13,17,
51]. It is sometimes convenient to factor out the Maxwellian
velocity distribution fm(�v) from this equation and transform it
to the following form [10,13–15,22]:

1 = −i(ω − ω0 − �k · �v)h(ω,�v) − Ŝf h(ω,�v), (1)

where �v is the absorber velocity, �k is the wave vector, ω is the
light frequency, and the ω0 is the frequency of the unperturbed
isolated transition. The Ŝf operator describes collisions and
relaxation processes. The physical meaning of the h(ω,�v) func-
tion is that quantity fm(�v)h(ω,�v) is proportional to the optical
coherence velocity distribution and it allows us to calculate
the absorption line profile I (ω) as a following integral:

I (ω) = 1

π
Re

∫
fm(�v)h(ω,�v)d3�v. (2)

The Maxwellian velocity distribution is fm(�v) =
(
√

πvm)−3e−(v/vm)2
, where the most probable speed

vm = √
2kBT /m1, and kB , T , and m1 are the Boltzmann

constant, the temperature, and the absorber mass, respectively.
In our approach the last term in Eq. (1) is treated as a small

correction and then we derive the iterative perturbation stencil
from Eq. (1). However, for a zero detuning (ω − ω0 − �k · �v)
affected by the Doppler shift the small correction becomes
dominant and the iterative scheme fails. To ensure the
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stability of the iterative perturbation process and to control its
convergence we introduced to Eq. (1) a constant nonphysical
parameter �num,

1 = [�num − i(ω − ω0 − �k · �v)]h(ω,�v)

−(�num + Ŝf )h(ω,�v). (3)

A simple algebraic manipulation gives then an iterative
perturbation scheme,

h(n+1)(ω,�v) = a(ω,�v) + Â(ω)B̂h(n)(ω,�v), (4)

where the a(ω,�v) function is given by the following formula:

a(ω,�v) = 1

�num − i(ω − ω0 − �k · �v)
. (5)

Note that �num is a nonphysical constant, which determines the
stability and the convergence of the method. This quantity will
affect the width of the line profile only in a few first iteration
steps and should not be confused with the collisional width of
the spectral line. The Â operator acts as a simple multiplication
by the a(ω,�v) function,

Â(ω)h(ω,�v) = a(ω,�v)h(ω,�v), (6)

and the B̂ operators are defined as

B̂ = Ŝf + �num. (7)

To proceed with the iterative process given by Eq. (4) we
assumed that h(0)(ω,�v) = 0. For further calculations it is
convenient to expand a(ω,�v) with respect to (x cos θ ),

a(ω,�v) = 1

ωD

∞∑
j=1

(−i)j−1

[�num/ωD − i(ω − ω0)/ωD]j
(x cos θ )j−1,

(8)

where ωD = kvm, x = |�v|/vm, and θ is an angle between �k
and �v. The convergence of this series for the required range of
x can be achieved by an appropriate choice of �num.

III. SOLUTION IN THE BURNETT BASIS

It is convenient to decompose operators Â, B̂ and functions
a(ω,�v) and h(n)(ω,�v) in the Burnett basis {φs(�v)} [14,22,52].
Using notation of [13,14] the scalar product can be defined
as 〈φs |φs ′ 〉 = ∫

d3�v fm(�v)φs(�v)φs ′ (�v) = δss ′ and the first basis
element is assumed to be a constant function φ0(�v) = 1. The
integral equation (4) can be converted to a simple algebraic
equation,

c(n+1)(ω) = a(ω) + A(ω) · B · c(n)(ω), (9)

where elements of columns c(n)(ω) and a(ω) are defined
as c(n)

s (ω) = 〈φs(�v)|h(n)(ω,�v)〉 and as(ω) = 〈φs(�v)|a(ω,�v)〉.
Elements of the matrices A(ω) and B are defined as As,s ′ (ω) =
〈φs(�v)|Â(ω)|φs ′(�v)〉 and Bs,s ′ = 〈φs(�v)|B̂|φs ′(�v)〉 [note that the
a(ω) vector is the first column of the symmetric matrix A(ω)].
The Burnett functions φs(�v) are identified by two numbers;
hence the subscript s should be regarded as a pair of indexes
{n,l} such that n = 0, . . . ,Nmax and l = 0, . . . ,Lmax, where
Nmax and Lmax determines the basis size, which is equal to
NmaxLmax. Equation (8) in the matrix form can be written as

A(ω) = 1

ωD

∞∑
k=0

(−i)k

[�num/ωD − i(ω − ω0)/ωD]k+1
Pk. (10)

For the purpose of numerical calculations in Eq. (10) the finite
sum with k = 0, . . . ,Kmax is used. Usually, for �num/ωD ≈ 30
this sum can be truncated at Kmax = 10. The Pk matrices are
given by the following expression:

[Pk]n1,l1;n2,l2 =
√

n1!n2!(2l1 + 1)(2l2 + 1)

�(n1 + l1 + 3/2)�(n2 + l2 + 3/2)
mod (k + l1 + l2 + 1,2)

1

2l1+l2−1

×
⎡
⎣[l1/2]∑

i=0

[l2/2]∑
j=0

(−1)i+j

k + l1 + l2 − 2i − 2j + 1

(
l1
i

)(
2l1 − 2i

l1

)(
l2
j

)(
2l2 − 2j

l2

)⎤
⎦ 1

2
�(n1 + l1 + 3/2)

×�(n2 + l2 + 3/2)
n1∑

ĩ=0

n2∑
j̃=0

(−1)ĩ+j̃ �
( 3+k+l1+l2+2ĩ+2j̃

2

)
ĩ!j̃ !(n1 − ĩ)!(n2 − j̃ )!�(ĩ + l1 + 3/2)�(j̃ + l2 + 3/2)

. (11)

In this equation �(· · · ) is a gamma function (not to be confused
with the pressure broadening). It should be noted that the
form of the Pk matrix is an intrinsic feature of the iterative
stencil Eq. (9) with the decomposition in the Burnett basis
and it does not depend on the parameters of the physical
system and therefore the set of Pk matrices has to be evaluated
only once for all possible spectral line-shape models handled
by Eq. (1).

According to Eq. (7) the B matrix is a sum of the identity
matrix multiplied by �num and the Sf matrix, which describes
collisions and relaxations. The problem of Sf matrix determi-
nation was analyzed in the literature. The velocity-changing

contribution to Sf was discussed for the Keilson-Storer model
[19,24] (also a hard-collisions model in the limit case), for
the billiard-balls model (also a soft-collisions model in the
limit case) [14,22,52], and for the inverse-power potential
model [17,52]. Analytical as well as numerical approaches to
the determination of dephasing contribution to Sf , leading to
the speed-dependent collisional broadening and shifting [53],
were presented in [14,17,19,24]. Finally, the line-shape profile
[Eq. (2)] can be written as

I (ω) = 1

π
Re〈φ0(�v)|h(ω,�v)〉 = 1

π
Re [c0(ω)] . (12)
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Evaluation of a single point from the profile I (ω)
requires one complex multiplication of (NmaxLmax) ×
(NmaxLmax) square matrices and n complex multiplications
of (NmaxLmax) × (NmaxLmax) square matrix by NmaxLmax

column, where n is a number of required iterative steps.
Computations needed to proceed our iterative calculations
can be easily parallelized, since they need only the matrix
multiplication procedure; see Eq. (9).

IV. NUMERICAL CONVERGENCE

The convergence and accuracy of the iterative approach
outlined in the previous section need to be examined. We
compared the spectral line profiles generated with the proposed
iterative method (denoted by Iiter) and an exact reference
profile (denoted by Iexact). Figure 1(a) shows a whole profile
generated with the iterative method, while Figs. 1(b)–1(e)
show the differences between the iterative profiles and an
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FIG. 1. (Color online) (a) Spectral line profiles generated with
iterative method. (b)–(e) Differences between profiles generated with
iterative method and more accurate reference profiles. (f) Differences
between profile generated with diagonalization method and more
accurate reference profiles. Color designation of line-shape models
in chart (a) is the same as in (b)–(f). These results were obtained for
�/ωD = 0.02, νopt/ωD = 0.01, aW = 0.1, 	 = 0, aS = 0, Nmax =
Lmax = Kmax = 25, and �num/ωD = 30.

exact reference profile for the cases of Gauss profile (GSP),
Voigt profile (VP), speed-dependent Nalkin-Ghatak profile
(SDqNGP) [2], and exact speed-dependent Galatry profile
(eSDqGP) [54], respectively (in the last two cases the subscript
q indicates that the quadratic speed dependence was utilized).
To generate SDqNGP [2] we used analytical expressions de-
scribed in [2,3], which are based on calculations of the speed-
dependent Voigt profile (SDVP) [53]. For a quadratic speed
dependence SDVP can be also calculated from expressions
given in [55]; however, this approach was not implemented
here. Evaluation of eSDqGP was carried out using analytical
expressions derived in [54]. In this section the profiles were
calculated for reduced collisional broadening �/ωD = 0.02,
reduced collisional narrowing parameter νopt/ωD = 0.01, col-
lisional shift 	 = 0, and the parameters controlling the speed
dependence of the collisional width aW = 0.1 and shift aS = 0,
according to notation in [14]. The parameter controlling the
stability of the iterative method was �num/ωD = 30, the basis
dimensions were Nmax = Lmax = 25 and the upper limit of
the sum from Eq. (10) was Kmax = 25. To show an advantage
of the iterative approach over other alternative methods, in
the range of low pressures, the difference between eSDqGP
generated from an exact solution of algebraic representation
of Eq. (1) in a truncated basis like in [14] (we will refer to
it as the “algebraic” method and denote the corresponding
profile by Ialg) and from an accurate reference method [54]
(denoted by Iexact) is presented in Fig. 1(f). Comparing
Figs. 1(e) and 1(f) one may observe that the iterative method
provides the accuracy of five orders of magnitude better
than the algebraic method (it should be noted that in both
cases the size of Burnett function bases were the same:
Nmax = Lmax = 25). Moreover, the accuracy of the algebraic
method deteriorates by another several orders of magnitude
with the further decrease of the pressure, while the accuracy
of the iterative solution remains very high or even slightly
grows up [compare with the limit case of zero pressure shown
in Fig. 1(b)].

The convergence of the iterative perturbation process
is presented in Fig. 2 for eSDqGP, for reduced detuning
(ω − ω0)/ωD = 1 [all parameters of the profile are the same
as in Fig. 1(e)]. The black line represents the absolute value of
the difference between the iterative solution and an accurate
reference [54]. After about 300 steps the error of iterative
solutions decreased by more than nine orders of magnitude.
The speed at which this error approaches its minimum depends
on the �num parameter. Increase of �num value leads to slower
convergence, but also to higher stability of the method. We
found that the value of �num/ωD = 30 provides an accurate
result in a wide range of model parameters; however, we
suppose that the problem of the choice of �num still can
be optimized. After reaching the minimum the error of
iterative solution usually increases. It is caused by the fact
that the iterative solution starts to approach the algebraic
solution in a truncated basis, which is not able to properly
reconstruct an exact solution. Therefore, there is a need to
find a criterion, which will say when to stop the iteration
procedure.

One may observe that as long as the iterative process
is convergent the absolute value of the corrections to the
line-shape profiles |	I

(n)
iter(ω)| = |I (n)

iter(ω) − I
(n−1)
iter (ω)| should
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FIG. 2. (Color online) Convergence of the iterative process is
illustrated by the absolute value of the difference between the iterative
solution and more accurate reference profile |I (n)

iter (ω) − Iexact(ω)|
as a function of the number of iterative steps; see the black
line. The red line represents the absolute value of the correction
to the line-shape profiles at nth step |	I

(n)
iter (ω)| = |I (n)

iter (ω) −
I

(n−1)
iter (ω)|. The blue curve shows a mean correction defined as

|	I
(n)
iter(ω)| = 1

101

∑50
i=−50 |	I

(n+i)
iter (ω)| and the minimum of this func-

tion is indicated by a gray vertical line. The green line represents the
|	c(n)(ω)| correction; see Eq. (13). These results were obtained for
eSDqGP for (ω − ω0)/ωD = 1, �/ωD = 0.02, νopt/ωD = 0.01, aW =
0.1, 	 = 0, aS = 0 and Nmax = Lmax = Kmax = 25, �num/ωD = 30.

decrease with the iterative steps; hence the simplest idea
for the stopping criterion is to look for the minimum
of the |	I

(n)
iter(ω)| correction. However, 	I

(n)
iter(ω) does not

monotonically decrease but rather oscillate around the exact
solution and the amplitude of this oscillation decreases
monotonically; see the red curve in Fig. 2. Therefore, it is
better to look for the minimum of the mean correction defined
as |	I

(n)
iter(ω)| = 1

101

∑50
i=−50 |	I

(n+i)
iter (ω)|; see the blue curve

in Fig. 2 (we arbitrarily chose to average over 101 points and
we also found that the value of this parameter has a small
impact on the line-shape accuracy).

Comparing the iterative and the algebraic methods a ques-
tion about the uniqueness of decomposition in the Burnett basis
arises. In both cases the same transport-relaxation equation
[Eq. (1)] is considered and the solutions are represented in
the Burnett basis. One could expect that for the same basis
dimensions these solutions should be the same or almost
the same (possible discrepancies may be caused by different
numerical errors intrinsic for both approaches) and we found
that it is true for iterations approaching an infinite number of
steps. However for truncated iterations, according to Figs. 1(e)
and 1(f), they give dramatically different accuracies. We should
emphasize that it is not caused by the numerical errors but
rather because that for both methods the whole issue is, in
fact, defined differently.

Clearly, the Gaussian distribution related to a zero pressure
limit is present in the term a(ω,�v) under a convolution with
the Lorentz profile having the width �num. During the iterative
process this Gaussian contribution is recovered. Around the
minimum shown in Fig. 2 this recovery is the best in the
c

(n)
0 (ω) term. After this minimum c

(n)
0 (ω) approaches the exact

solution of the truncated algebraic problem and the informa-
tion about the Gaussian distribution contained in a(ω,�v) is
lost.

The algebraic technique of line-shape calculations is based
on the solution to the system of linear coupled equations [see
Eq. (2) in [14]], in which we look for all elements of the c(ω)
column simultaneously, such that we may optimally reproduce
the whole h(ω,�v) function in the truncated basis set. While in
the iterative technique of line-shape calculations we are rather
focused only on the first element of the c(ω) column and
the iteration process is proceeded only as long as the c0(ω)
converges. As can be seen from Eq. (12), the basis function
φ0(�v) = 1 and c0(ω) coefficient play a central role for the
line-shape calculations. The success of the iterative approach
proposed here depends on properties of the basis set and the
collisional operator Ŝf . It is important that the matrix A(ω) · B
from Eq. (9), in the Burnett basis representation, couples cs(ω)
coefficients with significantly different n and l indexes very
weakly. Therefore, the iterative calculations of c0(ω) are not
affected by the basis truncation, even for a large number of
iterative steps.

To illustrate how the whole c(ω) vector evolve during the
iterative process we plotted in Fig. 2, as a green line, a quantity
similar to the absolute value of the correction to the line-shape
profile |	I

(n)
iter(ω)|, but referring to the whole c(ω) column,

which we defined as

|	c(n)(ω)| = 1

π
|c(n)(ω) − c(n−1)(ω)|. (13)

The results from Figs. 1 and 2 were generated for the case
of low pressure (�/ωD = 0.02 and νopt/ωD = 0.01); however
it has been tested that for higher as well as lower pressures
(down to �/ωD = νopt/ωD = 0) the accuracy of the iterative
solution is similar or better, as in the case of the Gauss profile
in Fig. 1(b).

V. APPLICATION FOR MOLECULAR SPECTROSCOPY
DATA ANALYSIS

In this section the application of the iterative approach
in low-pressure experimental data analysis is presented.
Figure 3(a) shows a high SNR spectral line profile of the
R7 Q8 16O2 B-band rovibronic transition measured with a
Pound-Drever-Hall-locked (PDH) frequency-stabilized cavity
ring-down spectroscopy (FS-CRDS) [56,57]; we use here an
experimental profile described in [43]. The spectrum was
recorded at a pressure of 933 Pa (7 Torr) with SNR of
220 000. It was measured in T = 295.5 K; hence for all
fits from Figs. 3(b)–3(j) the Doppler broadening ωD was
fixed to 570.02 MHz. Moreover, this spectrum, beyond the
absorption line profile [Eq. (2)], contains also a very small
Aetal sin( 2π


etal
ω + φetal)-type contribution coming from the

etaloning effects [43,58]. Following [43], we assumed that the
period of this oscillation is equal to 4.5 GHz. We found that the
best fit was achieved for Aetal = −0.000 072 835 × 10−6 cm−1

and φetal = −1.199 66 in the case of SDhB12P. The same values
of these parameters were used as fixed in fitting all line profiles
shown in Figs. 3(b)–3(j).
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FIG. 3. (a) Spectral line profile of the 16O2 B-band rovibronic
transitions measured with a PDH-locked FS-CRDS spectrometer
[43] at a pressure of 933 Pa. Charts (b)–(j) show the residuals
from VP, NGP, GP, SDhVP, SDhNGP, eSDhGP, SDhBBP, SDhB12P,
and SDhB5P, respectively. All fitted profiles were generated for
Nmax = Lmax = Kmax = 25 with fixed Doppler broadening ωD =
570.02 MHz corresponding to the temperature of 295.5 K.

We take advantage of the wide variety of line-shape models
to test which one is best able to reproduce the experimental
spectrum. Following [43], to express fit quality quantitatively,
we defined a quality of the fit parameter

QF = (αmax − αmin)/S̃R, (14)

where S̃R is the standard deviation of fit residuals calculated
as

S̃R =
√√√√ 1

M − k

M∑
i=1

[αexpt(νi) − αfit(νi)]2, (15)

where M is a number of points in the profile, k is a number
of fitted parameters, and αexpt(νi) and αfit(νi) are experimental
and fitted absorption coefficients, respectively. The sum of
the baseline level of the absorption spectrum αmin and the
maximum absorption coefficient is denoted as αmax. The QF
parameter can be interpreted as a SNR with which a line shape
is fitted to experimental data.

It should be mentioned that in [43], by mistake, the value
of k [Eq. (15)] was set to 1 instead of to the number of
fitted parameters, so the values of QF from [43] should
be multiplied by

√
(M − k)/(M − 1). Moreover, in [43] the

etalon parameters were fitted for each of the considered
profiles independently, in contrast to this model. Nevertheless,
comparison of fitting results for SDhB12P with those shown
in [43] demonstrates superiority of the SDhB12P and SDhBBP
model over all other models used in [43].

Figure 3(b) shows the residuals from a simple Voigt profile
(VP), which takes into account only Doppler broadening
and speed-independent dephasing collisions. In this case
five parameters were fitted (k = 5): profile area A, pressure
broadening � (half width at half maximum), transition
frequency ω0, and baseline offset and slope. Evidently, VP
is not able to reproduce the experimental spectrum, since
the residuals from it forms a clear structure (QF = 2388).
Values of the fitted parameters are summarized in Table I.
Much better agreement with the measured spectrum may
be achieved when the line-shape model allows us to handle
also a Dicke narrowing effect [59,60]. In the simplest cases
it can be realized with the Nelkin-Ghatak profile (NGP)
accounting from the hard-collisions model [61,62] and with the
Galatry profile (GP) accounting from the soft-collisions model
[62,63]. Residuals from NGP and GP are shown in Figs. 3(c)
and 3(d), respectively (here k = 6, since also frequency
of optical velocity-changing collisions νopt was fitted). The
shapes of residuals from NGP and GP are significantly
different as it was earlier observed by Triki et al. [41] in
the low-pressure studies related to the Boltzmann constant
determination. Further improvement of consistency with an
experiment may be done by introducing the speed-dependent
pressure broadening and shifting; see Fig. 3(e) for residuals
from the speed-dependent Voigt profile (SDhVP), Fig. 3(f)
for residuals from the speed-dependent Nelkin-Ghatak profile
(SDhNGP) [2], and Fig. 3(g) for residuals from the exact speed-
dependent Galatry profile (eSDhGP) [14]. The h subscript
indicates that the hypergeometric speed dependency was taken
(here, we chose the exponent from the inverse-power potential
ν = 5 describing quadrupole-quadrupole interaction and mass
ratio α = 1). Introducing the speed dependency the set of
fitted parameters was extended by speed-dependent pressure
shift 	, and hence for SDhVP k = 6 and for SDhNGP and
eSDhGP k = 7. A dramatic increase, by more than 27 times,
of the quality of fit (QF) from VP [Fig. 3(b)], through NGP
[Fig. 3(c)], to SDhNGP [Fig. 3(f)] was clearly expected, since
at each step a qualitatively new mechanism affecting the
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TABLE I. Model parameters retrieved from fits to experimental data. The Doppler broadening was set to ωD = 570.02 MHz, since the
measurement was performed in T = 295.5 K.

Line profile QF A (kHz/cm) νopt (MHz) � (MHz) 	 (MHz) ω0 (MHz)

VP 2388 4.0644(21) 11.15(26) −1.042(fixed) 4058.31(13)
NGP 108 94 4.071 84(54) 2.291(93) 12.718(86) −1.042(fixed) 4058.311(28)
GP 157 04 4.075 06(43) 4.883(135) 13.525(77) −1.042(fixed) 4058.313(20)
SDhVP 175 61 4.072 73(30) 12.960(41) −1.06(28) 4058.25(26)
SDhNGP 656 04 4.073 61(9) 0.273(14) 13.152(15) −1.045(76) 4058.243(71)
SDhGP 842 88 4.073 98(8) 0.555(22) 13.247(14) −1.041(59) 4058.239(55)
SDhBBP 92 650 4.073 87(7) 0.445(16) 13.218(12) −1.042(54) 4058.240(50)
SDhB12P 925 69 4.073 85(7) 0.437(15) 13.213(12) −1.042(54) 4058.240(50)
SDhB5P 911 27 4.073 82(7) 0.412(15) 13.204(12) −1.042(55) 4058.240(51)

line profile and related with it a new parameter to fit were
introduced. Much more subtle effects explain the increase
of QF from Figs. 3(f) to 3(h). For all from these three
profiles both Dicke narrowing and speed-dependent effects
were included. They differ only by the description of the
mechanism of the velocity-changing collisions leading to the
Dicke narrowing. The hard collisions model is only a simple
phenomenological approach to velocity-changing collisions
and consequently SDhNGP does not reproduce the measured
spectrum accurately. Much better description (with QF higher
by almost 30%) is provided by a soft collisions model, where
perturbers are assumed to be infinitesimally light. Further
increase of QF by about 10% was obtained by taking advantage
of the speed-dependent billiard-balls profile (SDhBBP) [14],
see also Refs. [25–31], which allows us to set an exact perturber
to absorber mass ratio α (here, for O2-O2 collisions α = 1);
see Fig. 3(h). It is noteworthy that the improvement of the QF
by more than 40% from SDhNGP [Fig. 3(f)], through eSDhGP
[Fig. 3(g)], to SDhBBP [Fig. 3(h)] was obtained for the same
set of fitted parameters (k = 7).

We also checked how the shape of the interaction potential
related to velocity-changing collisions influence the quality
of fit. To investigate, we applied the speed-dependent Black-
more profile (SDhBνP) [10,15,17] accounting from a model
r−ν-type potential describing velocity-changing collisions.
Figures 3(h)–3(j) show residuals from SDhBνP for ν = ∞, 12,
and 5, respectively (note that the billiard-ball profile is a limit
case of the Blackmore profile for ν → ∞). The quality of the
fit (QF) is almost the same for ν = ∞ and 12, while for ν = 5
is slightly smaller (by about 1.5%). For all these three profiles
the number of fitted parameters was set to k = 7. Moreover,
from the point of view of an accurate gas metrology, an error
caused by improper choice of model of potential related to
velocity-changing collisions can be estimated by comparing
values of the fitted parameters. For instance discrepancies of
the determination of the pressure broadening � coefficient are
of the order of 0.1%; see Table I. However, for the narrowing
parameter νopt these discrepancies were even as high as 7%.

Lack of knowledge of real collisional operator Ŝf can lead
to systematic errors in the determination of fitted line-shape
parameters. These errors can be minimized by calculating the
Ŝf collisional operator from the ab initio potential surfaces
solving the close-coupled scattering equations. However, it is
out of the scope of this paper. Nevertheless, it should be noted

that the simplifications in the assumed here description of
velocity-changing collisions and speed-dependent collisional
broadening and shifting can lead to some systematic errors
exceeding small statistical uncertainties reported here. One
way of future quantification of the above-mentioned system-
atic errors can be a comparison with the ab initio line-shape
calculations based on the molecular dynamics simulations
(MDS) [64,65] in the wide range of perturber pressures.

To qualify how the choice of the line-shape model can affect
the Doppler-width thermometry [35–41], we fitted our experi-
mental data with analytical SDhNGP and numerical SDhBBP
allowing variation of the Doppler width ωD . The Doppler
widths ωD determined from the fit of SDhNGP and SDhBBP
are equal to 569.826(14) MHz and 569.992(66) MHz, respec-
tively. The use of SDhNGP can lead to systematic reduction
of Doppler width determination by 166 kHz with respect
to SDhBBP. It corresponds to the 3 × 10−4 fraction of the
Doppler width ωD . Clearly, the use of SDhBBP or SDhBνP
can help reduce the systematic errors in determination of the
Boltzmann constant. These results can be important for optical
determination of the Boltzmann constant recently reported by
Moretti et al. [42].

Finally, we investigated how the proper choice of the line-
shape model affects the statistical uncertainties of determined
unperturbed transition frequency ω0. In general, this precision
grows up with the growth of the quality of fit (QF). However,
comparing the ω0 uncertainties from Table I, one may observe
that for the speed-dependent profiles the ω0 uncertainty is
larger than for speed-independent ones. It is caused by strong
correlation between the line shift 	 and the unperturbed
transition frequency ω0. In fact, the position of the line is
determined much more precisely than uncertainty indicated
in Table I. The impact of this correlation can be reduced
significantly by simultaneously fitting several spectra for
different pressures. To estimate how high precisions of the
spectral line position can be achieved, we repeated the fitting
procedure for the SDhBBP case fixing the line shift 	 and we
obtained the statistical uncertainty of 3 kHz. Determination of
spectral line positions in Doppler limited spectroscopy with
kilohertz accuracy combined with optical frequency comb
reference [49,50,66] can have an impact on fundamental
research in molecular physics [47,67,68] for which the proper
line-shape analysis will be crucial, as it was demonstrated
earlier [69] for less precise data.
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VI. CONCLUSIONS

In this paper the problem of the line-shape profiles deter-
mination, within the impact approximation, for a wide range
of pressures down to the Doppler limit was addressed. It was
shown that the iterative approach to the transport-relaxation
equation can be modified such as to be applicable also
for very low pressures. In contrast to the previous analysis
[14,22,28,31,32] it was demonstrated that the decomposition
of functions and operators in the Burnett basis can be efficiently
applied to the transport-relaxation equation also for the low
pressure range. This decomposition allows us to convert the
transport-relaxation equation (which is an integral equation)
into a simple algebraic recursive formula. It was presented
that for various line-shape models the relative accuracy of this
technique is better than 10−7 (for the Burnett basis dimensions
Nmax = Lmax = 25). Finally, it was shown that this iterative
technique together with an appropriate line-shape model is
able to reproduce a high-quality experimental data with relative
accuracy of the order of 10−5.

The data analysis technique presented here together with
ultraprecise experimental spectra can lead to determination of
molecular transition frequencies with accuracy approaching
kilohertz level in the Doppler limited spectroscopy. Moreover,
the ability of the line-shape calculations, ab initio in spirit,
at low pressures down to the Doppler limit allows reduction
of systematic errors in spectroscopic Boltzmann constant
determination.
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J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T.
Hodges, Rev. Sci. Instrum. 82, 063107 (2011).

[57] A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S.
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