
PHYSICAL REVIEW A 88, 012513 (2013)

Model operator approach to the Lamb shift calculations in relativistic many-electron atoms
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A model operator approach to calculations of the QED corrections to energy levels in relativistic many-electron
atomic systems is developed. The model Lamb shift operator is represented by a sum of local and nonlocal
potentials which are defined using the results of ab initio calculations of the diagonal and nondiagonal matrix
elements of the one-loop QED operator with H-like wave functions. The model operator can be easily included in
any calculations based on the Dirac-Coulomb-Breit Hamiltonian. The efficiency of the method is demonstrated
by comparison of the model QED operator results for the Lamb shifts in many-electron atoms and ions with
exact QED calculations.
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I. INTRODUCTION

A good starting point for the relativistic atomic calculations
is given by the Dirac-Coulomb-Breit (DCB) equation. This
equation can be solved with high accuracy by using either the
configuration-interaction Dirac-Fock (CI-DF) methods [1–7]
or the relativistic many-body perturbation theory (RMBPT)
methods [8–14]. In many cases the precision of these cal-
culations has reached a level that requires evaluations of
quantum electrodynamics (QED) effects. To date, the rigorous
calculations of the QED effects in middle- and high-Z systems
are fully restricted to the 1/Z perturbation theory (see,
e.g., [15–19] and references therein). The perturbation theory
methods have been also extended to many-electron ions and
atoms employing an effective screening potential instead of
the Coulomb one [20–27]. However, these methods are too
complicated to be directly included in the DCB calculations.
For this reason, numerous attempts have been undertaken to
propose simple methods for incorporating the QED corrections
in the CI-DF and RMBPT codes. These methods (see, e.g.,
[4,28–35] and references therein) are generally based on
scaling the Lamb shift results for the Coulomb potential to
other atomic potentials, which partially include the screening
effects. Such a scaling can be done either directly by using
Welton’s idea [36] to express the main part of the self-energy
contribution in terms of �∇2V [4,29,34] or by introducing an
effective short-range potential which fits the Lamb shifts for
hydrogenlike ions [28,30–33,35].

In Ref. [37] it was shown that the QED corrections can be
systematically included in an effective Hamiltonian acting in
the space of the Slater determinants made up of one-electron
positive-energy states whose total (many-electron) energies are
smaller than the pair-creation threshold. To the lowest order,
this approach leads to a QED operator that, in principle, can
be added to the DCB Hamiltonian. The main goal of this paper
is to represent this QED operator in a form that can be easily
included in any calculations based on the DCB equation.

In the next section, we summarize the basic equations for
the effective Hamiltonian that includes the one-loop QED
corrections. Then we approximate the QED operator by a sum
of short-range local and nonlocal potentials and calculate the

model QED operator in a wide range of Z = 10–120. Finally,
the model QED operator is applied to calculations of the Lamb
shifts in many-electron atoms and ions, and the results obtained
are compared with other QED calculations.

Relativistic units (h̄ = c = 1) are used throughout.

II. EFFECTIVE HAMILTONIAN IN THE FRAMEWORK
OF QED

The systematic method to derive a Schrödinger-like equa-
tion for a relativistic many-electron atom from QED can
be formulated within the two-time Green’s function (TTGF)
method [38]. To determine such an equation, first of all,
one needs to choose the active space in which the effective
Hamiltonian acts. Since rigorous calculations of the QED
effects in middle- and high-Z systems employ the perturbation
theory starting from the Dirac equation with a local potential,
the active space is generally considered to be formed either by a
single or by (quasi)degenerate unperturbed states. These states
are given by the Slater determinants made up of the solutions
of the Dirac equation with the local potential considered.
However, in Ref. [37] it was shown that the active space can
be extended to all unperturbed states made up of one-electron
positive-energy states whose total (many-electron) energies
are smaller than the pair-creation threshold. Moreover, if the
consideration is restricted to the lowest-order QED terms,
the active space can be extended beyond the pair-creation
threshold. For simplicity, this extension, having no effect on the
accuracy of the calculations, is considered in the present paper.
Using the derivations presented in Ref. [37], we summarize
below the basic equations that are obtained with this choice of
the active space.

To simplify the equations, we assume that the active space
is formed by the Slater determinants made up of the positive-
energy solutions of the Dirac equation with the Coulomb
potential VC(r) = −αZnuc(r)/r [the effective charge Znuc(r)
accounts for the nuclear charge distribution]:

hDψn = εnψn , (1)
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FIG. 1. One-photon exchange diagram.

where

hD = �α · �p + mβ + VC(r) (2)

is the one-electron Dirac Hamiltonian. We note, however, that
all the equations can be easily adopted to the theory with the
active space formed by the solutions in an effective potential
Veff(r) (e.g., the Dirac-Hartree, the Kohn-Sham, or a local
version of the Dirac-Fock potential) that partly includes the
screening effect. In this case, the interaction with the related
counterterm [VC(r) − Veff(r)] must be included in the total
Hamiltonian. To construct the desired Hamiltonian, one should
first consider the contribution from the one-photon exchange
Feynman diagram (Fig. 1). Evaluation of this diagram with
the TTGF method leads to the following symmetric form of
the electron-electron interaction operator (for details see Refs.
[37,38]):

hint =
(εk,εl ,εm,εn>0)∑

k �=l,m�=n

|ψkψl〉〈ψkψl|1

2
[I (εk − εm)

+ I (εl − εn)]|ψmψn〉〈ψmψn| , (3)

where the indices k, l, m, n enumerate the positive-energy one-
electron Dirac states, |ψkψl〉 ≡ |ψk〉|ψl〉 is the direct product
of the one-electron Dirac wave functions ψk( �r1) and ψl( �r2),

I (ω) = e2α
ρ

1 ασ
2 Dρσ (ω,r12) , (4)

αρ ≡ γ 0γ ρ = (1,α) are the Dirac matrices, Dρσ (ω,r12) is the
photon propagator, and r12 = | �r1 − �r2| is the interelectronic
distance. It should be noted that the symmetric form of the
frequency-dependent electron-electron interaction was first
considered in Ref. [39]. The operator (3) defines the interaction
between two electrons only. To get the total electron-electron
interaction operator for a many-electron atom, one has to sum
Eq. (3) over all pairs of atomic electrons:

H int =
∑
i<j

hint
ij , (5)

where hint
ij is the two-electron operator (3) taken for electrons

i and j .
Taking Dρσ (ω,rij ) in the Coulomb gauge at zero en-

ergy transfer (ω = 0) leads to the Dirac-Coulomb-Breit
Hamiltonian [40]:

H DCB = 
(+)

[ ∑
i

hD
i +

∑
i<j

Vij

]

(+) , (6)

where the indices i and j enumerate the atomic electrons, 
(+)

is the product of the one-electron projectors on the positive-
energy states (which correspond to the potential VC), hD

i is the

FIG. 2. Self-energy diagram.

one-electron Dirac Hamiltonian (2) taken for electron i,

Vij = e2α
ρ

i ασ
j Dρσ (0,rij ) = V C

ij + V B
ij

= α

rij

− α

[ �αi · �αj

rij

+ 1

2
( �∇i · �αi)( �∇j · �αj )rij

]
(7)

is the sum of the Coulomb and Breit electron-electron
interaction operators, and α is the fine-structure constant. It
is well known that the DCB Hamiltonian accounts for the
nonrelativistic and lowest-order relativistic contributions. In
the Feynman gauge, to get the Hamiltonian to the same
accuracy, one has to account for the higher-order photon
exchange diagrams (see Ref. [37] and references therein).

As the next step, one should consider the contributions from
the one-loop self-energy (SE) and vacuum-polarization (VP)
diagrams presented in Figs. 2 and 3, respectively. The direct
calculation of these contributions within the TTGF method
leads to the following symmetric form of the one-electron
QED operator hQED [37]:

hQED = hSE + hVP =
(εk,εl>0)∑

k,l

|ψk〉〈ψk|

×
{

1

2
[�SE(εk) + �SE(εl)] + V VP

}
|ψl〉〈ψl | , (8)

where �SE(εk) and V VP are the renormalized SE and VP
operators, respectively, and the sums over k and l go over
all the positive-energy one-electron Dirac states. To get the
total QED operator for a many-electron atom, one has to sum
Eq. (8) over all atomic electrons:

H QED = H SE + H VP

=
∑

i

h
QED
i =

∑
i

(
hSE

i + hVP
i

)
, (9)

where h
QED
i , hSE

i , and hVP
i are the one-electron operators (8)

taken for electron i.

FIG. 3. Vacuum-polarization diagram.
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Thus, within the lowest-order QED approximation the total
effective Hamiltonian can be presented as

H = 
(+)

[ ∑
i

(
hD

i + h
QED
i

) +
∑
i<j

hint
ij

]

(+), (10)

where the sums go over all atomic electrons and hint
ij , which

is the two-electron operator (3) considered for electrons i and
j , must be taken in the Coulomb gauge (if it is taken in the
Feynman gauge, an additional term must be added to keep
the same accuracy level [37]). In Eq. (10), all the operators are
defined for the Coulomb potential VC. To get the corresponding
Hamiltonian in the active space formed by the solutions in an
effective potential Veff , one should do the evident replacements
in all the operators, including the projector, and add the term

(+) ∑

i[VC(ri) − Veff(ri)]
(+).

III. MODEL QED OPERATOR

Since the one-electron VP operator is given by the sum of
the local Uehling and Wichmann-Kroll potentials [41], V VP =
VUehl + VWK, it can be easily included in the DCB equations.
As is known, the dominant part of the VP contribution is
represented by the Uehling potential:

VUehl(r) = −αZ
2α

3π

∫ ∞

0
dr ′ 4πr ′ρ(r ′)

∫ ∞

1
dt

(
1 + 1

2t2

)

×
√

t2 − 1

t2

e(−2m|r−r ′ |t) − e[−2m(r+r ′)t]

4mrt
, (11)

where Zρ(r) is the density of the nuclear charge distribution
[
∫

ρ(r)dr = 1]. The Uehling potential can easily be evaluated
by employing the approximate formulas from Ref. [42].
Including the screening effect in this potential causes no
problem but hardly affects the result (see, e.g., Ref. [23]).
Evaluation of the Wichmann-Kroll potential is a much more
difficult problem [43–45]. However, to good accuracy, it can
be calculated with the help of the approximate formulas
derived in Ref. [46]. Therefore, in what follows, we restrict
our consideration to the SE contribution only.

In principle, the operator H SE defined by Eqs. (8) and
(9) can be added to the DCB Hamiltonian to account for
the lowest-order SE corrections. In practice, however, due to
the absence of rather simple algorithms for the evaluation
of the SE contributions for arbitrary states, we have to
restrict hSE to its matrix elements between a finite number
of low-lying one-electron Dirac-Coulomb (or other effective
potential) wave functions. This restriction strongly enlarges
the interaction range of the SE operator and excludes highly
excited bound and continuum spectrum components from the
active space. As a result, such a potential may lead to the SE
corrections which strongly deviate from the correct ones. For
instance, in case of H-like ions it gives zero results for the
states with the principal quantum number n � 4, provided the
sums in (8) are limited by nk,nl � 3. To solve these problems,
we modify the operator hSE in two steps.

As the first step, to minimize the deviation of the repre-
sentation (8), restricted to a finite number of states, from the
exact one, we separate out a local (with respect to r) potential
V SE

loc from the SE operator and employ formula (8) for the
remaining SE part only. Such a separation can be justified by

the fact that a dominant part of the nonrelativistic SE operator
can be represented by a local short-range potential [36]. Due
to the conservation of the angular quantum numbers by the
one-electron SE operator, we can choose the local part to be
different for different κ = (−1)j+l+1/2(j + 1/2). With this in
mind, we introduce the projector Pκ , which acts only on the
angular variables and is defined by its kernel as

Pκ (n,n′)

=
(∑

m �κ m(n)�†
κ m(n′) 0

0
∑

m �−κ m(n)�†
−κ m(n′)

)
,

(12)

where �κ m(n) is a spherical spinor. Then, the local potential
is given by

V SE
loc =

∑
κ

V SE
loc,κPκ , (13)

where V SE
loc,κ (r) is a short-range radial potential which can be

chosen differently for different values of κ . Strictly speaking,
the potential V SE

loc is semilocal. However, here and in what
follows we label it as “local,” keeping in mind that it is local
only at a given value of κ . We put

V SE
loc,κ (r) = Aκ exp (−r/λC) , (14)

where the constant Aκ is chosen to reproduce the SE shift for
the lowest energy level at the given κ in the corresponding
H-like ion and λC = h̄/(mc).

As the second step, we restrict the active space of the
remaining SE operator, hSE − V SE

loc , to the basis functions
{φi(r)}ni=1, which, having the same angular parts as the one-
electron Dirac-Coulomb functions {ψi(r)}ni=1, are localized at
smaller distances compared to the Dirac-Coulomb ones. The
specific choice of the functions {φi(r)}ni=1 will be given below.
With these functions, we approximate the one-electron SE
operator as follows:

hSE = V SE
loc +

n∑
i,k=1

|φi〉Bik〈φk| , (15)

where the matrix Bik has to be determined in such a way
that the matrix elements of the model SE operator (15) with
the H-like wave functions, corresponding to the space under
consideration, coincide with the exact ones. This leads to the
equations

n∑
j,l=1

〈ψi |φj 〉Bjl〈φl|ψk〉

= 〈ψi |
{

1

2
[�(εi) + �(εk)] − V SE

loc

}
|ψk〉 . (16)

Introducing the matrix Dik = 〈φi |ψk〉, we get

Bik =
n∑

j,l=1

[(Dt )−1]ij 〈ψj |
{

1

2
[�(εj ) + �(εl)]

−V SE
loc

}
|ψl〉(D−1)lk. (17)
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TABLE I. Self-energy correction for ns states, calculated with the hydrogenlike wave functions. Labels (n,n′) denote the Fnn′ function
defined by Eq. (24). R is the root-mean-square charge radius of the nucleus (in fermis). For each Z, the first line shows the point-nucleus result,
whereas the second line displays the extended-nucleus result (if different).

Z R (1,1) (1,2) (1,3) (1,4) (1,5) (2,2) (2,3) (2,4) (2,5) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)

10 3.005 4.6542 4.7961 4.8145 4.8193 4.8210(1) 4.8944 4.9325 4.9437 4.9480 4.9524 4.9677 4.9740 4.9749 4.9824 4.9858
15 3.189 3.8014 3.9463 3.9639 3.9681 3.9693 4.0509 4.0885 4.0992 4.1030 4.1082 4.1229 4.1288 4.1296 4.1367 4.1396

3.8013 3.9462 3.9639 3.9680 3.9693 4.0508 4.0885 4.0991 4.1030 4.1082 4.1229 4.1287 4.1296 4.1366 4.1396
20 3.476 3.2463 3.3946 3.4114 3.4148 3.4155 3.5066 3.5438 3.5538 3.5572 3.5633 3.5773 3.5826 3.5834 3.5899 3.5923

3.2462 3.3945 3.4113 3.4147 3.4154 3.5065 3.5437 3.5537 3.5571 3.5632 3.5772 3.5825 3.5833 3.5898 3.5922
25 3.706 2.8501 3.0023 3.0183 3.0208 3.0209 3.1230 3.1597 3.1689 3.1716 3.1789 3.1922 3.1969 3.1975 3.2034 3.2052

2.8499 3.0022 3.0182 3.0207 3.0207 3.1228 3.1595 3.1688 3.1715 3.1787 3.1920 3.1967 3.1974 3.2032 3.2050
30 3.929 2.5520 2.7087 2.7238 2.7253 2.7246 2.8388 2.8750 2.8835 2.8855 2.8940 2.9064 2.9105 2.9110 2.9162 2.9173

2.5518 2.7084 2.7235 2.7251 2.7244 2.8386 2.8748 2.8832 2.8853 2.8937 2.9062 2.9102 2.9108 2.9159 2.9171
35 4.163 2.3200 2.4816 2.4958 2.4963 2.4949 2.6223 2.6580 2.6656 2.6669 2.6767 2.6882 2.6915 2.6919 2.6963 2.6967

2.3196 2.4812 2.4954 2.4960 2.4945 2.6220 2.6576 2.6652 2.6665 2.6763 2.6878 2.6911 2.6915 2.6959 2.6963
40 4.270 2.1352 2.3024 2.3156 2.3151 2.3129 2.4548 2.4899 2.4965 2.4970 2.5083 2.5187 2.5213 2.5215 2.5250 2.5246

2.1347 2.3019 2.3151 2.3146 2.3124 2.4543 2.4893 2.4960 2.4965 2.5078 2.5182 2.5208 2.5210 2.5245 2.5241
45 4.494 1.9859 2.1594 2.1716 2.1700 2.1668 2.3247 2.3591 2.3647 2.3643 2.3772 2.3865 2.3882 2.3882 2.3907 2.3894

1.9853 2.1587 2.1709 2.1692 2.1661 2.3239 2.3583 2.3639 2.3635 2.3764 2.3857 2.3874 2.3874 2.3900 2.3887
50 4.654 1.8643 2.0448 2.0560 2.0531 2.0490 2.2243 2.2580 2.2625 2.2611 2.2757 2.2837 2.2844 2.2842 2.2857 2.2833

1.8633 2.0438 2.0550 2.0521 2.0480 2.2233 2.2569 2.2614 2.2600 2.2747 2.2827 2.2834 2.2832 2.2846 2.2823
55 4.804 1.7648 1.9533 1.9635 1.9593 1.9542 2.1487 2.1816 2.1847 2.1822 2.1988 2.2054 2.2050 2.2045 2.2047 2.2012

1.7635 1.9519 1.9621 1.9579 1.9527 2.1472 2.1800 2.1832 2.1807 2.1973 2.2039 2.2035 2.2030 2.2032 2.1997
60 4.912 1.6838 1.8815 1.8906 1.8848 1.8786 2.0945 2.1264 2.1281 2.1243 2.1431 2.1479 2.1463 2.1455 2.1443 2.1395

1.6820 1.8795 1.8886 1.8829 1.8766 2.0923 2.1242 2.1259 2.1222 2.1410 2.1458 2.1442 2.1434 2.1422 2.1374
65 5.060 1.6186 1.8267 1.8346 1.8273 1.8197 2.0596 2.0904 2.0904 2.0852 2.1064 2.1092 2.1061 2.1049 2.1021 2.0958

1.6161 1.8239 1.8318 1.8245 1.8169 2.0564 2.0872 2.0872 2.0821 2.1033 2.1061 2.1031 2.1019 2.0991 2.0928
70 5.311 1.5674 1.7876 1.7942 1.7850 1.7760 2.0429 2.0723 2.0703 2.0634 2.0874 2.0878 2.0831 2.0814 2.0767 2.0686

1.5637 1.7833 1.7900 1.7808 1.7719 2.0381 2.0675 2.0655 2.0587 2.0826 2.0832 2.0785 2.0768 2.0721 2.0641
75 5.339 1.5290 1.7632 1.7683 1.7570 1.7464 2.0441 2.0718 2.0674 2.0586 2.0857 2.0834 2.0767 2.0744 2.0674 2.0573

1.5239 1.7572 1.7624 1.7512 1.7406 2.0373 2.0650 2.0607 2.0519 2.0790 2.0767 2.0701 2.0678 2.0610 2.0509
80 5.463 1.5028 1.7533 1.7568 1.7431 1.7305 2.0639 2.0894 2.0822 2.0710 2.1018 2.0961 2.0870 2.0840 2.0744 2.0619

1.4955 1.7447 1.7482 1.7346 1.7221 2.0537 2.0793 2.0722 2.0611 2.0917 2.0862 2.0772 2.0743 2.0648 2.0524
85 5.539 1.4888 1.7587 1.7602 1.7435 1.7287 2.1039 2.1266 2.1158 2.1018 2.1369 2.1271 2.1152 2.1113 2.0985 2.0831

1.4784 1.7461 1.7477 1.7312 1.7165 2.0886 2.1115 2.1009 2.0871 2.1219 2.1124 2.1006 2.0968 2.0842 2.0689
90 5.710 1.4875 1.7806 1.7797 1.7595 1.7420 2.1669 2.1860 2.1708 2.1533 2.1936 2.1786 2.1631 2.1582 2.1415 2.1225

1.4721 1.7615 1.7607 1.7408 1.7236 2.1431 2.1625 2.1477 2.1305 2.1702 2.1557 2.1406 2.1357 2.1194 2.1007
95 5.905 1.5005 1.8218 1.8176 1.7931 1.7723 2.2575 2.2719 2.2510 2.2291 2.2757 2.2543 2.2344 2.2280 2.2066 2.1831

1.4772 1.7921 1.7882 1.7642 1.7439 2.2197 2.2345 2.2143 2.1929 2.2386 2.2180 2.1987 2.1925(1) 2.1717 2.1488
100 5.857 1.5302 1.8863 1.8779 1.8479 1.8230 2.3831 2.3910 2.3627 2.3351 2.3897 2.3600 2.3343 2.3262 2.2987 2.2697

1.4961 1.8417 1.8338 1.8047 1.7806 2.3247 2.3332 2.3061 2.2795 2.3325 2.3042 2.2795 2.2717(1) 2.2453(1) 2.2172
105 5.919 1.5809 1.9811 1.9670 1.9298 1.8996 2.5553 2.5543 2.5158 2.4807 2.5457 2.5051 2.4718 2.4615 2.4261 2.3899

1.5286 1.9107 1.8974 1.8619 1.8331 2.4602 2.4604 2.4243 2.3911 2.4531 2.4150 2.3836 2.3737 2.3403(1) 2.3058
110 5.993 1.6601 2.1179 2.0956 2.0487 2.0114 2.7936 2.7797 2.7272 2.6819 2.7609 2.7055 2.6617 2.6484 2.6025 2.5566

1.5771 2.0031 1.9824 1.9388 1.9040 2.6334 2.6222 2.5743 2.5325 2.6058 2.5552 2.5151 2.5026(1) 2.4604(2) 2.4179
115 6.088 1.7811 2.3180 2.2832 2.2224 2.1751 3.1331 3.1001 3.0270 2.9668 3.0659 2.9893 2.9307 2.9131 2.8527 2.7933

1.6441 2.1228 2.0917 2.0375 1.9952 2.8519 2.8248 2.7610 2.7081 2.7958 2.7288 2.6775 2.6617(1) 2.6084(1) 2.5556
120 6.175 1.9709 2.6233 2.5685 2.4866(1) 2.4243(1) 3.6437 3.5804(1) 3.4750(1) 3.3921(1) 3.5219(1) 3.4131 3.3319 3.3080 3.2259 3.1464

1.7335(1) 2.2753(1) 2.2294(1) 2.1613(1) 2.1093(1) 3.1256(1) 3.0760(1) 2.9909(1) 2.9231(1) 3.0295(1) 2.9411(1) 2.8750(1) 2.8549(2) 2.7875(1) 2.7216

Therefore, the model one-electron SE operator can be
written as

hSE = V SE
loc +

n∑
i,k=1

n∑
j,l=1

|φi〉[(Dt )−1]ij

×〈ψj |
{1

2
[�(εj ) + �(εl)] − V SE

loc

}
|ψl〉

×(D−1)lk〈φk| . (18)

Now let us consider the choice of the functions {φi(r)}ni=1.
On the one hand, since we use the SE matrix elements cal-
culated with the hydrogenlike wave functions, these functions
should be chosen rather close to the H-like ones. On the other
hand, because of a short interaction range of the SE operator,
they should vanish at smaller distances compared to the H-like
wave functions. With this in mind, we construct them using

the H-like wave functions multiplied by the factor

ρl(r) = exp [−2αZ(r/λC)/(1 + l)], (19)

where l = |κ + 1/2| − 1/2 is the orbital angular momentum
of the state under consideration. The simple choice φi(r) =
ρli (r)ψi(r) fits the goal but, due to a rather similar behavior of
the wave functions for different values of the principal quantum
number at small r , gives a matrix D close to the degenerate one
and therefore leads to a rather singular matrix D−1. For this
reason, we consider a slightly different choice. In what follows,
we restrict the basis functions to ns, np1/2, np3/2, nd3/2, and
nd5/2 states with the principal quantum number n � 3 for the
s states and n � 4 for the p and d states and put

φi(r) = 1
2 [I − (−1)si β]ρli (r)ψi(r) , (20)

where I is the identity matrix, β is the standard Dirac matrix,
the index si = ni − li enumerates the positive energy states at
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TABLE II. Self-energy correction for np1/2 states, calculated with the hydrogenlike wave functions.

Z R (2,2) (2,3) (2,4) (2,5) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)

10 3.005 −0.1148 −0.0962 −0.0946 −0.0946 −0.1020 −0.0941 −0.0923 −0.0964(1) −0.0921 −0.0932
15 3.189 −0.1045 −0.0851 −0.0833 −0.0831 −0.0901 −0.0818 −0.0799 −0.0837 −0.0794 −0.0803
20 3.476 −0.0925 −0.0721 −0.0699 −0.0696 −0.0760 −0.0674 −0.0653 −0.0690 −0.0644 −0.0653
25 3.706 −0.0791 −0.0576 −0.0550 −0.0545 −0.0603 −0.0512 −0.0489 −0.0525 −0.0477 −0.0484
30 3.929 −0.0643 −0.0416 −0.0386 −0.0379 −0.0431 −0.0336 −0.0310 −0.0344 −0.0295 −0.0299
35 4.163 −0.0483 −0.0242 −0.0207 −0.0199 −0.0244 −0.0144 −0.0116 −0.0148 −0.0097 −0.0099
40 4.270 −0.0310 −0.0054 −0.0014 −0.0003 −0.0042 0.0063 0.0094 0.0063 0.0117 0.0116
45 4.494 −0.0123 0.0150 0.0196 0.0208 0.0177 0.0287 0.0321 0.0291 0.0347 0.0347
50 4.654 0.0080 0.0371 0.0423 0.0438 0.0414 0.0529 0.0566 0.0538 0.0595 0.0597
55 4.804 0.0303 0.0614 0.0672 0.0689 0.0672 0.0793 0.0833 0.0805 0.0864 0.0867
60 4.912 0.0548 0.0881 0.0946 0.0965 0.0956 0.1083 0.1125 0.1098 0.1158 0.1161

0.0547 0.0881 0.0946 0.0965 0.0955 0.1082 0.1125 0.1098 0.1157 0.1161
65 5.060 0.0820 0.1178 0.1250 0.1271 0.1271 0.1402 0.1448 0.1421 0.1481 0.1485

0.0819 0.1177 0.1249 0.1270 0.1270 0.1401 0.1447 0.1420 0.1480 0.1484
70 5.311 0.1127 0.1512 0.1591 0.1614 0.1623 0.1760 0.1807 0.1781 0.1840 0.1844

0.1126 0.1510 0.1590 0.1612 0.1621 0.1758 0.1805 0.1778 0.1838 0.1841
75 5.339 0.1477 0.1891 0.1979 0.2002 0.2023 0.2164 0.2213 0.2186 0.2244 0.2246

0.1474 0.1888 0.1975 0.1999 0.2020 0.2160 0.2209 0.2182 0.2240 0.2242
80 5.463 0.1882 0.2329 0.2424 0.2448 0.2483 0.2626 0.2677 0.2649 0.2704 0.2703

0.1877 0.2323 0.2418 0.2441 0.2476 0.2619 0.2670 0.2642 0.2697 0.2696
85 5.539 0.2359 0.2843 0.2944 0.2967 0.3020 0.3165 0.3215 0.3185 0.3236 0.3230

0.2349 0.2832 0.2933 0.2955 0.3008 0.3152 0.3202 0.3173 0.3223 0.3217
90 5.710 0.2931 0.3457 0.3563 0.3583 0.3660 0.3803 0.3850 0.3819 0.3862 0.3849

0.2912 0.3436 0.3542 0.3562 0.3637 0.3780 0.3827 0.3795 0.3838 0.3825
95 5.905 0.3633 0.4205 0.4315 0.4329 0.4438 0.4575 0.4616 0.4583 0.4613 0.4589

0.3597 0.4166 0.4275 0.4288 0.4394 0.4531 0.4572 0.4538 0.4569 0.4544
100 5.857 0.4517 0.5143 0.5251 0.5254 0.5408 0.5533 0.5563 0.5525 0.5538 0.5498

0.4450 0.5070 0.5177 0.5180 0.5327 0.5452 0.5482 0.5443 0.5456 0.5416
105 5.919 0.5669 0.6355 0.6454 0.6438 0.6655 0.6758 0.6768 0.6725 0.6711 0.6645

0.5537 0.6211 0.6308 0.6294 0.6498 0.6600 0.6610 0.6566 0.6552 0.6487
110 5.993 0.7231 0.7984 0.8059 0.8012 0.8322 0.8385 0.8361 0.8311 0.8254 0.8150

0.6961 0.7689 0.7763 0.7719 0.8002 0.8064 0.8043 0.7989(1) 0.7936 0.7834
115 6.088 0.9468 1.0292 1.0314 1.0212 1.0668 1.0659 1.0575 1.0513 1.0388 1.0222

0.8881 0.9656 0.9681 0.9587 0.9983 0.9977 0.9902 0.9834(1) 0.9719(1) 0.9561
120 6.175 1.2926 1.3816 1.3726 1.3522 1.4219 1.4074 1.3881 1.3798 1.3557 1.3286

1.1559 1.2352 1.2280 1.2102 1.2658 1.2532(1) 1.2369(1) 1.2275(2) 1.2064(2) 1.1819

the given κ , and ni is the principal quantum number. With this
choice, one easily finds

D11 =
∫ ∞

0
dr r2g2

1(r) ρl(r) ,

D12 =
∫ ∞

0
dr r2g1(r) g2(r) ρl(r) ,

D13 = D31 =
∫ ∞

0
dr r2g1(r) g3(r) ρl(r) ,

D21 =
∫ ∞

0
dr r2f1(r) f2(r) ρl(r) ,

D22 =
∫ ∞

0
dr r2f 2

2 (r) ρl(r) ,

D23 =
∫ ∞

0
dr r2f2(r) f3(r) ρl(r) ,

D32 =
∫ ∞

0
dr r2g2(r) g3(r) ρl(r) ,

D33 =
∫ ∞

0
dr r2g2

3(r) ρl(r) , (21)

where gi(r) and fi(r) are the upper and lower radial com-
ponents of the hydrogenlike wave functions and index i

enumerates the positive-energy states at the given κ . The
explicit formulas for the calculation of the inverse matrix can
be found in standard textbooks.

Thus, in what follows we use the model one-electron SE
operator given by

hSE = V SE
loc + 1

4

∑
i,k

∑
j,l

[I − (−1)si β]ρli (r)|ψi〉

×[(Dt )−1]ij 〈ψj |
{

1

2
[�(εj ) + �(εl)] − V SE

loc

}
|ψl〉

×(D−1)lk〈ψk|ρlk (r)[I − (−1)skβ], (22)
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TABLE III. Self-energy correction for np3/2 states, calculated with the hydrogenlike wave functions.

Z R (2,2) (2,3) (2,4) (2,5) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)

10 3.005 0.1304 0.1335 0.1316 0.1301 0.1421 0.1454 0.1457 0.1474 0.1496 0.1503
15 3.189 0.1366 0.1399 0.1380 0.1365 0.1490 0.1525 0.1527 0.1546 0.1569 0.1576
20 3.476 0.1438 0.1473 0.1455 0.1440 0.1572 0.1607 0.1610 0.1630 0.1654 0.1662
25 3.706 0.1519 0.1556 0.1537 0.1523 0.1663 0.1699 0.1702 0.1725 0.1749 0.1758
30 3.929 0.1606 0.1646 0.1627 0.1612 0.1761 0.1799 0.1803 0.1827 0.1852 0.1861
35 4.163 0.1699 0.1741 0.1722 0.1706 0.1866 0.1906 0.1909 0.1936 0.1962 0.1972
40 4.270 0.1796 0.1841 0.1821 0.1805 0.1977 0.2019 0.2022 0.2052 0.2078 0.2090
45 4.494 0.1897 0.1945 0.1925 0.1908 0.2093 0.2137 0.2140 0.2173 0.2200 0.2213
50 4.654 0.2001 0.2053 0.2032 0.2015 0.2214 0.2260 0.2264 0.2299 0.2328 0.2341
55 4.804 0.2107 0.2165 0.2143 0.2124 0.2340 0.2388 0.2392 0.2431 0.2461 0.2475
60 4.912 0.2216 0.2279 0.2256 0.2237 0.2471 0.2521 0.2525 0.2568 0.2599 0.2615
65 5.060 0.2328 0.2397 0.2373 0.2353 0.2605 0.2660 0.2663 0.2710 0.2743 0.2760
70 5.311 0.2441 0.2517 0.2493 0.2472 0.2745 0.2803 0.2807 0.2858 0.2892 0.2910
75 5.339 0.2556 0.2641 0.2616 0.2594 0.2889 0.2951 0.2955 0.3011 0.3047 0.3067

0.2555 0.2640 0.2615 0.2593 0.2888 0.2950 0.2954 0.3010 0.3046 0.3066
80 5.463 0.2672 0.2767 0.2742 0.2718 0.3038 0.3105 0.3109 0.3171 0.3208 0.3230

0.2671 0.2766 0.2741 0.2717 0.3036 0.3103 0.3107 0.3169 0.3207 0.3228
85 5.539 0.2789 0.2896 0.2871 0.2846 0.3191 0.3264 0.3269 0.3336 0.3376 0.3399

0.2787 0.2894 0.2869 0.2844 0.3189 0.3261 0.3266 0.3333 0.3373 0.3396
90 5.710 0.2907 0.3028 0.3003 0.2977 0.3350 0.3428 0.3434 0.3507 0.3550 0.3575

0.2904 0.3024 0.3000 0.2973 0.3346 0.3424 0.3430 0.3503 0.3545 0.3570
95 5.905 0.3024 0.3161 0.3138 0.3111 0.3512 0.3598 0.3605 0.3685 0.3730 0.3757

0.3020 0.3156 0.3132 0.3105 0.3506 0.3592 0.3598 0.3678 0.3723 0.3750
100 5.857 0.3141 0.3297 0.3275 0.3247 0.3679 0.3773 0.3781 0.3868 0.3917 0.3946

0.3135 0.3289 0.3267 0.3239 0.3670 0.3764 0.3771 0.3858 0.3906 0.3935
105 5.919 0.3256 0.3433 0.3414 0.3385 0.3849 0.3953 0.3963 0.4056 0.4109 0.4140

0.3248(1) 0.3421 0.3402 0.3373 0.3836 0.3938 0.3948 0.4041 0.4093 0.4124
110 5.993 0.3368 0.3567 0.3552 0.3523 0.4020 0.4134 0.4146 0.4247 0.4304 0.4338

0.3356(1) 0.3552 0.3535 0.3506 0.4002 0.4113 0.4125 0.4225 0.4281 0.4315
115 6.088 0.3473 0.3698 0.3688 0.3660 0.4189 0.4314 0.4329 0.4437 0.4498 0.4535(1)

0.3457(1) 0.3676 0.3665 0.3635 0.4163 0.4285 0.4300 0.4407 0.4467 0.4502(1)
120 6.175 0.3567 0.3819 0.3816 0.3789 0.4348 0.4484 0.4504 0.4617 0.4683 0.4722(1)

0.3548(1) 0.3792 0.3786 0.3757 0.4316(1) 0.4448 0.4466 0.4580 0.4643 0.4681(1)

where the summations run over ns states with the principal
quantum number n � 3 and over np1/2, np3/2nd3/2, and nd5/2

states with n � 4, ρli (r) = exp [−2αZ(r/λC)/(1 + li)],

Dik = 1
2 〈ψi |[I − (−1)si β]ρli (r)|ψk〉 , (23)

and V SE
loc is defined by Eqs. (13) and (14).

IV. MATRIX ELEMENTS OF THE EXACT SELF-ENERGY
OPERATOR

To complete our construction of the model SE operator,
we need the diagonal and nondiagonal matrix elements of the
exact SE operator �(ε) with the hydrogenlike wave functions.
Calculations of the SE corrections reported previously in the
literature [47–49] were performed for the diagonal matrix ele-
ments only. In the present work, we extend these calculations
to both the diagonal and nondiagonal matrix elements of the
one-loop SE operator. Our calculation was carried out in two
steps. First, we evaluated the SE matrix element for the point
nucleus by using the numerical method described in detail in
Refs. [50,51]. Next, we separately calculated the finite nuclear
size correction, as described in Ref. [52]. The finite nuclear

size effect was calculated with the standard two-parameter
Fermi model for the nuclear charge distribution.

The results of our calculations for the ns, np1/2, np3/2,
nd3/2, and nd5/2 states with n up to 5 are presented in Tables I,
II, III, IV, and V, respectively. They are expressed in terms of
the function Fik(αZ), defined by

�ik ≡ 〈ψi |1

2
[�(εi) + �(εk)]|ψk〉

= α

π

(αZ)4

(nink)3/2
Fik(αZ)mc2 , (24)

where ni and nk are the principal quantum numbers of the i and
k states, respectively. In the tables, the results are presented
separately for the point nucleus and for the extended nucleus
(except for the cases when both results coincide). If no error is
specified, the results are supposed to be accurate to all digits
quoted. In the case of diagonal matrix elements, excellent
agreement with previous results [47–49] is observed. In this
paper, to define the model SE operator we use the values
Fik(αZ) with the principal quantum numbers ni,nk � 3 for
the s states and ni,nk � 4 for the p and d states. As for the
other data presented in the tables, they can be used for test
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TABLE IV. Self-energy correction for nd3/2 states, calculated with the hydrogenlike wave functions.

Z R (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)

10 3.005 −0.0427(1) −0.0352 −0.0344(1) −0.0407 −0.0371 −0.0395(1)
15 3.189 −0.0424 −0.0349 −0.0341 −0.0403 −0.0368 −0.0391
20 3.476 −0.0420 −0.0345 −0.0337 −0.0399 −0.0363 −0.0387
25 3.706 −0.0415 −0.0340 −0.0332 −0.0393 −0.0358 −0.0381
30 3.929 −0.0410 −0.0334 −0.0327 −0.0387 −0.0351 −0.0374
35 4.163 −0.0404 −0.0328 −0.0320 −0.0379 −0.0343 −0.0366
40 4.270 −0.0396 −0.0320 −0.0313 −0.0371 −0.0334 −0.0356
45 4.494 −0.0388 −0.0310 −0.0304 −0.0360 −0.0323 −0.0345
50 4.654 −0.0378 −0.0300 −0.0293 −0.0348 −0.0310 −0.0331
55 4.804 −0.0366 −0.0287 −0.0280 −0.0334 −0.0295 −0.0316
60 4.912 −0.0353 −0.0272 −0.0266 −0.0317 −0.0277 −0.0298
65 5.060 −0.0338 −0.0255 −0.0249 −0.0298 −0.0257 −0.0276
70 5.311 −0.0321 −0.0236 −0.0229 −0.0276 −0.0233 −0.0252
75 5.339 −0.0302 −0.0213 −0.0206 −0.0251 −0.0206 −0.0223
80 5.463 −0.0279 −0.0187 −0.0180 −0.0221 −0.0174 −0.0190
85 5.539 −0.0254 −0.0157 −0.0149 −0.0188 −0.0137 −0.0152
90 5.710 −0.0225 −0.0123 −0.0114 −0.0149 −0.0095 −0.0108
95 5.905 −0.0192 −0.0083 −0.0073 −0.0104 −0.0046 −0.0058
100 5.857 −0.0154 −0.0037 −0.0026 −0.0053 0.0010 0.0001
105 5.919 −0.0111 0.0015 0.0029 0.0006 0.0074 0.0068

−0.0112 0.0014 0.0028 0.0005 0.0073 0.0067
110 5.993 −0.0062 0.0074 0.0091 0.0074 0.0148 0.0145

−0.0063 0.0073 0.0090 0.0072 0.0146 0.0143
115 6.088 −0.0007 0.0142 0.0163 0.0151 0.0232 0.0232

−0.0009 0.0139 0.0160 0.0148 0.0229 0.0229
120 6.175 0.0055 0.0219 0.0245 0.0238 0.0328 0.0332(1)

0.0051(1) 0.0214 0.0239 0.0232 0.0321 0.0324(1)

TABLE V. Self-energy correction for nd5/2 states, calculated with the hydrogenlike wave functions.

Z R (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)

10 3.005 0.0408 0.0377 0.0354 0.0428 0.0424 0.0440
15 3.189 0.0412 0.0381 0.0358 0.0433 0.0429 0.0445
20 3.476 0.0417 0.0386 0.0363 0.0440 0.0435 0.0452
25 3.706 0.0424 0.0393 0.0370 0.0448 0.0443 0.0460
30 3.929 0.0432 0.0401 0.0377 0.0457 0.0453 0.0470
35 4.163 0.0441 0.0410 0.0386 0.0467 0.0463 0.0481
40 4.270 0.0452 0.0420 0.0396 0.0479 0.0475 0.0494
45 4.494 0.0463 0.0431 0.0407 0.0493 0.0489 0.0508
50 4.654 0.0475 0.0443 0.0419 0.0507 0.0504 0.0524
55 4.804 0.0489 0.0457 0.0432 0.0523 0.0520 0.0542
60 4.912 0.0503 0.0472 0.0446 0.0541 0.0538 0.0560
65 5.060 0.0519 0.0487 0.0462 0.0560 0.0557 0.0581
70 5.311 0.0536 0.0504 0.0478 0.0580 0.0578 0.0602
75 5.339 0.0553 0.0522 0.0496 0.0601 0.0600 0.0626
80 5.463 0.0572 0.0541 0.0514 0.0624 0.0623 0.0650
85 5.539 0.0591 0.0561 0.0534 0.0648 0.0647 0.0676
90 5.710 0.0612 0.0582 0.0554 0.0673 0.0673 0.0704
95 5.905 0.0633 0.0603 0.0575 0.0700 0.0700 0.0732
100 5.857 0.0654 0.0626 0.0597 0.0727 0.0728 0.0762
105 5.919 0.0677 0.0648 0.0619 0.0755 0.0757 0.0792
110 5.993 0.0699 0.0672 0.0642 0.0783 0.0786 0.0824
115 6.088 0.0722 0.0695 0.0665 0.0812 0.0816 0.0855(1)
120 6.175 0.0745 0.0719 0.0688 0.0841 0.0846 0.0887(1)
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TABLE VI. The self-energy function F (αZ), defined by �ESE =
α

π

(αZ)4

n3 F (αZ)mc2, for H-like ions. 〈v|hSE|v〉 denotes the results of the
model SE operator approach, 〈v|V SE

loc |v〉 is the contribution of the local
part of the model SE operator, and “Exact” labels the results of the
exact calculation.

Z State 〈v|V SE
loc |v〉 〈v|hSE|v〉 Exact

10 4s 4.60 4.96 4.97
5s 4.59 4.96 4.99
5p1/2 −0.15 −0.10 −0.09
5p3/2 0.17 0.15 0.15
5d3/2 −0.07 −0.05 −0.04
5d5/2 0.07 0.05 0.04

20 4s 3.11 3.57 3.58
5s 3.11 3.57 3.59
5p1/2 −0.12 −0.08 −0.07
5p3/2 0.18 0.16 0.17
5d3/2 −0.07 −0.05 −0.04
5d5/2 0.07 0.05 0.05

40 4s 1.91 2.51 2.52
5s 1.90 2.50 2.52
5p1/2 −0.04 0.00 0.01
5p3/2 0.22 0.21 0.21
5d3/2 −0.06 −0.04 −0.04
5d5/2 0.07 0.06 0.05

60 4s 1.46 2.13 2.14
5s 1.44 2.12 2.14
5p1/2 0.06 0.11 0.12
5p3/2 0.26 0.26 0.26
5d3/2 −0.05 −0.04 −0.03
5d5/2 0.08 0.06 0.06

83 4s 1.37 2.08 2.09
5s 1.34 2.05 2.06
5p1/2 0.21 0.29 0.30
5p3/2 0.30 0.33 0.33
5d3/2 −0.04 −0.03 −0.02
5d5/2 0.09 0.07 0.07

92 4s 1.44 2.15 2.16
5s 1.40 2.10 2.12
5p1/2 0.29 0.40 0.41
5p3/2 0.32 0.36 0.36
5d3/2 −0.03 −0.02 −0.01
5d5/2 0.09 0.08 0.07

calculations with H-like ions (see the next section) as well as
for extending the active space of the model SE operator.

To obtain the function Fik(αZ) for values of Z not listed in
the tables, one may use a polynomial interpolation, applied to
the function

Gik(αZ) = Fik(αZ) − δl0(4/3)ln(αZ)−2 . (25)

Here, following to Ref. [53], we have subtracted the log term
which represents the small-αZ behavior of Fik(αZ) for s states
(l = 0). The interpolation function is thus given by [53]

F ′
ik(αZ) = δl0(4/3)ln(αZ)−2 +

N∑
n=1

⎡
⎣∏

m�=n

Z − Zm

Zn − Zm

⎤
⎦

×[Fik(αZn) − δl0(4/3)ln(αZn)−2] . (26)

TABLE VII. The self-energy function F (αZ), defined by
�ESE = α

π

(αZ)4

n3 F (αZ)mc2, for neutral alkali metals in different
potentials. 〈v|hSE|v〉 denotes the results of the model operator
approach, calculated by averaging the model SE operator with
the valence electron wave function in the corresponding potential.
〈v|V SE

loc |v〉 is the contribution of the local part of the model SE
operator, and “Exact” labels the results of the exact calculation of
Ref. [20].

Atom Method xα = 0 xα = 1/3 xα = 2/3 xα = 1

Na 3s1/2 〈v|V SE
loc |v〉 0.166 0.163 0.176 0.214

〈v|hSE|v〉 0.170 0.168 0.183 0.224
Exact [20] 0.169 0.167 0.181 0.223

K 4s1/2 〈v|V SE
loc |v〉 0.067 0.067 0.076 0.100

〈v|hSE|v〉 0.072 0.072 0.083 0.110
Exact [20] 0.072 0.072 0.083 0.110

Rb 5s1/2 〈v|V SE
loc |v〉 0.0187 0.0193 0.0230 0.0320

〈v|hSE|v〉 0.0229 0.0237 0.0284 0.0397
Exact [20] 0.0228 0.0236 0.0283 0.0396

Cs 6s1/2 〈v|V SE
loc |v〉 0.0093 0.0097 0.0118 0.0171

〈v|hSE|v〉 0.0127 0.0132 0.0163 0.0236
Exact [20] 0.0126 0.0132 0.0162 0.0235

Fr 7s1/2 〈v|V SE
loc |v〉 0.0047 0.0052 0.0067 0.0102

〈v|hSE|v〉 0.0069 0.0076 0.0099 0.0151
Exact [20] 0.0068 0.0075 0.0098 0.0150

V. CALCULATIONS WITH THE MODEL SELF-ENERGY
OPERATOR

Since the model SE operator is constructed using the SE
matrix elements with H-like wave functions of the ns states at
n � 3 and the np and nd states at n � 4, first of all, we should
consider how it works for H-like states with higher values of
n. In Table VI we present the SE shifts for the 4s, 5s, 5p1/2,
5p3/2, 5d3/2, and 5d5/2 states in H-like ions, obtained using
the model SE operator 〈v|hSE|v〉 and compare them with the
corresponding exact results. To demonstrate the importance of
the nonlocal part of hSE, we present also the local 〈v|V SE

loc |v〉
contribution. As one can see from Table VI, for the s states the
difference between the exact and model SE operator results
does not exceed 1%. As for the p and d states, although the
relative value of the difference is significantly bigger than
for the s states, its absolute value, expressed in terms of the
functions F (αZ), does not exceed 0.01. We stress also the
importance of the nonlocal part of the model SE operator: for
the s states the difference between the local part and the total
result can amount to about 30%.

To demonstrate the efficiency of the method, we also
applied it to calculations of the Lamb shifts in neutral alkali
metals, Cu-like ions, superheavy atoms, and Li-like ions.

Calculations of the Lamb shift in alkali metals were
considered in Refs. [20,54]. In Ref. [20], it was calculated in
the potential Veff(r), which is defined in terms of an effective
charge Zeff(r) through

Veff(r) = −αZeff(r)

r
, (27)
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TABLE VIII. The self-energy contribution to the 4s-4p1/2, 4s-
4p3/2, 4p1/2-4d3/2, 4p3/2-4d3/2, and 4p3/2-4d5/2 transition energies
in Cu-like ions (in eV). 〈v|hSE|v〉 denotes the results of the model
operator approach, calculated by averaging the model SE operator
with the Dirac-Kohn-Sham wave function of the valence electron.
“Exact” labels the results of the exact calculation of Ref. [24].

Ion Transition 〈v|hSE|v〉 Exact [24]

Yb41+ 4s-4p1/2 −1.29 −1.28
4s-4p3/2 −1.21 −1.21

4p1/2-4d3/2 −0.10 −0.11
4p3/2-4d3/2 −0.18 −0.18
4p3/2-4d5/2 −0.14 −0.14

W45+ 4s-4p1/2 −1.64 −1.64
4s-4p3/2 −1.55 −1.56

4p1/2-4d3/2 −0.16 −0.17
4p3/2-4d3/2 −0.25 −0.25
4p3/2-4d5/2 −0.19 −0.19

Os47+ 4s-4p1/2 −1.85 −1.84
4s-4p3/2 −1.75 −1.76

4p1/2-4d3/2 −0.19 −0.20
4p3/2-4d3/2 −0.28 −0.28
4p3/2-4d5/2 −0.22 −0.22

Au50+ 4s-4p1/2 −2.18 −2.18
4s-4p3/2 −2.10 −2.10

4p1/2-4d3/2 −0.26 −0.28
4p3/2-4d3/2 −0.35 −0.35
4p3/2-4d5/2 −0.27 −0.28

Pb53+ 4s-4p1/2 −2.57 −2.56
4s-4p3/2 −2.49 −2.50

4p1/2-4d3/2 −0.35 −0.37
4p3/2-4d3/2 −0.43 −0.43
4p3/2-4d5/2 −0.34 −0.34

Bi54+ 4s-4p1/2 −2.71 −2.70
4s-4p3/2 −2.64 −2.64

4p1/2-4d3/2 −0.39 −0.40
4p3/2-4d3/2 −0.46 −0.46
4p3/2-4d5/2 −0.36 −0.37

Th61+ 4s-4p1/2 −3.85 −3.85
4s-4p3/2 −3.88 −3.89

4p1/2-4d3/2 −0.73 −0.74
4p3/2-4d3/2 −0.70 −0.71
4p3/2-4d5/2 −0.56 −0.57

U63+ 4s-4p1/2 −4.24 −4.24
4s-4p3/2 −4.32 −4.33

4p1/2-4d3/2 −0.87 −0.88
4p3/2-4d3/2 −0.79 −0.79
4p3/2-4d5/2 −0.63 −0.65

where

Zeff(r) = Znuc(r) − r

∫ ∞

0
dr ′ 1

r>

ρt(r
′) + xα

[
81

32π2
rρt

]1/3

(28)

and ρt = ρv + ρc is total (valence plus core) electron charge
density, which is determined by self-consistently solving the
Dirac equation with the potential Veff(r) (see Ref. [20] for
details). The choice xα = 0 corresponds to the Dirac-Hartree

TABLE IX. The self-energy contribution to the binding energy
of the valence electrons in Rg, Cn, E119 and E120 (in eV). In this
work, the perturbation theory (PT) value is obtained by averaging the
model SE operator with the Dirac-Fock wave function of the valence
electron, while the DF and total DF values are obtained by including
this operator in the DF equations. The DF value is given by the SE
contribution to the one-electron binding energy, whereas the total DF
value is obtained as the difference between the SE contributions to
the total DF energies of the atom and the ion (the 2S1/2 →1S0 and the
1S0 →2S1/2 transitions are considered for Rg and Cn, respectively;
see the text). In Refs. [54,56], the calculations were performed with
a local DF potential.

Valence This Other
Atom electron Method work Ref. [56] works

Rg 7s PT −0.088 −0.089 −0.087a

DF −0.105 −0.102
Total DF −0.096

Welton method −0.084b

Local SE pot. −0.089c

Cn 7s PT −0.101 −0.103
DF −0.105 −0.110

Total DF −0.098
Local SE pot. −0.091c

E119 8s PT −0.0233 −0.0274a

DF −0.0250
Total DF −0.0232

Local SE pot. −0.0210c

E120 8s PT −0.0331
DF −0.0265

Total DF −0.0250
Local SE pot. −0.0226c

aTaken from Ref. [54].
bTaken from Ref. [55].
cTaken from Ref. [31].

potential, xα = 2/3 gives the Kohn-Sham (KS) potential, and
xα = 1 is the Dirac-Slater potential. In Table VII, we present
the results of our calculations of the SE contribution to the
Lamb shift performed for xα = 0, 1/3, 2/3, 1 and related
exact data by Sapirstein and Cheng [20]. Our data were
obtained by averaging the model SE operator hSE, given
by Eq. (22), with the wave function of the valence state
v determined from the Dirac equation with the potential
Veff(r). To demonstrate the importance of the nonlocal part
of hSE, in addition to the total 〈v|hSE|v〉 contribution, we
present also the local 〈v|V SE

loc |v〉 part. As one can see from
the Table VII, for all atoms the 〈v|hSE|v〉 values are in a good
agreement with the exact results, while the local potential ap-
proximation 〈v|V SE

loc |v〉 works reasonably well only for low-Z
systems.

In Ref. [24], the QED corrections to the transition energies
in Cu-like ions have been calculated in the Kohn-Sham
potential. In Table VIII, we present the SE corrections to
the 4s-4p1/2, 4s-4p3/2, 4p1/2-4d3/2, 4p3/2-4d3/2, and 4p3/2-
4d5/2 transition energies obtained by averaging the model SE
operator with the wave function of the valence electron. This
wave function was calculated by solving the KS equation
with the KS potential constructed self-consistently with the
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TABLE X. The screened self-energy for the 2s, 2p1/2, and 2p3/2

states of Li-like ions (in eV). The Kohn-Sham (KS) and Dirac-Fock
(DF) results are obtained by calculating the total ion energy with the
model SE operator included in the KS and DF equations, respectively,
and subtracting the related energies evaluated without the model
SE operator and the self-energy contributions calculated with the
hydrogenlike wave functions. A comparison with the calculations
performed by perturbation theory (PT) in the Kohn-Sham potential
[26,27] is given.

Z State KS DF PT [26] PT [27]

20 2s −0.047 −0.045 −0.044 −0.046
2p1/2 −0.009 −0.008 −0.008 −0.008
2p3/2 −0.012 −0.011 −0.013 −0.013

40 2s −0.277 −0.269 −0.260
2p1/2 −0.063 −0.059 −0.059
2p3/2 −0.077 −0.073 −0.085

50 2s −0.50 −0.49 −0.48
2p1/2 −0.13 −0.12 −0.12
2p3/2 −0.14 −0.14 −0.16

60 2s −0.84 −0.82 −0.80
2p1/2 −0.24 −0.24 −0.25
2p3/2 −0.24 −0.23 −0.27

74 2s −1.58 −1.55 −1.55
2p1/2 −0.57 −0.56 −0.62
2p3/2 −0.45 −0.43 −0.53

83 2s −2.35 −2.25 −2.32 −2.26
2p1/2 −0.97 −0.98 −1.07 −1.07
2p3/2 −0.65 −0.61 −0.75 −0.76

92 2s −3.47 −3.19 −3.81
2p1/2 −1.67 −1.69 −1.58
2p3/2 −0.91 −0.86 −1.04

4s state. The comparison with the related exact results from
Ref. [24] is also given. It can be seen that the model SE
operator results are in a very good agreement with the exact
results.

Experiments with superheavy elements have triggered a
great interest in calculations of the QED effects in superheavy
atoms [31,32,54–56]. In Ref. [56], the QED contributions
to the binding energy of the valence 7s electrons in Rg
(Z = 111) and Cn (Z = 112) have been evaluated in a local
Dirac-Fock potential. In Table IX, we compare the related
SE contributions obtained using the model SE operator in the
Dirac-Fock method with those by Goidenko [56]. Although
the calculations in the local DF potential are not fully
equivalent to the calculations based on the DF equations,
the SE contributions to the one-electron binding energies
obtained by averaging the model SE operator with the DF
wave function of the valence electron as well as by including
this operator in the DF equations are in good agreement with
Goidenko’s corresponding results. For comparison, we present
also the total DF values, which are obtained as the difference
between the SE contributions to the total DF energies of the
atom and the ion. It is known [57,58] that for Rg and Cn
the ionization occurs out of the 6d5/2 shell instead of the 7s

shell. However, for comparison purposes, here we consider
the 2S1/2 →1S0 transition for Rg and the 1S0 →2S1/2 transition

for Cn. The presented results are also in reasonable agreement
with those based on the Welton method [55] and with the
results obtained using a local SE potential [31]. In Table IX, we
give also the results of our calculations of the SE corrections
to the binding energy of the valence 8s electrons in E119
and E120 and compare them with the values obtained in
Ref. [31].

Finally, we applied our model approach to the Li-like ions,
for which rigorous QED calculations have been performed.
The self-energy screening diagrams for Li-like ions to first
order in 1/Z were first evaluated in Ref. [15]. In that paper,
the calculations were performed in the Coulomb potential.
Later, the same diagrams were calculated in the Kohn-Sham
and core-Hartree potentials [26,27]. In Table X, we present
the results of our calculations of the screened SE corrections
in Li-like ions based on the model SE operator approach and
compare them with the related results from Refs. [26,27]. In
our approach, the screened SE corrections were obtained by
calculating the total ion energy with the model SE operator
included in the DF or the KS equation and subtracting both
the related energy evaluated without the model SE operator
and the SE contribution evaluated with the H-like wave
functions. In the case of the KS method, the KS potential
was constructed self-consistently with the valence state under
consideration. As one can see from Table X, the model SE
operator results obtained employing the KS and DF equations
are in fair agreement with the results obtained with the
perturbation theory [26,27]. Therefore, to good accuracy, the
total SE corrections can be obtained by summing the H-like
SE contributions and the screened SE corrections evaluated by
solving either DF or KS equations with the model SE operator
included, as described above.

VI. CONCLUSION

In this paper we have developed the model QED operator
approach to calculations of the Lamb shifts in relativistic
atomic systems. With this method, we proposed the model
self-energy operator which is given by Eq. (22). This operator
can be easily incorporated in any calculations employing the
Dirac-Coulomb-Breit Hamiltonian. This was demonstrated by
calculating the Lamb shifts in atoms and ions with the use
of the model SE operator and comparing the obtained results
with corresponding exact QED calculations.
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