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Atomic ground states in strong magnetic fields: Electron configurations and energy levels
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Using a combination of a fast two-dimensional-Hartree-Fock-Roothaan method and highly accurate fixed-phase
diffusion quantum Monte Carlo simulations, we analyze the electronic structure and calculate the energy of the
ground states of atoms with nuclear charges Z = 2–26 in very strong magnetic fields B = 107–5 × 108 T,
relevant for astrophysical problems, e.g., the thermal emission of strongly magnetized isolated neutron stars.
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I. INTRODUCTION

Over the past decade, continuing effort has gone into
calculating, with ever-increasing accuracy and with various
methods, the energies of atoms and ions in neutron star
magnetic fields. The motivation comes largely from the fact
that features discovered [1–3] in the thermal emission spectra
of isolated neutron stars may be due to the absorption of
photons by heavy atoms in the hot thin atmospheres of these
strongly magnetized cosmic objects [4]. Also, features of
heavier elements may be present in the spectra of magnetic
white dwarf stars [5,6].

Although comprehensive and precise data for hydrogen in
strong magnetic fields have been available for some time (cf.
Refs. [7–10]), this is less the case for atoms and ions with more
than one electron. Accurate ground-state energies of atoms up
to nuclear charge Z = 10 in the high-field regime were first
determined by Ivanov and Schmelcher [11], who solved the
two-dimensional- (2D-) Hartree-Fock equations on a flexible
mesh. By means of a specific multiconfigurational perturbative
hybrid Hartree-Hartree-Fock method, Mori and Hailey [12]
computed the energies of low-lying states in strong magnetic
fields for atoms up to Z = 26. In another Hartree-Fock
approach, Thirumalai and Heyl [13] obtained quite accurate
values for the low-lying levels of helium, whereas, Becken
et al. [14] and Becken and Schmelcher [15–17] used a highly
precise full configuration-interaction (CI) method to analyze a
large amount of helium states and transitions in a wide range
of magnetic-field strengths. Low-lying states of lithium and
beryllium have been studied with high accuracy using modified
freezing full-core methods [18,19], configuration-interaction
methods [20,21], and methods based on an anisotropic Gaus-
sian basis set [22–24].

Along a different line of approach, Monte Carlo methods
from ab initio quantum chemistry [25] have also been proven to
be a powerful tool for the very accurate computation of the en-
ergy values of the ground states of all elements up to iron (Z =
26) in magnetic fields B = 107–5 × 108 T [26]. For helium,
they have also been used for the computation of low-lying ex-
cited states [27,28]. These methods use precalculated Hartree-
Fock wave functions enhanced by Jastrow factors as guiding
wave functions for the diffusion quantum Monte Carlo step.

In Ref. [26], the guiding wave functions were determined
using the adiabatic approximation, which amounts to taking
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single-particle orbitals as products of a Landau wave function
for the quantum-mechanical description of the (fast) motion
of the electron perpendicular to the direction of the magnetic
field, and a longitudinal wave function for the (slow) motion
along the field. This approximation limits the applicability
of the method to magnetic fields where the nuclear charge
scaled magnetic-field parameter βZ = B/(B0Z

2) (with B0 =
4.701 03 × 105 T) is much larger than 1. (At B0, the electron’s
Larmor radius becomes equal to the Bohr radius of the
hydrogen atom.)

The purpose of this paper is to abandon this approximation
and, in this way, to extend the range of applicability of quantum
Monte Carlo calculations for atoms in strong magnetic fields
down towards the regime of intermediate-field strengths. We
perform this by choosing a more sophisticated Ansatz for the
single-particle orbitals in the Hartree-Fock step, which yields
enhanced guiding wave functions for the quantum Monte Carlo
procedure.

In very strong magnetic fields, the spin of all electrons
can be assumed to be aligned opposite to the direction of the
magnetic field because of the large spin-flip energies. This is
no longer true when the magnetic field decreases. We also
include states without full spin alignment and can, indeed,
demonstrate that, for Z > 10 in a field with B = 107 T and
for Z > 21 at B = 5 × 107 T, the ground-state configurations
contain an electron with spin parallel to the magnetic field,
contrary to the assumptions made in earlier calculations [26].

The paper is organized as follows. In Sec. II, we give a brief
summary of the 2D-Hartree-Fock-Roothaan (2DHFR) method
and recapitulate the fixed-phase diffusion quantum Monte
Carlo (FPDQMC) method in Sec. III. Section IV contains
a comparison of our results for ground-state energies and
oscillator strengths with previous work in the literature. We
conclude with a summary and an outlook in Sec. V.

II. THE 2DHFR METHOD

A. Two-dimensional-Hartree-Fock-Roothaan equations

Since we restrict ourselves to strong magnetic fields βZ �
0.1, we use cylindrical coordinates and atomic Rydberg units
for the many-particle Hamiltonian,

Ĥ =
N∑

i=1

(
− �i − 2iβ∂ϕi

+ β2ρ2
i + 4βmsi

− 2
Z

|r i |

+
N∑

j=i+1

2

|r i − rj |
)

, (1)
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FIG. 1. (Color online) Squared z-wave functions |Pn(z)|2 (max-
ima normed to one) corresponding to the first four Landau chan-
nels for the hydrogen ground state at B = 105 T compared to
|P (z)|2 (gHFFER) obtained with our previous Ansatz (2).

of a nonmoving N -electron atomic system in a magnetic field
pointing in the z direction with infinite mass of the nucleus
of charge Z. Flipping a single-electron spin ms equals 4β in
Rydberg energies, so for very high magnetic fields, we expect
full spin-down polarization, whereas, for intermediate-field
strengths, the spin of a few electrons may point “up” to gain
access to low-lying single-particle orbitals that are already
occupied with spin-down electrons.

The many-particle wave function � is constructed from a
Slater determinant of single-particle orbitals for each electron
i. These orbitals are products of a spatial wave function
ψi(r) and a spin function χi(s). In a previous version of the
Hartree-Fock-Roothaan method [29,30], the single-electron
wave functions were taken in the form of a product,

ψ̃ i(ρi,ϕi,zi) = P i(zi)
NL∑
n=0

t in
nmi
(ρi,ϕi), (2)

a sum over the NL + 1 Landau states 
nmi
(ρ,ϕ), weighted

by an occupation vector t in and a Landau quantum number
independent longitudinal wave function P i(zi).

In this paper, we go beyond the product Ansatz in Eq. (2)
and proceed to a full 2D description of the problem with
individual longitudinal wave functions P i

n(zi) for each Landau
level,

ψi(ρi,ϕi,zi) =
NL∑
n=0

P i
n(zi)
nmi

(ρi,ϕi). (3)

As an example, Fig. 1 shows that the longitudinal wave
functions P i

n(zi) corresponding to the Landau levels 
nmi

differ considerably for magnetic-field strengths βZ � 1, thus,
our Ansatz (3) will allow for a much better description of the
wave functions.

The z-wave functions,

P i
n(zi) =

∑
ν

αi
nνB

i
ν(zi) (4)

are expanded using individual B-spline [31] bases Bi
ν(zi) for

each electron as described in Refs. [29,30]. The variation in the
energy functional with respect to the B-spline coefficients αi

nν

yields two-dimensional-Hartree-Fock-Roothaan equations,∑
n′μ

F i
nνn′μαi

n′μ = εi

∑
n′μ

Si
nνn′μαi

n′μ, (5)

with F i
nνn′μ and Si

nνn′μ being the Fock matrix and the overlap
matrix, respectively. The Fock matrix is the sum of the longi-
tudinal and transverse kinetic energies, the nuclear potential
energy, as well as the direct and exchange electron-electron
energy matrices,

longF i
nνn′μ = −δn,n′

∫ ∞

−∞
Bi

ν(zi)
∂2

∂z2
i

Bi
μ(zi)dzi, (6)

tranF i
nνn′μ = 4nβδn,n′

∫ ∞

−∞
Bi

ν(zi)B
i
μ(zi)dzi, (7)

nuclF i
nνn′μ =

∫ ∞

−∞
Bi

ν(zi)V
i
nn′ (zi)B

i
μ(zi)dzi, (8)

dirF i
nνn′μ =

N∑
j=1

1

ξ j

N
j
int∑

k,k′

∫ ∞

−∞
Bi

ν(zi)B
i
μ(zi)

×
∫ ∞

−∞
P

j

k (zj )Uij

nn′kk′(zi,zj )P j

k′(zj )dzjdzi, (9)

exF i
nνn′μ = −

N∑
j=1

δmsi ,msj

1

ξ j

N
j
int∑

k,k′

∫ ∞

−∞
Bi

ν(zi)P
j

k (zi)

×
∫ ∞

−∞
Bi

μ(zj )Aij

nn′kk′(zi,zj )P j

k′(zj )dzjdzi . (10)

Explicit forms of the effective potentials V i
nn′ (zi),

U
ij

nn′kk′(zi,zj ), and A
ij

nn′kk′(zi,zj ) can be found in Ref. [29] along
with a description of their computation. They are precalculated
to a precision of eight digits to speed up the evaluation of the
integrals. The parameters ξ j and N

j
int will be explained in detail

in the next subsection. The overlap matrix can be calculated
using

Si
nνn′μ = δn,n′

∫ ∞

−∞
Bi

ν(zi)B
i
μ(zi)dzi. (11)

To avoid convergence problems and to reduce the number of
iterations, we use the results obtained with our Hartree-Fock-
finite-element-Roothaan II (HFFER II) code [30] as the initial
wave functions and solve equations (5) self-consistently.

B. Interaction cutoff and convergence

In the regime of intermediate magnetic-field strengths βZ �
1, single-electron states close to the nucleus and its spherically
symmetric Coulomb potential are not easily described using
only a few Landau states in the cylindrically symmetric
expansion (3). This problem occurs for states with magnetic
quantum numbers |m| � 5 and, especially, for states with
m = 0, whose probability distributions have a finite cusp at
ρ = 0. Entering this regime, therefore, requires blowing up
the Landau expansion considerably.

We increased the number of included Landau levels from
NL = 7 in the previous application of the Hartree-Fock-
Roothaan method to NL = 30 in this paper. However, a
complete evaluation of the energy functional would require
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the calculation of roughly N (NL)4 electron interaction terms
in (9) and (10), causing an unacceptable loss of efficiency. We
bypass this problem by introducing the cutoff parameters Ni

int,
dropping higher Landau-level interaction terms in Eqs. (9) and
(10) between electrons i and j with k,k′ > N

j
int or n,n′ > Ni

int
but include all NL Landau levels in Eq. (8). We, thereby,
induce a new cutoff error in our energy functional, lowering
its minimum value and depriving it of its variational nature
since the repulsive Coulomb interactions are not fully taken
into account anymore.

To reduce this error, we compensate for the loss of the
energy contributions due to the repulsive electron-electron
interaction by renormalizing the lower Landau-levels’ inter-
action terms in (9) and (10) with a factor,

ξ j =
N

j
int∑

k=0

∫ ∞

−∞

∣∣P j

k (zj )
∣∣2

dzj . (12)

We implemented a simple Monte Carlo integration algo-
rithm (not the FPDQMC method discussed later) with a correct
evaluation of the electron-electron interaction terms (Ni

int =
N

j
int = NL) to double-check the results obtained with this

modified energy functional. With the help of this algorithm,
we are able to show that the new cutoff-induced energy
error is negligible as long as the occupation of the higher
Landau expansion terms stays small. This is the case for all
single-particle wave functions when βZ � 0.1.

Choosing a proper interaction cutoff parameter Ni
int for

each electron is crucial, both for the speed of the algorithm
and for the quality of the results. The optimal Ni

int strongly
depends on βZ and the quantum numbers of the wave function
ψi . By the use of the Landau-level occupation vector t in
from the initial wave functions obtained with our previous
implementation [30], we can predict reasonable parameters
Ni

int for each electron. We found (t iNint
)2 ≈ 10−6 to be a reliable

criterion for the cutoff parameter.
Figure 2 shows the change in the computed ground-state

energy of neutral iron at B = 5 × 107 T when the Landau
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FIG. 2. (Color online) Ground-state energy of neutral iron at B =
5 × 107 T calculated with the 2DHFR method for different orders NL

of the Landau expansion. Simple Monte Carlo calculations confirm
the smallness of the energy error induced by the reduced electron-
electron interactions. Results of our previous method (HFFER) with
NL = 7 and of the accurate FPDQMC procedure are shown as well.

expansion order NL of the single-particle wave functions is
increased (solid red line). The convergence of our Ansatz (3)
is clearly visible. The simple Monte Carlo corrected energies
(blue points with error bars) correspond to the unmodified
energy functionals and are, at most, 2.2 Ry or 0.6‰ above
the 2DHFR results. The statistical error of these Monte Carlo
results is very small, thus, the error bars are hardly visible. At
NL = 30, the gap to the FPDQMC result (dotted orange line)
has decreased to less than 7‰, which means an improvement
compared to our previous HFFER result (dashed green line) of
about 166 Ry or 46‰. Since the electron-electron interaction
potentials are precalculated only up to Ni

int = 7, the small
cutoff error is unavoidable, unless we restrict ourselves to
NL = 7. However, this yields a result 100 Ry off the current
method’s value as indicated by the black arrow.

III. ESSENTIALS OF THE FPDQMC METHOD

For the reader’s convenience, we briefly recapitulate the
essentials of the FPDQMC method. More detailed discussions
of the DQMC method can be found, e.g., in Refs. [32,33].

The DQMC method is a projector method based on the
simulation of the importance-sampled imaginary-time (τ =
it) Schrödinger equation,

∂f (R,τ )

∂τ
= 1

2�f (R,τ ) − 1
2∇ · [f (R,τ )FQ(R)]

−[EL(R) − Eoff]f (R,τ ). (13)

Here, R = (r1, . . . ,rN ) is a position vector in full configura-
tion space, the sampled density,

f (R,τ ) ≡ �G(R)�(R,τ ) (14)

is a product of an arbitrary function �(R,τ ) and the guiding
function �G(R), whereas, FQ(R) = 2∇�G(R)/�G(R) is the
quantum force and EL(R) = Ĥ�G(R)/�G(R) is the local
energy. The energy offset Eoff is introduced to increase the
stability of the simulation and is continuously adapted to
the current best estimate of the true ground-state energy. By
expanding the function � in the basis of eigenfunctions {�i}
of Ĥ , i.e.,

�(R,τ ) =
∞∑
i=0

ci�i(R)e−(Ei−Eoff )τ , (15)

one sees that contributions of excited states are exponentially
suppressed with increasing τ , and only low-lying state contri-
butions remain after a sufficient number of steps in imaginary
time. Equation (13) is rewritten in integral form

f (R′,τ + �τ ) =
∫

G(R′,R,�τ )f (R,τ )d3NR, (16)

and the Green’s function is written in short-time approximation
as G = GDGB + O(δτ 2), where

GD(R′,R; δτ ) = exp
[−(R′−R−δτ FQ(R)/2)2

2 δτ

]
(2π δτ )3N/2

, (17)
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and

GB(R′,R; δτ ) = exp

[
−

(
EL(R) + EL(R′)

2
− Eoff

)
δτ

]
.

(18)

This integral equation can be simulated in configuration space
with an ensemble of random walkers. Each walker moves ac-
cording to R′ = R + η + (δτ/2)FQ(R), where η is a vector of
Gaussian distributed random numbers (mean μ = 0 and vari-
ance σ 2 = δτ ). After each step, C = trunc[GB(R′,R; δτ ) +
χ ] copies of each walker are created, where χ ∈ [0,1) is a
uniform random variate. In all following steps, these C copies
move independently.

We note that the FPDQMC method strictly uses two
different functions constructed from the Hartree-Fock results.
First, the guiding function �G(R) is used to determine the
movement of the ensemble and the creation of walkers as
outlined above. Second, the trial function �T(R) is used to
evaluate the energy estimate. As is usual in the FPDQMC
method, we take the choice �G(R) = |�T(R)|.

In the presence of a magnetic field, the time-reversal
invariance of the Hamiltonian is broken, and the ground
state may be complex. The fixed-phase variant of the DQMC
method introduced in Ref. [34] is designed for the treatment
of this situation. The initial function is split into its modulus
and its phase via

�(R,τ ) = |�(R,τ )|eiφ(R,τ ). (19)

With the help of this Ansatz, the Schrödinger equation can be
split into two coupled differential equations for the modulus
and the phase,

⎛
⎝ Ne∑

j=1

−1

2
�j + 1

2
(∇jφ + Aj )2 + V (rj )

⎞
⎠ |�| = E|�|,

(20a)
Ne∑
j=1

∇j · [|�|2(∇jφ + Aj )] = 0. (20b)

In the fixed-phase approximation, Eq. (20b) is assumed to
be solved by the phase of the trial function �T, and Eq. (20a)
is solved under this assumption.

In recent years, progress has been made in overcoming the
fixed-phase approximation, see, e.g., Refs. [35,36]. However,
these methods are computationally much more expensive.

A. Properties of the trial functions

The trial function,

�T(R) = J�↓(R)�↑(R) (21)

is constructed from two Slater determinants—one for all
spin-up electrons �↑ and one for all spin-down electrons
�↓—using the resulting single-particle orbitals of the 2DHFR
calculations. This Ansatz does not change the expectation
value of any observable [25] and is most simple to implement.
In Eq. (21), we also add a Padé-Jastrow factor [25] J =

exp(−u), with u = uNe + uee, where

uNe =
N∑

i=1

Zri

1 + bNeri

(22)

is the electron-nucleus part and

uee =
N∑

i=1

N∑
j<i

aij rij

1 + beerij

(23)

is the electron-electron part with aij = −1/4 for electrons with
parallel spin and aij = −1/2 for electrons with antiparallel
spin.

The two free parameters bNe and bee are optimized in a
two-dimensional scheme using a variational quantum Monte
Carlo algorithm with correlated sampling [25]. We optimize
our guiding function such that the energy is minimal. We found
this optimization scheme to be more stable than the usual
optimization with respect to the variance. Our results are
almost unaffected by small variations in the values of bNe

and bee, therefore, this rather simple procedure is sufficient.
For a detailed discussion of more advanced methods for
the optimization of the Jastrow trial functions see, e.g.,
Refs. [37,38].

B. Control of the time-step error

The short-time approximation yields an error of order
O(δτ 2) but with a prefactor that strongly depends on the
employed guiding function. As we have to consider many
different guiding functions for different elements and several
magnetic-field strengths, it is not a trivial task to find step sizes
δτ such that the time-step error is negligible on the one hand
and, on the other hand, that δτ is as large as possible in order
to minimize the correlation of our data.

To minimize the time-step error in all cases, we imple-
mented the modifications to the quantum force proposed by
Umrigar et al. [39]. In addition to that, we found 〈|ln(GB)|〉 �
10−3 per walker and step to be a good criterion for a suitable
step size. This means each walker is copied or is deleted
in each step with a probability of approximately 0.1%. We
implemented a routine that performs very small FPDQMC
test runs to determine a step size such that this condition is
fulfilled. An example of the dependence of the time-step error
on the value of 〈|ln(GB)|〉 is shown in Fig. 3. Smaller values
of 〈|ln(GB)|〉 obviously correspond to smaller time steps.

IV. RESULTS AND DISCUSSION

A. Notation

Throughout the rest of this paper, we will use the high-field
notation (−m,ν) with the magnetic quantum number m and
the longitudinal excitation number ν to denote single-particle
electronic configurations. Corresponding low-field quantum
numbers can be found, e.g., in Ref. [7]. Since the FPDQMC
method works in full configuration space, single-particle
quantum numbers are replaced by the total wave function’s
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FIG. 3. Time-step error for the helium state (m = 0,ν = 0) (m =
−1,ν = 0) at B = 5 × 107 T as a function of 〈|ln(GB)|〉.

quantum numbers,

M =
N∑
i

mi �z =
N∏
i

πzi
, Sz =

N∑
i

msi
, (24)

namely, the total magnetic quantum number M , the total z

parity �z, and the total spin projection Sz. The FPDQMC
method is limited to the computation of the ground-state
energy of a symmetry subspace (−M,�z,−Sz) defined by the
guiding wave function. Thus, a direct comparison of energies
obtained with Hartree-Fock calculations to FPDQMC results
is restricted to such states.

B. Helium

We begin this discussion introducing results for several
helium states. In Tables I and II, we compare our previous
results [29] (HFFER) with the ones found by our 2DHFR and
FPDQMC methods as well as with one-dimensional Hartree-
Fock results from Jones et al. [40], who used an anisotropic
basis set, and with those from Thirumalai and Heyl [13], who
solved 2D Hartree-Fock equations on a grid.

TABLE I. Binding energies of the (0,0)(1,0) state of helium—
symmetry subspace (1, + ,1)—in Rydberg units at different magnetic-
field strengths calculated with our previous (HFFER) and current
(2DHFR and FPDQMC) Ansätze, compared to the results of other
groups.

βZ HFFER 2DHFR FPDQMC Ref. [40] Ref. [13]

0.1 5.049 5.544 5.6667(3) 5.6602 5.6756
0.2 6.173 6.549 6.6145(2) 6.6032 6.6340(1)
0.5 8.268 8.572 8.6101(1) 8.5960 8.6200(9)
0.7 9.273 9.564 9.5980(1) 9.5822 9.6116(6)
1 10.504 10.784 10.8171(1) 10.800 10.810(2)
2 13.455 13.722 13.7545(1) 13.733 13.754(3)
5 18.716 18.969 19.0091(1) 18.976 19.00(2)
7 21.109 21.357 21.4026(2) 21.3632 21.39(3)
10 23.956 24.197 24.2494(2) 24.2022 24.22(4)
20 30.307 30.736 30.8073(2) 30.7380
50 41.438 41.777 41.8902(4) 41.7752
70 46.310 46.620 46.7514(5) 46.6132
100 51.985 52.265 52.4221(6) 52.2528

TABLE II. Binding energies of the (0,0)(2,0) state of helium—
symmetry subspace (2, + ,1)—in Rydberg units at different magnetic-
field strengths calculated with our previous (HFFER) and current
(2DHFR and FPDQMC) Ansätze, compared to the results of other
groups.

βZ HFFER 2DHFR FPDQMC Ref. [40] Ref. [13]

0.1 4.763 5.245 5.3783(4) 5.3742 5.404(6)
0.2 5.781 6.140 6.2091(3) 6.2010 6.239(3)
0.5 7.667 7.953 7.9908(1) 7.9780 8.00(3)
0.7 8.577 8.849 8.8839(1) 8.8684 8.90(4)
1 9.696 9.957 9.9910(1) 9.9732 9.99(4)
2 12.394 12.642 12.6765(1) 12.654 12.67(4)
5 17.234 17.469 17.5133(1) 17.477 17.50(5)
7 19.445 19.674 19.7241(2) 19.681 19.71(7)
10 22.079 22.302 22.3597(2) 22.3080 22.3(2)
20 27.951 28.406 28.4480(2) 28.3750
50 38.330 38.683 38.7795(4) 38.6572
70 42.882 43.202 43.3222(5) 43.1908
100 48.191 48.478 48.6337(7) 48.4566

Compared to our previous HFFER method, we achieve
large improvements for the energy values, especially at small
βZ . Even for very large values of βZ , there is still a small energy
correction to the previous values since the (0,0) single-electron
state has a nonvanishing probability density at the nucleus, and
thus, the wave function always retains a small radial symmetric
component. For βZ < 1, the results from Ref. [13] are better
than our FPDQMC results. This might be due to the phase error
of the 2DHFR guiding function, which cannot be overcome by
the FPDQMC method. For βZ > 1, our Hartree-Fock results
are in good agreement with both Refs. [13] and [40], and
our FPDQMC results outmatch them both. We note that the
2DHFR program run time for helium and heliumlike ions is
merely about 20 s per state on a single 2.4-GHz AMD Athlon
X2 processor.

In a series of papers [14–16], Becken et al. [14] and
Becken and Schmelcher [15,16] presented very accurate
results of full CI calculations for helium for a wide range
of magnetic-field strengths. We compare our results for three
different helium states to the results from these papers in Tables
III–V. In Table III, we investigate state (0,0)(0,1). As this

TABLE III. Binding energies of the real (0,0)(0,1) helium
state—symmetry subspace (0, − ,1)—in Rydberg units at different
magnetic-field strengths calculated with our current methods and
compared to results of Becken et al.

β 2DHFR FPDQMC Ref. [14]

0.25 4.747 4.959 86(30) 4.960 344
0.40 5.144 5.276 74(22) 5.276 444
0.50 5.360 5.467 64(20) 5.467 626
0.80 5.901 5.975 00(16) 5.974 370
1.00 6.208 6.270 64(14) 6.270 284
2.50 7.882 7.918 54(10) 7.918 470
5.00 9.668 9.697 16(8) 9.697 180
10.00 11.994 12.023 30(8) 12.022 976
25.00 16.093 16.118 60(10) 16.118 932
50.00 20.135 20.160 24(10) 20.159 946
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TABLE IV. Same as in Table III but for the complex helium state
(0,0)(1,1)—symmetry subspace (1, − ,1).

β 2DHFR FPDQMC Ref. [15]

0.25 4.596 4.814 70(28) 4.815 042
0.40 4.985 5.118 08(22) 5.118 01
0.50 5.197 5.301 70(20) 5.301 946
0.80 5.725 5.791 90(16) 5.792 384
1.00 6.025 6.080 66(16) 6.080 608
2.50 7.673 7.703 30(10) 7.703 766
5.00 9.451 9.474 66(10) 9.474 98
10.00 11.780 11.802 66(8) 11.804 22
25.00 15.895 15.915 70(10) 15.918 188
50.00 19.952 19.975 22(10) 19.978 752

state is real, Eq. (20b) is trivially fulfilled because ∇jφ = 0
and ∇j� · Aj = 0 due to the cylindrical symmetry of ψ .
Therefore, no phase errors occur for this state. Indeed, our
results are in excellent agreement with the values in Ref. [14]
with a maximum deviation of 0.1‰.

Unlike the (0,0)(0,1) state, the two configurations (0,0)(1,1)
(Table IV) and (0,0)(3,0) (Table V) are complex, and therefore,
our results are tainted with a phase error. Still, in Table IV,
we come very close to the results of Becken et al. with a
maximum error of ∼0.18‰, which is only slightly larger than
the error for the real state. The situation is slightly worse for the
configuration (0,0)(3,0), especially for the highest magnetic-
field strengths where our results deviate by 2‰ from those in
Ref. [16].

If we take into account that we use a rather simple single-
determinant Ansatz as a guiding function, the accuracy of our
results is very satisfying. In addition, an error in the range
of 0.1‰ is already on the same order of magnitude as the
expected corrections due to the relativistic effects [41].

C. Ground states for Z = 2–26

Ground states are of great importance for many applica-
tions, e.g., the calculation of ionization energies or thermal
occupation, and, in this paper, we, therefore, focus on the
computation of their binding energies. We compare our results
to the data of heavier atoms in the strong magnetic fields
obtained by Mori and Hailey [12] and Ivanov and Schmelcher
[11]. Due to a small error in the code of Ref. [26], their results

TABLE V. Same as in Table III but for the complex helium state
(0,0)(3,0)—symmetry subspace (3, + ,1).

β 2DHFR FPDQMC Ref. [16]

0.25 4.695 4.915 70(28) 4.916 486
0.40 5.138 5.272 12(22) 5.272 564
0.50 5.381 5.487 62(20) 5.488 218
0.80 5.993 6.061 64(16) 6.063 034
1.00 6.342 6.399 86(14) 6.401 364
2.50 8.279 8.315 70(10) 8.321 110
5.00 10.401 10.433 20(10) 10.444 804
10.00 13.217 13.253 14(10) 13.273 922
25.00 18.259 18.303 40(14) 18.339 400
50.00 23.285 23.342 82(20) 23.394 850

TABLE VI. Ground-state electronic configuration given in the
format (−m,ν) for those electrons that deviate from tightly bound
positions. No index corresponds to the all-tightly bound high-field
ground state.

i Configuration

a (0,1)
ā (0,0,↑)(0,1)
b (0,1)(1,1)
b̄ (0,0,↑)(0,1)(1,1)
c (0,1)(1,1)(2,1)
c̄ (0,0,↑)(0,1)(1,1)(2,1)
d (0,1)(1,1)(2,1)(3,1)
D (0,1)(1,1)(2,1)(0,2)
E (0,1)(1,1)(2,1)(3,1)(0,2)
F (0,1)(1,1)(2,1)(3,1)(4,1)(0,2)
Ē (0,0,↑)(0,1)(1,1)(2,1)(3,1)(0,2)
F̄ (0,0,↑)(0,1)(1,1)(2,1)(3,1)(4,1)(0,2)

are biased towards lower energies, and we, therefore, exclude
them from the comparison.

We list values for the ground states of all atoms from helium
to silicon at magnetic-field strength 107 T (Table VII) and
for all atoms from helium to iron at magnetic-field strengths
5 × 107 T (Table VIII), 108 T (Table IX), and 5 × 108 T
(Table X) also comparing to our results obtained with the
HFFER method. Since those tables display an increasing
nuclear charge Z at a fixed magnetic-field strength β, βZ

decreases quadratically from the top to the bottom of the tables,
e.g., in Table VIII, βZ decreases from roughly 27 at Z = 2 to
about 0.16 at Z = 26. In Table VII, we reach the limit of our
2DHFR approach at Z = 14 with βZ ≈ 0.11.

Table VI contains the electronic configurations of all ground
states corresponding to the superscripts in Tables VII–X. The
quantum numbers listed only correspond to those electrons
with ν �= 0, whereas, the other electrons occupy tightly bound
orbitals (ν = 0) with falling magnetic quantum numbers m,

TABLE VII. Ground-state binding energies in Rydberg units at
107 T from helium to silicon calculated with our previous (HFFER)
and current (2DHFR and FPDQMC) methods, compared to those
of other groups. Superscripts denote electronic configuration (see
Table VI).

Z HFFER 2DHFR FPDQMC Ref. [11] Ref. [12]

2 19.13 19.38 19.42776(14) 19.39 19.21
3 39.07 39.70 39.7824(3) 39.72 39.23
4 64.80 65.97 66.1171(4) 66.03 65.39
5 95.89 97.81 98.0428(6) 97.92 97.53
6 132.07 134.95 135.3104(8) 135.16 136.27
7 173.10 177.21 177.7634(12) 177.58
8 220.01a 225.94a 226.856(2) 226.56a

9 272.52a 280.51a 281.796(3) 281.47a

10 329.86a 340.38a 342.159(4) 341.83a

11 394.20ā 418.13ā 422.164(14)
12 477.41b̄ 508.23b̄ 513.86(2)
13 566.55b̄ 605.37b̄ 612.96(4)
14 661.31c̄ 709.66c̄ 719.94(6)
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TABLE VIII. Ground-state binding energies in Rydberg units at
5 × 107 T from helium to iron calculated with our previous (HFFER)
and current (2DHFR and FPDQMC) methods, compared to those of
other groups. Superscripts denote the electronic configuration (see
Table VI).

Z HFFER 2DHFR FPDQMC Ref. [11] Ref. [12]

2 33.6 33.86 33.9368(3) 33.86 33.6
3 70.1 70.68 70.8405(6) 70.69 70.0
4 117.7 118.77 119.0077(7) 118.79 117.6
5 175.4 177.17 177.4887(8) 177.21 175.7
6 242.6 245.16 245.5660(10) 245.22 243.1
7 318.5 322.17 322.7021(13) 322.28 319.9
8 402.9 407.80 408.4447(13) 407.94 405.5
9 495.4 501.60 502.4218(17) 501.84 500.0
10 595.5 603.30 604.3479(18) 603.69 602.5
11 703.6a 713.46a 714.8493(22) 714.3
12 822.0a 834.03a 835.682(4) 838.6a

13 948.1a 962.61a 964.533(4) 973.9a

14 1081.8a 1099.0a 1101.256(5) 1120.6b

15 1225.1b 1245.6b 1248.356(6)
16 1376.2b 1400.1b 1403.384(8)
17 1534.6b 1562.3b 1566.104(8)
18 1702.4c 1734.5c 1739.008(1)
19 1877.5c 1914.2c 1919.484(12)
20 2060.2d 2102.1d 2108.32(4)
21 2251.3d 2306.6E 2313.72(6)
22 2452.0E 2549.0Ē 2563.26(12)
23 2689.8Ē 2805.6Ē 2822.02(14)
24 2940.4Ē 3071.9Ē 3091.4(16)
25 3200.0F̄ 3348.7F̄ 3370.9(4)
26 3468.5F̄ 3636.6F̄ 3660.4(6)

beginning at m = 0. Configurations including only quantum
numbers ν = 1 are denoted by lowercase letters, and such
containing an electron with ν = 2 are denoted by capital
letters. All electrons have their spin aligned antiparallel to the
magnetic field (↓), except for a single electron at (0,0), which
may have its spin aligned parallel. If this is the case, it is
denoted by (0,0,↑). Configurations including this spin-flipped
state electron have overlined letters and were found to form
the ground state at B = 107 T for elements with nuclear
charge Z � 11 and at B = 5 × 107 T for the heavier elements
with nuclear charge Z = 22–26. Thus, our energy values
for these ground states, by far, excel any result published
before.

Throughout Tables VII–X, one can notice a significant
improvement on the results gained by the 2DHFR method
presented in this paper compared to the data obtained with the
HFFER method. For almost all calculations, the ground-state
configuration was found to be the same for both methods. Our
results are in good agreement with those of Ref. [11].

It is interesting to note that the relative improvement of
the FPDQMC results compared to the 2DHFR values in the
case of B = 5 × 108 T decreases with rising nuclear charge
numbers, although the systems grow more complicated due to
the larger number of electrons (e.g., for iron, the FPDQMC
method only improves the 2DHFR energy by 0.9‰ at this
field strength). This effect also occurs at other field strengths

TABLE IX. Ground-state binding energies in Rydberg units at
108 T from helium to iron calculated with our previous (HFFER)
and current (2DHFR and FPDQMC) methods, compared to those of
other groups. Superscripts denote the electronic configuration (see
Table VI).

Z HFFER 2DHFR FPDQMC Ref. [11] Ref. [12]

2 42.4 42.6 42.7488(6) 42.63 42.4
3 89.5 90.0 90.2140(10) 89.99 89.2
4 151.3 152.4 152.6872(12) 152.37 151.1
5 226.8 228.5 228.9330(12) 228.53 226.7
6 315.0 317.5 318.020(2) 317.51 315.2
7 415.0 418.5 419.147(2) 418.55 415.8
8 526.3 531.0 531.721(3) 531.02 527.4
9 648.3 654.3 655.200(4) 654.40 650.1
10 780.5 788.1 789.160(2) 788.24 783.8
11 922.7 931.9 933.204(3) 927.9
12 1074.4 1085.5 1086.978(4) 1083.7
13 1235.3 1248.5 1250.216(4) 1247.5a

14 1409.6a 1425.6a 1427.764(6) 1426.5a

15 1593.5a 1612.2a 1614.580(6) 1616.0a

16 1786.8a 1808.3a 1811.032(6) 1816.7b

17 1990.9b 2015.9b 2019.118(8) 2029.9b

18 2205.8b 2234.3b 2237.902(8) 2261.3b

19 2429.9b 2462.1b 2466.186(10) 2501.6b

20 2664.1c 2700.7c 2705.37(3) 2756.2c

21 2909.0c 2950.0c 2955.248(3)
22 3162.7c 3208.5c 3214.16(4)
23 3426.7d 3477.8d 3484.24(4)
24 3700.4d 3757.1d 3764.24(6)
25 3983.3E 4054.4E 4062.54(8)
26 4277.7E 4357.2E 4366.14(10)

but is masked by the growing error of the 2DHFR’s Landau
expansion that starts to dominate as βZ falls below 1. However,
the FPDQMC results are not affected as severely by this error
in the wave function, and thus, the relative energy corrections
of the FPDQMC method to the 2DHFR method rise again for
βZ � 1 as can be seen in Tables VII–IX.

We performed additional computations at B = 5 × 108 T to
gain a better understanding of this phenomenon. We compared
the influence of the Jastrow factors and the overall correction
in the FPDQMC method of the energy values for all heliumlike
ions and several iron ions. The results of these computations
show a strongly decreasing influence of the electron-electron
Jastrow factor with increasing core charge, which can, at least
partly, explain this phenomenon.

Compared to the perturbative method of Mori and Hailey
[12], we obtain much higher binding energies for small nuclear
charges Z � 10, but for heavier elements and when βZ falls
below 1, their results drop far below even our FPDQMC
results with some ground-state configurations differing from
the ones found by us. We expect that, in this regime, the
method presented in Ref. [12] fails to achieve accurate results
as the authors themselves state that its application is limited to
βZ > 2. We also note that their method is not fully variational
and, therefore, need not necessarily produce an upper bound on
the energy. Our method, however, is far from its limit βZ � 0.1,
and our results are expected to be very accurate.
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TABLE X. Ground-state binding energies in Rydberg units at
5 × 108 T from helium to iron calculated with our previous (HFFER)
and current (2DHFR and FPDQMC) methods, compared to those of
other groups. Superscripts denote the electronic configuration (see
Table VI).

Z HFFER 2DHFR FPDQMC Ref. [11] Ref. [12]

2 70.6 70.7 70.9782(16) 70.70 70.37
3 153.2 153.6 154.108(4) 153.56 152.73
4 264.6 265.5 266.134(4) 265.35 263.57
5 402.9 404.4 405.210(6) 404.21 402.48
6 566.5 568.7 569.748(6) 568.53 565.57
7 754.0 757.2 758.368(8) 756.98 751.96
8 964.4 968.6 969.962(10) 968.38 962.76
9 1196.4 1202.0 1203.510(8) 1201.70 1195.38
10 1449.4 1456.3 1458.144(8) 1456.06 1448.07
11 1722.3 1730.9 1732.922(10) 1720.31
12 2014.7 2025.1 2027.306(8) 2016.51
13 2325.8 2338.1 2340.490(8) 2328.07
14 2655.0 2669.4 2672.072(8) 2657.27
15 3001.8 3018.4 3021.418(10) 3007.2
16 3365.7 3384.8 3388.112(10) 3372.19
17 3746.3 3768.0 3771.580(14) 3753.36
18 4143.2 4167.7 4171.518(10) 4154.88
19 4555.9 4583.4 4587.51(3) 4570.22
20 4984.3 5014.9 5019.49(2) 5000.19
21 5434.2a 5468.7a 5473.92(4) 5452.42a

22 5901.4a 5939.6a 5945.02(4) 5924.14a

23 6384.3a 6426.3a 6432.08(6) 6413.71a

24 6882.6a 6928.6a 6934.72(6) 6927.91a

25 7401.0b 7451.8b 7458.64(4) 7441.74a

26 7936.3b 7991.7b 7998.84(6) 7984.89b

D. Transitions

Transition energies and oscillator strengths are key prereq-
uisites in the analysis of spectra, the only observable quantity
of distant stars. The dimensionless oscillator strength f of a
transition from an initial state �i to a final state �f can be
acquired using the well-known relation (see Ref. [7]),

f = �Eif

∣∣pq

if

∣∣2
, (25)

with the energy difference �Eif = Ef − Ei given in Rydberg
units and the total magnetic quantum number difference
q = �M = Mf − Mi between the initial and the final states.
Since �M = 0 transitions are the strongest ones at high
magnetic-field strengths, we restrict ourselves to the dipole
matrix element p0

if of a photon with linear polarization,

p0
if =

N∑
a,b=1

〈
ψ f

a

∣∣z∣∣ψ i
b

〉
C if

ab. (26)

Here, C if
ab denotes the cofactor of the single-electron wave-

function overlap matrix S if
ab of the initial and final states,

S if
ab = 〈

ψ f
a

∣∣ψ i
b

〉
. (27)

In order to separate the energy error and the errors of the
wave functions in the transition integrals (26), we will also
use the dipole strength dif = |pif|2 instead of the oscillator
strength f to characterize the transitions. Since the FPDQMC

TABLE XI. Transition energies in Rydberg energies and dipole
strengths of �M = 0 bound-bound transitions from state (0,0)(0,2)
to state (0,0)(0,1) at different magnetic fields compared to the results
of Becken and Schmelcher [17].

E d

β 2DHFR Ref. [17] 2DHFR Ref. [17]

0.25 −0.033 −0.051 642 6.165 6.709 04
0.4 −0.110 −0.129 206 6.385 6.617 66
0.5 −0.147 −0.166 316 6.157 6.347 01
0.8 −0.222 −0.239 13 5.362 5.487 00
1 −0.255 −0.270 866 4.954 5.061 34
2.5 −0.370 −0.382 072 3.697 3.731 13
5 −0.432 −0.442 282 3.165 3.167 16
10 −0.464 −0.478 08 2.874 2.857 48
25 −0.475 −0.488 42 2.733 2.692 82
50 −0.462 −0.4738 2.725 2.678 38

method is restricted to the calculation of ground states, we
can only obtain transitions with the 2DHFR method, but
the small corrections of the FPDQMC method compared to
the 2DHFR results for the energy values make us to expect
that the results for oscillator strengths are very accurate
as well.

In Tables XI and XII, we compare energies and dipole
strengths obtained with the 2DHFR program and the full CI
Ansatz of Becken and Schmelcher [17]. In their paper, they
presented a large compendium of electromagnetic transition
energies and dipole strengths for the helium atom. At the
lowest-field strength, one can see quite large discrepancies
between both methods. Here, we deliberately overstretched
our Ansatz towards βZ ≈ 0.06. Gradually increasing the
magnetic-field strength, our energy differences from Ref. [17]
fall below 3% at β = 5 in Table XI. In Table XII, our energy
error is below 1% at all field strengths with the exception
of β = 0.25. However, the differences in the dipole strengths
are somewhat larger, ranging from −4% to +2% in the first
table and −2% to +5% in the second one, ignoring the value
for β = 0.25 in both tables. Still, our dipole strengths are
quite accurate, considering the constraints of our Ansatz in
comparison to a full CI method.

TABLE XII. Same as in Table XI but for the transition from
(0,0)(1,0) to (0,0)(1,1).

E d

β 2DHFR Ref. [17] 2DHFR Ref. [17]

0.25 0.439 0.425 002 1.763 1.888 33
0.4 0.558 0.553 23 1.408 1.432 57
0.5 0.630 0.629 066 1.242 1.248 11
0.8 0.822 0.825 168 0.936 0.926 76
1 0.932 0.937 218 0.815 0.803 19
2.5 1.539 1.547 22 0.458 0.444 60
5 2.193 2.203 976 0.295 0.282 80
10 3.064 3.076 902 0.187 0.178 45
25 4.627 4.650 028 0.101 0.095 48
50 6.195 6.230 862 0.062 0.058 68
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TABLE XIII. Transition energies in eV and oscillator strengths ×10−3 (in brackets) of �M = 0 bound-bound transitions from electrons
(−m,ν = 0) of the ground state of neutral carbon to (−m,ν = 1) at three different magnetic-field strengths β compared to results from Mori
and Hailey [12].

β = 200 β = 500 β = 1000

m HFFER 2DHFR Ref. [12] HFFER 2DHFR Ref. [12] HFFER 2DHFR Ref. [12]

0 1024 1051 1370 1394 1696 1718
(42.0) (45.4) (41.0) (12.0) (12.5) (13.0) (6.2) (6.3) (5.81)

1 481 485 671 675 854 858
(68.4) (70.4) (59.8) (27.1) (27.4) (22.5) (15.5) (15.7) (12.8)

2 314 315 447 448 576 577
(99.9) (101.2) (79.7) (45.7) (46.0) (39.2) (27.7) (27.8) (24.7)

3 233 233 335 335 435 436
(135.8) (136.6) (114) (67.9) (68.1) (61.1) (42.4) (42.5) (37.7)

4 180 180 262 262 343 344
(173.2) (173.7) (156) (93.0) (93.1) (86.3) (59.9) (59.9) (57.2)

5 132 132 195 196 259 259
(205.5) (205.8) (197) (119.9) (120.0) (116) (80.5) (80.5) (78.3)

For heavier elements, the amount of accurate data in the
literature is still small. Thus, in Table XIII, we compare our
oscillator strengths with those from Mori and Hailey [12]. The
new results are in good agreement with those obtained with
our previous version of the Hartree-Fock-Roothaan method
(HFFER): The largest differences in oscillator strength and
energy (about 7% and 2.6%, respectively) can be found at
the transition of the innermost electron m = 0 at the lowest
magnetic-field strength β = 200. Here, the initial single-
particle (0,0) state is significantly improved by our new 2D
expansion, whereas, the final (0,1) state has a node at z = 0
and, thus, can be described adequately well by both expansions
(2) and (3). When the error of both the initial and the final
single-electron states is of the same order, even expansion
(2) proves to be useful and predicts transition energies and
oscillator strengths properly as can be seen by looking at the
transitions of m = 5.

Comparing our oscillator strengths to the results of
Ref. [12], one can see quite big differences for all transitions
with a maximum difference of 27%. The authors of Ref. [12]
mention lacking orthogonality of the initial and final states
and only calculated the dipole matrix element for the electron
that undergoes a transition. This may explain the large
discrepancies. Since we evaluate formula (26) exactly and
work with perfectly orthogonal states, our results should be
the more accurate ones.

V. SUMMARY AND OUTLOOK

In this paper, we have presented an approach for the
very accurate calculation of ground-state energy levels of
atoms in strong and intermediate magnetic fields of βZ �
0.1, combining 2D-Hartree-Fock-Roothaan and fixed-phase
diffusion Monte Carlo methods. The results shown for helium
states at different magnetic-field strengths and all element
ground states from helium up to iron show the efficiency and
accuracy of our approach. Including the spin-flipped (0,0,↑)

single-electron state into possible ground-state configurations,
we found new ground states for sodium to silicon at B = 107 T
and titanium to iron at B = 5 × 107 T.

The applied 2DHFR method was optimized to reduce the
calculation effort originating from electron-electron interac-
tion integrals, whereas, at the same time, the single-particle
Landau expansion was boosted, thus, increasing the overall
precision. We demonstrated that the induced additional errors
stay very small, resulting in good convergence behavior of this
method. In addition, it allows for the calculation of excited
states and electronic wave functions, which were directly
applied to obtain oscillator strengths for atomic bound-bound
transitions and were used as guiding wave functions for even
more precise FPDQMC calculations.

The comparison with results in the literature for elements
Z � 10 shows that the accuracy of our Monte Carlo approach
can very well compete with other precise methods, whereas,
also allowing for the treatment of elements with Z = 11–26.
This makes the FPDQMC method, especially in the combi-
nation with our 2DHFR approach, a tool well suited for the
study of symmetry subspace ground states of mid-Z elements
in strong magnetic fields.

We note that the self-healing diffusion quantum Monte
Carlo algorithms, proposed recently by Reboredo et al. [35]
and Reboredo [36], and a method for the calculation of
excited states from full configuration-interaction Monte Carlo
method, presented by Booth and Chan [42], may be worthwhile
avenues to pursue in future papers on atoms in strong magnetic
fields.

ACKNOWLEDGMENTS

This work was supported by Deutsche Forschungsgemein-
schaft. We gratefully thank the bwGRiD Project [43] for the
computational resources. We would like to express our thanks
to the anonymous referee for helpful comments on the paper
and a kind response.

012509-9



SCHIMECZEK, BOBLEST, MEYER, AND WUNNER PHYSICAL REVIEW A 88, 012509 (2013)

[1] F. Haberl, A. D. Schwope, V. Hambaryan, G. Hasinger, and
C. Motch, Astron. Astrophys. 403, L19 (2003).
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[5] B. Külebi, S. Jordan, F. Euchner, B. T. Gänsicke, and H. Hirsch,
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