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Unified treatment of hadronic annihilation and protonium formation in slow collisions
of antiprotons with hydrogen atoms

Kazuhiro Sakimoto
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Chuo-ku,

Sagamihara 252-5210, Japan
(Received 9 April 2013; published 12 July 2013)

Antiproton (p̄) collisions with hydrogen atoms, resulting in the hadronic process of particle-antiparticle
annihilation and the atomic process of protonium (p̄p) formation (or p̄ capture), are investigated theoretically.
As the collision energy decreases, the collision time required for the p̄ capture becomes necessarily longer. Then,
there is the possibility that the p̄-p annihilation occurs significantly before the p̄ capture process completes. In
such a case, one can no longer consider the annihilation decay separately from the p̄ capture process. The present
study develops a rigorous unified quantum-mechanical treatment of the annihilation and p̄ capture processes. For
this purpose, an R-matrix approach for atomic collisions is extended to have complex-valued R-matrix elements
allowing for the hadronic annihilation. Detailed calculations are carried out at low collision energies ranging
from 10−8 to 10−1 eV, and the annihilation and the p̄ capture (total and product-state selected) cross sections are
reported. Consideration is given to the difference between the direct annihilation occurring during the collision
and the annihilation of p̄p occurring after the p̄ capture. The present annihilation process is also compared with
the annihilation in two-body p̄ + p collisions.
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I. INTRODUCTION

When an antiproton p̄ collides with a hydrogen H atom
at collision energies Ecoll less than the ionization threshold,
two quite different types of reaction channels are of critical
importance [1–3]. One is an atomic rearrangement process:
the capture of p̄ to form an exotic hydrogenic atom p̄p called
antiprotonic hydrogen or protonium,

p̄ + H → p̄p + e. (1)

This p̄ capture results in highly excited p̄p typically having
the principal quantum number N ∼ √

mp/(2me) � 30, with
the p mass mp and the e mass me. The p̄p atoms cannot
be permanently stable since the exotic system composed of
a particle and its antiparticle has a finite lifetime against
(pair) annihilation. As an atomic system, Eq. (1) is often
characterized by the presence of the Fermi-Teller critical
distance RFT = 0.639 a.u. [4]. If the p̄-H distance R is less
than RFT, no electronic bound state exists for a fixed R in this
system. Owing to this fact, Eq. (1) usually has a very large
cross section [5]. The other reaction channel is a hadronic
decay process: the annihilation occurring just during the p̄ + H
collisions,

p̄ + H → e + p̄-p annihilation. (2)

In the present study, this direct annihilation is distinguished
from the indirect annihilation which occurs after the p̄p atoms
are formed by Eq. (1). The energy distribution of emitted
electrons can be different for Eqs. (1) and (2); hence it may
be possible to distinguish between the direct and indirect
annihilation events in experiments by further measuring the
electron energy distribution. Equation (2) is also an interesting
decay process of p̄ in matter to be compared with the
annihilation in pure two-body (2B) collisions,

p̄ + p → annihilation. (3)

Because of the Coulomb attraction between p̄ and p, the
annihilation decays of Eqs. (2) and (3) can take place even
at very low collision energies.

For an understanding of the significance of the direct
annihilation occurring during the p̄ + H collision, it may
be useful to compare the collision time of Eq. (1) with the
annihilation lifetime of isolated p̄p atoms. The shifts and
widths of some lowest p̄p energy levels due to the annihilation
were determined by the measurement of x rays from p̄p atoms
[1–3]. The annihilation width is �1s ∼ 1 keV for the 1s state,
�2p ∼ 40 meV for the 2p state, and �3d ∼ 0.4 μeV for the 3d

state. Thus, the annihilation lifetime of the s states becomes of
major importance. The width �Ns of the highly excited s level
can be scaled as N−3�1s [6]. If the principal quantum number
N = 30 is considered, then the s-state lifetime is τ30s ∼
2 × 10−14 s. At low collision energies Ecoll < 1 eV, since
the orbiting motion in polarization potential characterizes the
ion-molecule reaction such as Eq. (1), the collision time may be
estimated by τcoll = borb/v, with the orbiting impact parameter
borb for the polarization force and the incident velocity v.
Explicitly, this gives τcoll � 10−14 × [Ecoll(eV)]−3/4 s, which
is comparable to or longer than τ30s at Ecoll � 0.1 eV.
It suggests that the annihilation is non-negligible at these
energies as a decay process which occurs exactly in the course
of the collision. It is now experimentally possible to cool many
antiprotons in a trap to very low temperatures (<10 K) [7,8].
Cold collisions of antiprotons with atoms are an interesting
subject in atomic and also nuclear physics.

Thus, it is necessary to devise a theoretical method of
coherently taking account of both the atomic rearrangement
and the p̄-p annihilation channels in quantum-mechanical
treatment, though the atomic and nuclear scales are quite
different in space, time, and energy. Such efforts were made
so far for low-energy H + H̄ collisions [9–13], stimulated by
recent progress on cold H̄ production [14–19]. To incorpo-
rate the p̄-p annihilation into the atomic collision process,
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Jonsell et al. [9] introduced a delta-function potential for
the hadronic part of interaction, as well as usually applied
to e+-e annihilation. Voronin and Carbonell [10] and later
Armour et al. [12] assumed an effective complex potential
of the Woods-Saxon type [2] for the hadronic interaction.
Jonsell et al. [11] considered the hadronic effect as a boundary
condition of the wave function at a p̄-p distance of ∼ 1 a.u.,
and derived the hadronic information from experimental data
of the 1s complex p̄p energy using the effective range theory
known as the Trueman formula [20].

For the capture reaction of Eq. (1), although several
quantum-mechanical calculations were carried out [21–24],
no account of annihilation was taken in these studies. This
is reasonable since high collision energies of Ecoll � 3 eV
were considered in most of them [22–24]. The purpose of the
present study is to develop a unified and accurate treatment of
Eqs. (1) and (2) by introducing an R-matrix methodology
[25], in which the partitioning of the configuration space
into appropriate domains is the favorite subject. Until now,
the R-matrix method was employed for a rigorous treatment
of an atomic process similar to Eq. (1), i.e., the capture of
a negative muon (μ−) by an H atom [26], in which the
hadronic decay never occurs. The idea suggested by Jonsell
et al. [11] can be properly incorporated in the R-matrix
method by further inclusion of a domain providing hadronic
information. In doing such extension, one can refer to several
interesting R-matrix studies on atomic collisions [27–31]: The
multipartitioning was introduced for solving the problems of
chemical reaction and two-electron scattering. Since detailed
information on the decay products in the p̄-p annihilation
is irrelevant, the annihilation is described by loss of a flux
associated with the atomic channels. This is embodied by
R-matrix elements having an imaginary part. In the present
study, a new R-matrix treatment is developed for atomic
collision processes allowing for annihilation decay. Accurate
calculations are carried out for both the annihilation and the
capture processes in p̄ + H at low collision energies ranging
from 10−8 to 10−1 eV. The calculation is not limited to
only s-wave scattering, and the partial waves of total angular
momentum quantum numbers up to 17 are taken into account
for determining the cross sections.

II. THEORY AND CALCULATIONS

Let R and r be the position vectors of p̄ and e, respectively,
measured from p. The configuration space is partitioned into
several domains by the boundary lines R = R0,A,B and r =
b, as seen in Fig. 1. Since the present problem covers a wide
range of p̄-p distances R from the nuclear size R0 ∼ 10−5 a.u.
to ∼103 a.u., the R axis in Fig. 1 is drawn on a logarithmic
scale. The annihilation can occur only at R < R0. Outside
the nuclear domain (R > R0), the hadronic strong interaction
is negligible, and the collision process is dominated by the
Coulomb interaction

V = − 1

R
− 1

r
+ 1

|R − r| . (4)

The outer r � b domain is associated with the e + p̄p

arrangement, and the R � B domain is associated with the
p̄ + H arrangement. The distance R = B should be taken

Oe

Op̄

r

I

X

0 A B
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b

0
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p̄
+

H

FIG. 1. Partitioning of the (R,r) configuration space by setting
appropriate dividing lines R = R0,A,B and r = b. The R axis is
drawn on a logarithmic scale. The outer domain R � B or r � b: the
arrangement channel p̄ + H or e + p̄p is defined. The nuclear domain
R � R0: the hadronic strong interaction dominates. The domain d:
the Coulomb interaction −1/R of p̄ + p dominates. The domain D:
the 3B correlation due to the Coulomb interaction is important. The
boundaries of the partitioned domains are denoted by I (R = A), Op̄

(R = B), and X + Oe (r = b).

much larger than the Fermi-Teller critical value RFT. In the
domain of r � b and R � B, the total wave function is
assumed to have negligible amplitudes. Specifically, b = 8 a.u.
and B = 2.7 a.u. were chosen. The domain d is defined
by R ∈ (R0,A) and r ∈ (0,b). It is convenient to choose
the distance A as small as possible (A = 1 × 10−4 a.u. in
the present calculation). Then, the probability of finding the
electron at distances r � A is negligibly small (∼10−12). In the
domain d, one can actually assume that R � r , and hence that
the interaction is simply given by V = −1/R. The domain d is
introduced for working as a bridge from the nuclear domain to
an atomic domain. The domain D is defined by R ∈ (A,B) and
r ∈ (0,b). The three-body (3B) correlation dynamics is limited
largely to this domain. As shown in Fig. 1, the boundaries of
the domains are denoted by Op̄, Oe, X, and I .

In the present treatment, it is not necessary to provide an
explicit form of the wave function representing the nuclear
processes. Outside the nuclear domain (R > R0), the time-
independent Schrödinger equation is

(H − E)�JM (R,r) = 0, (5)

with the total angular momentum quantum numbers (J,M),
the total energy E, and the Hamiltonian H:

H = − 1

2mR

∂2

∂R2
− 1

2mr

∂2

∂r2
+ V, (6)

where mR and mr are the reduced masses of p̄ + p and
e + p, respectively. Here and in the following, a.u. is used
unless otherwise stated. The atomic problem is treated in
the nonrelativistic framework. For the target of H atoms
in the ground (1s) state, the total energy is E = EH +
Ecoll, with EH = −1/2 and the p̄ + H collision energy
Ecoll. In the coordinate system (R,r), although the mass
polarization term appears in the kinetic energy operators,
Tong et al. [32] found that this term can be neglected in the
p̄ + H system. In a previous R-matrix calculation, the present
author had indicated that a mass polarization term was critical
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for Feshbach-type resonances in p̄ + He+ [33]. However,
Tong et al. confirmed that this term is insignificant also in the
p̄ + He+ resonances. The reason for the discrepancy between
the two studies is probably that the mass polarization term
affects sensibly pseudoresonances (but not real resonances)
which were not sufficiently eliminated from many existing
resonances in the previous R-matrix calculation. The problem
of pseudoresonances does not matter in the present calculation
since no Feshbach resonances are involved. The neglect of
the mass polarization term drastically lessens the labor in the
numerical calculation.

A. Outer domain: Scattering channels

In the outer r � b domain, it is appropriate to expand the
scattering wave function �JM using the basis set associated
with the e + p̄p channel, i.e.,

�JM (r,R) = (Rr)−1
∑
NLl

YJM
Ll (R̂,r̂)ϒNL(R)f J

NLl(r), (7)

with ϒNL(R) being the radial wave function of the p̄p

bound state identified by the principal and angular momentum
quantum numbers (N,L), and

YJM
Ll (r̂,R̂) =

∑
ml

(L,M − ml,lml|JM)YLM−ml
(R̂)Ylml

(r̂),

(8)

where YLM−ml
(R̂) and Ylml

(r̂) are the spherical harmonics,
(L,M − ml,lml|JM) are the Clebsch-Gordan coefficients, l

is the electronic angular momentum quantum number, and
(J,M) are the total angular momentum quantum numbers. In
the present case, the total parity must be (−1)J+L+l = 1. As
will be shown later in Sec. II D, the annihilation effect of p̄-p
can be neglected in this domain. The energy of the p̄p atom is
assumed to be hydrogenic, i.e., EN = −mR/(2N2).

In the outer R � B domain associated with the p̄ + H
channel, the scattering wave function �JM can be given in
the Born-Oppenheimer (BO) separation form [22,26]

�JM (R,r) = (Rr)−1DJ
M0(R̂)χ1σ (R; r,θ )FJ

1σ (R), (9)

with χ1σ (R; r,θ ) being the wave function of the lowest (1σ )
BO state of p̄ + H, and

DJ
Mλ(R̂)=

[
2J +1

16π2(1+δλ,0)

]1/2 [
DJ

Mλ(R̂)+ (−1)λDJ
M,−λ(R̂)

]∗
,

(10)

where DJ
Mλ(R̂) is the Wigner rotation function, θ is the

angle between R and r, and λ is the electronic magnetic
quantum number projected onto R̂. The accuracy of the BO
approximation is guaranteed by the condition B � RFT. The
wave function FJ

1σ (R) represents the radial motion in the 1σ

BO potential V1σ (R) [34]. In the present system, the scattering
channels are identified by (N,L,l) or 1σ .

B. Domain d: Hadronic effects

In the domain d, since the interaction becomes V = −1/R,
the R and r motions can be solved in separable form. Generally,
the scattering wave function �JM in this domain is expressed

as

�JM (R,r) = (Rr)−1
∑
νLl

YJM
Ll (R̂,r̂)ξνl(r)GJ

νLl(R), (11)

where ξνl(r) is the channel function [31] obtained from the
Schrödinger equation including a Bloch operator [35]:[

− 1

2mr

d2

dr2
+ l(l + 1)

2mrr2
+ δ(r − b)

2mr

d

dr
− ενl

]
ξνl(r) = 0,

(12)

with the normalization∫ b

0
ξνl(r)ξν ′l(r)dr = δνν ′ . (13)

The channels on the boundary I are given by (ν,L,l). What is
important is that the function GJ

νLl(R) is determined by only
the Coulomb potential −1/R, i.e.,[

− 1

2mR

d2

dR2
+ L(L + 1)

2mRR2
− 1

R
− κ2

2mR

]
GJ

νLl(R) = 0,

(14)

with κ2 = 2mR(E − ενl). It should be noted that GJ
νLl(R) is

accordingly independent of J .
In the present system, the function GJ

νLl(R) also contains
the information on the hadronic effect caused by the strong
interaction between p̄ and p. In the present calculation, the
hadronic effect is assumed to be negligible for L � 1. Then,
GJ

νLl(R) has the form [11,36]

GJ
νLl(R) =

{
Q0[Z0S0(R) + C0(R)] for L = 0,

QLSL(R) for L � 1,
(15)

where SL(R) and CL(R) are the regular and irregular Coulomb
functions, respectively; QL is the normalization constant;
and Z0 is a complex-valued constant as a result of the p̄-p
annihilation decay. According to κ2 > 0 or <0, the coefficient
Z0 is expressed in terms of the phase shift η0 or the quantum
defect μ0 [36,37], i.e.,

Z0 =
{

cot η0 for κ2 > 0,

cot πμ0 for κ2 < 0.
(16)

It may be shown that the quantum defect μ0 extrapolated to
κ2 > 0 can be given by [36,37]

cot πμ0 = cot η0

[
1 − exp

(
− 2πmR

κ

)]−1

. (17)

The phase shift η0 is smoothly connected to πμ0.
Because Ecoll,ενl � 1 a.u. in the present case, the related p̄-

p energies are |κ2/(2mR)| ∼ 0.5 a.u., and are negligibly small
compared to the hadronic scale. Therefore, it is sufficient to
obtain the hadronic information in the zero-energy limit. Thus,
the coefficient Z0 (regardless of κ2 <> 0) can be accurately
expressed in terms of the Coulomb-corrected scattering length
� [36], i.e.,

cot η0 = − 1

2πmR�
. (18)

The scattering length � can be estimated from the hadronic
energy shift and width of the p̄p atom in the ground state
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by using the Trueman formula [20], and its imaginary part
obtained in this way is in good agreement with the value
extracted from the low-energy annihilation cross sections
in p̄ + p hadronic collisions [2,38]. The derivation of the
hadronic scattering length using quantum defect theory [37]
was also offered [39]. It is of course possible to directly
calculate the coefficient Z0 by using an effective hadronic
model potential [2,10,12]. In the present study, the value
� = (0.88 − 0.64i) fm = (1.7 − 1.2i) × 10−5 a.u. presented
in Ref. [2] was used.

At the boundary I , the R-matrixRd
II including the hadronic

effect may be defined by

Rd
νLl,ν ′L′l′ = GJ

νLl(A)

[
dGJ

νLl

dR
(A)

]−1

δνν ′δLL′δll′ . (19)

In the present case, the Coulomb functions SL(R) and CL(R)
are insensitive to κ2 because A is taken to be sufficiently
small [37]. Therefore, κ2 = 0 can be safely assumed also in
the calculation of the R-matrix elements Rd

νLl,νLl , which are
thus practically independent of ν and l. For L � 1, since the
amplitude of SL(R) at R � A is sufficiently small, one can
practically set Rd

νLl,νLl = 0. As it turns out, the nonzero R-
matrix elements are simply given by

Rd
νLl,νLl = �δL0, (20)

where � is a complex-valued constant. Figure 2 shows that �

is actually independent of κ2 as long as |κ2/(2mR)| � 104

eV. From the separability of the R and r motions in the
domain d, the equalities Rd

IX = 0 and Rd
XI = 0 are satisfied.

In a strict sense, the hadronic interaction should be dependent
on the nuclear spin [2]. Such effects can be properly taken
into account by allowing that Eq. (19) has spin-dependent
elements. The annihilation lifetime largely differs for ortho
and para e+e [40], but such difference seems to be small for
p̄p [2]. In this study, the spin-averaged value � was adopted.

Ω

κ 

FIG. 2. Hadronic R matrix � of p̄ + p as a function of the kinetic
energy κ2/(2mR).

C. Domain D: Three-body Coulomb processes

Around the boundary Oe of the domain D, one can write
the scattering wave function �JM in a form similar to Eq. (7),
i.e.,

�JM (r,R) = (Rr)−1
∑
KLl

YJM
Ll (R̂,r̂)�KL(R)gJ

KLl(r), (21)

where a channel function �KL(R) is defined in the range A �
R � B, and is given by [31]

[
− 1

2mR

d2

dR2
+ L(L + 1)

2mRR2
− 1

R
− δ(R − A)

2mR

d

dR

+ δ(R − B)

2mR

d

dR
− EKL

]
�KL(R) = 0, (22)

with the normalization

∫ B

A

�KL(R)�K ′L(R)dR = δKK ′ . (23)

The expansion form of Eq. (21) is useful for obtaining the R

matrix at the boundary Oe. For the evaluation of the R matrix
at the other boundaries of the domain D, one can introduce
the BO form of Eq. (9) at the boundary Op̄ and the expansion
form of Eq. (11) at the boundary I .

For numerically calculating the scattering wave function
�JM everywhere in the domain D, it is entirely appropriate to
employ the R-matrix basis, which is given by the eigenvalue
equation [27–31]

(
H + L − EJ

ρ

)
�JM

ρ (R,r) = 0, (24)

where

L = − 1

2mRA
δ(R − A)

∂

∂R
R + 1

2mRB
δ(R − B)

∂

∂R
R

+ 1

2mrb
δ(r − b)

∂

∂r
r (25)

is the Bloch operators, and ρ identifies the discrete eigenvalues
EJ

ρ . The eigenfunction �JM
ρ is normalized to unity for the

integration over D. Using the R-matrix basis �JM
ρ , the

scattering wave function �JM in the domain D can be written
as [25]

�JM (R,r) =
∑

ρ

�JM
ρ (R,r)

1

Eρ − E

〈
�JM

ρ

∣∣L�JM
〉
D

, (26)

where 〈 | 〉D means the integration over D.
The channels τ on the boundaries of the domain D are given

by τ = 1σ for Op̄, τ = (K,L,l) for Oe, and τ = (ν,L,l) for I .
Substitution of Eqs. (9), (11), or (21) into Eq. (26) provides the
relation of the radial functions FJ

1σ (R), gJ
KLl(r), and GJ

νLl(R)
with their derivatives on each of the boundaries Op̄, Oe, and I
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in the form [27–31]

FJ
1σ (B) = RD

1σ,1σ

dF J
1σ

dR
(B) +

∑
K ′L′l′

RD
1σ,K ′L′l′

dgJ
K ′L′l′

dr
(b)

−
∑
ν ′L′l′

RD
1σ,ν ′L′l′

dGJ
ν ′L′l′

dR
(A), (27)

gJ
KLl(b) = RD

KLl,1σ

dF
Jp

1σ

dR
(B) +

∑
K ′L′l′

RD
KLl,K ′L′l′

dgJ
K ′L′l′

dr
(b)

−
∑
ν ′L′l′

RD
KLl,ν ′L′l′

dGJ
ν ′L′l′

dR
(A), (28)

GJ
νLl(A) = RD

νLl,1σ

dF
Jp

1σ

dR
(B) +

∑
K ′L′l′

RD
νLl,K ′L′l′

dgJ
K ′L′l′

dr
(b)

−
∑
ν ′L′l′

RD
νLl,ν ′L′l′

dGJ
ν ′L′l′

dR
(A), (29)

where the elements of the R matricesRD
OO,RD

OI ,R
D
IO , andRD

II

with O = Op̄ or Oe are defined by

RD
τ,τ ′ = 1

2m

∑
ρ

WJ
τ,ρW

J
τ ′,ρ

Eρ − E
, (30)

with

WJ
1σ,ρ = 〈

(Rr)−1DJM
M0 χ1σ

∣∣δ(R − B)�JM
ρ

〉
D

, (31)

WJ
KLl,ρ = 〈

(Rr)−1YJM
Ll �KL

∣∣δ(r − b)�JM
ρ

〉
D

, (32)

WJ
νLl,ρ = 〈

(Rr)−1YJM
Ll ξνl

∣∣δ(R − A)�JM
ρ

〉
D

. (33)

The mass m in Eq. (30) is m = mR for τ ′ = 1σ or (ν ′,L′,l′)
and m = mr for τ ′ = (K ′,L′,l′).

The calculation of Eq. (24) is the most laborious part in
the present study. For the numerical calculation, the R-matrix
eigenfunction �JM

ρ (R,r) in Eq. (24) is expanded as [26,33]

�JM
ρ (R,r) = (Rr)−1

∑
λ

DJ
Mλ(R̂)φJλ

ρ (R,r,θ ). (34)

The wave function φJλ
ρ (R,r,θ ) is numerically solved by using

a grid (discrete-variable) representation technique. For the
details of this calculation, see Refs. [26,33]. Basically, the
grid points were constructed from the zero points of the same
orthogonal polynomials as in the μ− + H calculation [26]
except for R. The channels of |λ| � 1 were included, and
the numbers of grid points (Nr,Nθ ) = (25,4) were chosen
for (r,θ ) associated with the electron motion. Because of
the two-boundary problem, the Legendre polynomials are
appropriate for R [41,42]. The number of grid points on R

is NR = 220 for J = 0, NR = 210 for J = 1, NR = 175 for
J = 2, NR = 115 for J = 3,4, NR = 95 for J = 5–7, and
NR = 70 for J � 8. For these choices, sufficient accuracy
was achieved: For example, the adiabatic potential V1σ (R)
was calculated with an error of <0.05 eV at R > 1.8 a.u. and
of 0.1–0.2 eV at R < 1.8 a.u., and the calculated 1s and 30s

Coulomb energies of p̄p coincide with the accurate values
at least to four decimal places in eV. The convergence of
the transition probabilities was checked as done in previous
studies [26,33], and mostly the error is <1%. It should be

noted that the diagonalization of Eq. (24) is performed by a
real-number calculation.

D. Global R matrix for the domain d + D

Next, let us consider the combined domain d + D. Using
the local R matrices defined in Secs. II B and II C, the global
R matrix Rd+D on the boundary of the domain d + D can be
given by [27–31]

Rd+D
OO = RD

OO − RD
OI

[
Rd

II + RD
II

]−1
RD

IO,

Rd+D
OX = RD

OI

[
Rd

II + RD
II

]−1
Rd

IX = 0,
(35)

Rd+D
XO = Rd

XI

[
Rd

II + RD
II

]−1
RD

IO = 0,

Rd+D
XX = Rd

XX − Rd
XI

[
Rd

II + RD
II

]−1
Rd

IX = Rd
XX,

where Rd
IX = 0 and Rd

XI = 0 have been used. The R matrix
Rd+D has the elements identified by the channels (K,L,l) on
the boundary Oe. However, one needs to introduce the global
R-matrix elements, which are identified by the scattering
channels (N,L,l) on X + Oe and 1σ on Op̄ as defined in
Sec. II A. This can be achieved by the channel transformation
from K to N [31]. Following Ref. [31], the final global R

matrix becomes

R =
(
Rp̄p̄ Rp̄e

Rep̄ Ree

)
= UT

⎛
⎜⎜⎝
Rd+D

Op̄Op̄
Rd+D

Op̄Oe
0

Rd+D
OeOp̄

Rd+D
OeOe

0

0 0 Rd+D
XX

⎞
⎟⎟⎠U,

(36)

where “e” (or “p̄”) stands for e + p̄p (or p̄ + H), and the
channel transformation matrix U is

U =

⎛
⎜⎝

1 0

0 UOe

0 UX

⎞
⎟⎠ , (37)

with

(
UOe

)
KLl,NL′l′ =

∫ B

A

�KL(R)ϒNL(R)dR δLL′δll′ (38)

being the overlap between the channel function �KL(R) and
the wave function ϒNL(R) of p̄p. An explicit form of UX

is unnecessary in the present calculation for the reason given
below.

From Eq. (36), the R matrix Rd+D
XX on the boundary X has

a contribution only for Ree in the way:

Ree = UT
Oe
Rd+D

OeOe
UOe

+ UT
XR

d+D
XX UX. (39)

At Ecoll � 0.1 eV, the capture channels N � 30 are energet-
ically open as seen in Fig. 3, and the emitted electrons have
kinetic energies among EH − EN=30 = 0.273 and 0.373 eV
if the products p̄p are in the N = 30 state. (The electron
kinetic energies are >1.247 eV for N � 29.) Igarashi and
Gulyás [43] showed that the annihilation effect during the
collision of e + p̄p(N = 30) becomes important at electron
kinetic energies of �0.05 eV. This means that the direct
annihilation can be neglected in the electron scattering at
r � b. (The electron having kinetic energy 0.3 eV runs a
distance of about 120 a.u. in a time span of the annihilation
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lifetime τ30s .) Then, the relative importance of the second
term to the first in the right-hand side of Eq. (39) is roughly
estimated by the probability of finding the p̄-p distance in the
range R � A, i.e.,

∫ A

0 [ϒNL(R)]2dR. In the present case, this
probability is small, ∼10−3, even for the 1s state of p̄p, and
becomes much smaller for N � 1 or L � 1. Consequently,
one can safely neglect the term UT

XR
d+D
XX UX in Eq. (39).

E. Reaction probabilities and cross sections

The scattering boundary condition in the e + p̄p channel
is imposed at a sufficiently large distance r = rmax, where
the electron radial function f J

NLl(r) in Eq. (7) is represented
by the asymptotic form, and the scattering K matrices Kee

and Kep̄ are defined. In the present calculation, the global
R matrix given by Eq. (36) was further propagated out to
rmax = 100 a.u. [41], which is sufficient for the asymptotic
analysis at Ecoll < EN=31 − EH = 0.608 eV. When Ecoll �
0.608 eV, the capture channel N = 31 becomes additionally
open (Fig. 3). If the collision energy is just above this threshold,
very slow electrons can be emitted, and accordingly rmax must
be taken much larger. Furthermore, for such slow-electron
emission, the direct annihilation during the collision would be
non-negligible.

At Ecoll � 0.1 eV, one can neglect the partial waves of
J � 18, for which the classical outer turning point in the R

motion is > 5 a.u. (cf. Fig. 3). The radial function FJ
1σ (R) in

Eq. (9) at R = B can be expressed as

FJ
1σ (B) = SJ

1σ (B)δ1σ,α0 + CJ
1σ (B)KJ

1σ,α0
, (40)

where KJ
1σ,α0

are the elements of the scattering K matrix Kp̄p̄

or Kp̄e, α0 represents the initial channel, and SJ
1σ (R) and

FIG. 3. Effective potential of the p̄ + H system (the sum of
the centrifugal and 1σ BO potentials) as a function of the relative
distance R for the total angular momentum quantum numbers J =
0,1,2,10,15, and 20. Also shown is the potential curve of the p̄ + p

system, i.e., −1/R − EH. The p̄p energy levels EN are indicated on
the left side. The energies are measured from the ground-state energy
EH of H.

CJ
1σ (R) are the reference functions for the adiabatic potential

V1σ (R), having the asymptotic forms:

SJ
1σ (R) →

(
mR

2πk

)1/2

sin(kR − Jπ/2),

(41)

CJ
1σ (R) →

(
mR

2πk

)1/2

cos(kR − Jπ/2),

with k2 = 2mREcoll. For Ecoll � 10−5 eV, the values SJ
1σ (B)

and CJ
1σ (B) at R = B are obtained by the backward prop-

agation of the WKB solutions at R = 150 a.u. For lower
energies, the starting values are given by the spherical
Bessel and Neumann functions at R = 500 or 1000 a.u. The
BO potential at R > 15 a.u. is replaced by the asymptotic
polarization potential Vpol(R) = −αpol/(2R4), with αpol being
the polarizability of H. The difference between V1σ (R) and
Vpol(R) is 0.476% at R = 15 a.u..

The K matrix K is calculated directly from the global R

matrix R, as described in Ref. [25]. From the K matrix, one
can obtain the scattering S matrix S in a usual manner. Then,
the probability of the capture into the (N,L,l) product channel
is given by

P J
cap(N,L,l) = ∣∣SJ

NLl,1σ

∣∣2
, (42)

where SJ
NLl,1σ are the scattering S-matrix elements for the

capture reaction. We define the total capture probability
summed over all the final channels by

P J
cap =

∑
NLl

P J
cap(N,L,l), (43)

and the product-state selected capture probabilities by

P J
cap(N,L) =

∑
l

P J
cap(N,L,l), (44)

P J
cap(N ) =

∑
Ll

P J
cap(N,L,l), (45)

P J
cap(L) =

∑
Nl

P J
cap(N,L,l). (46)

Since the hadronic R matrix Rd
II is complex valued, the K

matrix cannot be taken real valued, and hence the S matrix
does not satisfy the unitarity. The loss of the probability can be
considered as being due to the annihilation decay. Therefore,
the probability of the direct annihilation during the collision
can be defined by the probability loss

P J
ann = 1 − P J

cap − ∣∣SJ
1σ,1σ

∣∣2
, (47)

where SJ
1σ,1σ is the S-matrix element for the elastic collision.

The total capture cross section is

σcap = π

k2

∑
J

(2J + 1)P J
cap. (48)

In the same way, one can define the direct annihilation
cross section σann and the product-state selected capture cross
sections σcap(N,L), σcap(N ), and σcap(L).
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III. RESULTS

A. Two-body p̄ + p system

First, let us consider the 2B collisions of p̄ + p as a simple
case. From Eq. (15), the S matrix for the s wave is given by

S0
p̄+p = Z0 + i

Z0 − i
. (49)

The probability of annihilation in p̄ + p can be defined by

P 0
p̄+p = 1 − ∣∣S0

p̄+p

∣∣2
. (50)

In the zero-energy limit [Eq. (18)], the probability becomes
P 0

p̄+p = 0.240. For the p wave, the classical turning point in
the R motion at κ2 � 0 is ∼10−3 a.u., which is much larger
than R0. As is to be expected, only the s wave contributes to
the annihilation in the p̄ + p collisions in the present energy
range.

Next, let us test the present R-matrix method for the
energy level of the p̄p atom including the hadronic effect.
The continuity of the R matrix at R = A means Rd

II = −RD
II

(the electronic degrees of freedom are excluded). The hadronic
R matrix Rd

II is identical to the one given by Eq. (19) or (20).
In the 2B system of p̄ + p, RD

II can be expressed in terms of
only �KL(A) and EKL in a form similar to Eq. (30). Explicitly,
Rd

II = −RD
II provides for L = 0,

� = − 1

2mR

∑
K

[�KL=0(A)]2

EKL=0 − Ep̄p

. (51)

If B is taken sufficiently large, and the energy dependence
of � is properly taken into account, the solution Ep̄p in
Eq. (51) represents the bound-state energy of p̄p. In the case
that � is complex valued, the energy level is expressed in
the form Ep̄p = EN + �ENL − i�NL/2. Applying first-order
perturbation theory to Eq. (51), one can show for the energy-
level shift and the width

�ENL=0 = −[
2mRRe � + �

(1)
NL=0

]/
�

(2)
NL=0,

(52)
�NL=0 = 4mRIm �/�

(2)
NL=0,

with

�
(1)
NL =

∑
K

[�KL(A)]2

EKL − EN

, �
(2)
NL =

∑
K

[�KL(A)]2

(EKL − EN )2
. (53)

Using the complex-valued � given in Sec. II B (and hence
assuming that � is independent of energy), Eq. (52) provides
�E1s = 778 eV and �1s = 1120 eV, while the x-ray measure-
ments indicate �E1s = 730 eV and �1s = 1060 eV [2].

In the special case that p̄ and p are point charges, Eq. (15)
becomes GJ

νLl(R) = QLSL(R) for all L, and � in Eqs. (19)
and (20) is simply given by

� = �PC ≡ SL=0(A)

[
dSL=0

dR
(A)

]−1

, (54)

which is a real number. In this case, solving Eq. (51) should
provide the hydrogenic energy level Ep̄p = EN . Let us assume
that �PC can always be evaluated at the fixed energy κ2 = 0.
Then, one can obtain from Eq. (51) the lowest hydrogenic
energy Ep̄p = −459.453 a.u., while the accurate hydrogenic
1s energy is EN=1 = −459.038 a.u. If the energy dependence

TABLE I. Barrier heights EJ
eff of the effective potential.

J EJ
eff (eV) J EJ

eff (eV) J EJ
eff (eV)

1 3.58 × 10−6 7 2.78 × 10−3 13 2.94 × 10−2

2 3.23 × 10−5 8 4.59 × 10−3 14 3.93 × 10−2

3 1.29 × 10−4 9 7.17 × 10−3 15 5.16 × 10−2

4 3.59 × 10−4 10 1.07 × 10−2 16 6.66 × 10−2

5 8.07 × 10−4 11 1.54 × 10−2 17 8.49 × 10−2

6 1.57 × 10−3 12 2.16 × 10−2 18 1.07 × 10−1

of �PC is properly taken into account in Eq. (51), an accurate
numerical result can definitely be obtained. In the present study
of p̄ + H, very high states of N ∼ 30 participate (namely,
EN=30 ∼ 0 as compared to EN=1), and thereby the error due
to the use of � = �κ2=0 is estimated to be much less than
0.1%.

B. Annihilation and capture probabilities

As seen in Fig. 3, the effective potential of p̄ + H has a
barrier for p̄ approaching H from infinity except for J = 0.
Let EJ

eff be the height of the effective potential barrier. The
values of EJ

eff for J = 1–18 are listed in Table I. The condition
Ecoll < EJ

eff means that the motion of p̄ coming very close
to H is classically forbidden. Therefore, if Ecoll � EJ

eff , no
reactions are expected to take place for the partial wave J .

Figure 4 shows the direct annihilation probability P J
ann

defined by Eq. (47) at low collision energies Ecoll =
10−8–10−4 eV. As stated before, this “annihilation” means
the decay event occurring during the collision. At very low
energies Ecoll < 10−6 eV, only the J = 0 wave predominantly
contributes to the annihilation. The probability P J

ann for J = 0
is proportional to (Ecoll)1/2 at Ecoll � 10−7 eV as expected gen-
erally in the low-energy limit of exothermic reaction [44,45],
and becomes nearly constant at high energies Ecoll > 10−5 eV.

FIG. 4. (Color online) Direct annihilation probabilities P J
ann at

collision energies Ecoll = 10−8–10−4 eV. “BO + hadron” is the direct
annihilation probability for J = 0 obtained by using the BO potential
V1σ (R) and the hadronic boundary condition of Eq. (19) at R = A.

012507-7



KAZUHIRO SAKIMOTO PHYSICAL REVIEW A 88, 012507 (2013)

FIG. 5. (Color online) Capture probabilities P J
cap at collision

energies Ecoll = 10−8–10−4 eV. “P J
cap (point charge)” is the capture

probability obtained by using the point-charge approximation (� =
�PC). The results of Voronin and Carbonell [10] are also shown.

The probability P J
ann for J = 1 grows at Ecoll � 10−6 eV, but

its ratio to P J=0
ann remains very small (P J=1

ann /P J=0
ann < 0.05). In

a good approximation, the annihilation is always negligible for
J � 1. For comparison, also shown are the direct annihilation
probabilities for J = 0 calculated by using a BO model:
The BO potential V1σ (R) is assumed to be −1/R − EH at
R � RFT, and the problem is solved simply as a potential
scattering by V1σ (R) with the hadronic boundary condition of
Eq. (19) at R = A. In the BO model, the radial wave function
has a complex-valued phase shift, and hence the annihilation
probability can be evaluated. The BO potential was used for
the calculation of the hadronic annihilation in the systems
of H + H̄ [9,11] and He + H̄ [46]. In the present case, the BO
model is highly satisfactory at very low energies (Ecoll < 10−7

eV), but provides about twice as large as the accurate value at
high energies where the BO annihilation probability becomes
just equal to the 2B probability P 0

p̄+p because of V1σ (R) =
−1/R − EH at R � RFT (see also Ref. [9]).

The capture probability P J
cap in the same energy range as that

of Fig. 4 is shown in Fig. 5. At Ecoll < 10−7 eV, the contribution
of J � 1 to the capture is negligible, and the probability P J=0

cap

as well as P J=0
ann is proportional to (Ecoll)1/2. The capture

probabilities for J = 0 and 1 at very low energies were
calculated by Voronin and Carbonell [10]. Their results are also
presented in Fig. 5, and are too small compared with the present
ones except for the J = 1 wave at very low energies.

The calculation was also made for the capture probabilities
by assuming that p̄ and p are point charges (and hence the p̄p

atom is purely hydrogenic). This point-charge approximation
was achieved by using �PC [Eq. (54)] for � in Eq. (20). It
can be found that the point-charge approximation is always
good for J � 1. This is in accordance with the fact that
P J

ann is indeed very small for J � 1. In the case of J = 0,
although the point-charge approximation overestimates P J=0

cap
at high energies, it works satisfactorily at low energies
Ecoll � 10−6 eV: “P J=0

cap (point charge)′′/P J=0
cap = 0.96–0.98

FIG. 6. (Color online) Capture and direct annihilation probabili-
ties P J

cap and P J
ann at collision energies Ecoll = 10−5–10−1 eV.

at Ecoll � 10−7 eV. This may seem to be surprising since the
collision time gets much longer with further decreasing energy.
At very low energies, however, one should notice that all the
reaction probabilities (P J=0

ann and P J=0
cap ) become small since

the interaction at small distances is less important. In such a
case, it is expected that the coupling between the hadronic and
atomic channels becomes weak as well [44]. Thus, one can
expect the applicability of the point-charge approximation for
the capture at very low energies. Also for the same reason,
the direct annihilation probability at very low energies can be
explained adequately by the simple BO model as seen in Fig. 4.
At energies where the capture probability is significantly large,
the relative motion of p̄ + H is dominated by the reaction
dynamics of the capture. When Ecoll � 10−6 eV, accordingly
the BO model, which disregards the details of the capture
dynamics, fails to produce an accurate annihilation probability.

The direct annihilation and capture probabilities at high
collision energies Ecoll = 10−5–10−1 eV are shown together
in Fig. 6. The capture probabilities were calculated for all the
partial waves up to J = 17. The annihilation probability is
almost constant (P J=0

ann = 0.113–0.119) in the energy range
of Ecoll = 10−4–10−1 eV. The capture probabilities are also
nearly constant at Ecoll � EJ

eff : The constant values are close
to unity (∼0.9) except for the J = 0 wave which is largely
affected by the annihilation channel (P J=0

cap = 0.810 − 0.794
at Ecoll = 10−3–10−1 eV). It is realized that the present
system is highly active for the reaction channels. If the radial
motion between p̄ and H were treated classically, the capture
probabilities would have the form of a step function with the
argument Ecoll − EJ

eff [26]. Actually, penetration or reflection
occurs around the barrier of the effective potential, and the
probability exhibits a smooth variation with Ecoll in the vicinity
of Ecoll = EJ

eff . In the present system, no potential (shape)
resonances are present at Ecoll < EJ

eff . The Bohr-Sommerfeld
quantization condition shows that the BO potential V1σ (R) can
support a single quasibound state for several partial waves in
the energy range 0 < Ecoll < EJ

eff . However, provided that the
system has a high reactivity such as in the present case, it
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seems that a quasistationary wave cannot be maintained inside
the potential barrier [47].

For the partial waves of J = 1, 4, 6, 7, 9, 10, 12, 13, 15,

and 16, the capture probability shows a clear peaklike structure
at collision energies just above EJ

eff . A similar structure
was also found in the μ− + H system [26]. Though this
structure is not found in a classical treatment and is seemingly
a resonance, the analysis using the scattering time-delay
matrix [48] indicates that the peak cannot be attributed to an
unequivocal resonance phenomena, as the same conclusion
was also arrived at for μ− + H [26]. In Ref. [47], the
capture probabilities in p̄ + H were calculated by using a
local complex potential model at Ecoll � 10−2 eV, and a
peaklike structure just above EJ

eff was generated for the same
partial waves (J � 10) other than J = 15. It is evident that
the barrier top of the effective potential is responsible for
the peaklike structure. In the case of a simple rectangular
potential barrier, interference between an incoming wave
and an over-barrier reflected wave can cause an oscillatory
structure in the transmission probability at energies above
the barrier [49]. However, a uniform semiclassical method,
using the mapping of the potential barrier to a parabolic
potential, shows that the transmission probability becomes a
monotonic function of energy [50,51]. Very recently, Gao [52]
investigated the quantal version of the Langevin model [53],
and found no peaklike structure in the transmission probability
for the −1/R4 form of potential. The quantal Langevin model
is realized by the assumption that no reflection occurs by
any other short-range interactions. In the present system, the
non-negligible deviation of the total reaction probability from
unity (P J

cap + P J
ann ∼ 0.9) far above the barrier suggests that

the assumption of no reflection would not be fully accepted.
As will be shown elsewhere, the interference with an outgoing
wave induced by short-range interactions is considered to be
the cause of the present peaklike structure, and it may be
identified as a kind of resonance.

C. Product-state distribution in the capture

Figure 7 shows the L-state selected capture cross section
multiplied by the collision energy, Ecoll × σcap(L), plotted as
a function of Ecoll. In the present energy range, since the open
capture channels are N � Nmax = 30, all the angular momen-
tum states up to Lmax = Nmax − 1 = 29 can be produced in
principle. However, it is seen that only low states limited to
L � Lupper � Lmax are allowed at each Ecoll, and the upper
limit Lupper increases with Ecoll. Since a slow emitted electron
can carry away only a low angular momentum l ∼ 0, the major
capture channel in the specified partial wave J is L � J .
Considering that the barrier height EJ

eff increases with J

(Fig. 3), one can define a certain total angular momentum Jmax

such that Ecoll > EJ
eff only if J � Jmax. Thus, it is expected

that Lupper � Jmax. It should be mentioned that the situation
is quite different from that of the capture at much higher
collision energies [5,24,54]. If the BO potential V1σ (R) is
approximated by the asymptotic polarization form Vpol(R) in
the barrier region, Jmax can be given by the orbiting angular
momentum Jorb = (8αpolm

2
REcoll)1/4. One can find that Jorb is

mostly a good estimate of Lupper.

σ

FIG. 7. Ecoll times L-state selected capture cross sections Ecoll ×
σcap(L) at collision energies Ecoll = 10−8–10−1 eV.

Figure 7 shows that Ecollσcap(L) becomes nearly constant at
high energies. This is because the contribution to the capture
cross section σcap(L) mainly comes from the partial wave J �
L and the capture probability P J

cap is almost constant at Ecoll �
EJ

eff (Fig. 6). Thus, the L-selected capture cross section σ (L)
has the energy dependence (Ecoll)−1 when it has a prominent
value.

Figure 8 shows the N -state selected capture cross sec-
tion multiplied by the square root of the collision energy,
(Ecoll)1/2 × σ (N ), which has the same energy dependence as
the rate constant. Except for some undulations, (Ecoll)1/2σ (N )
seems to undergo only a slight change with energy on the
whole. Therefore, the N -selected capture cross section σ (N )
has entirely the energy dependence (Ecoll)−1/2. The undulation
appears particularly as a result of gathering the peaklike struc-
tures present in some capture probabilities P J

cap at Ecoll ∼ EJ
eff :

σ

FIG. 8. (Ecoll)1/2 times N -state selected capture cross sections
(Ecoll)1/2 × σcap(N ) at collision energies Ecoll = 10−8–10−1 eV.
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σ

FIG. 9. (Color online) (N,L)-state selected capture cross sections
σ (N,L) for N = 30 as a function of the angular momentum quantum
number L at several collision energies Ecoll.

For example, the largest peak at Ecoll ∼ 5 × 10−6 eV origi-
nates in the J = 1 partial wave. In the quantal Langevin model,
the transmission probability versus energy is nearly a step func-
tion, and this also generates an undulation structure in the trans-
mission rate constant [52]. In the present system, the undula-
tion is much more enhanced than that expected in the Langevin
model owing to the occurrence of the peaklike structure.

The cross section σcap(N ) at the same energy becomes the
largest always for N = Nmax(=30), which is the highest open
capture channel. The capture into very low N states, in the
case of which the emitted electrons must have huge kinetic
energies, is only rarely realized. Voronin and Carbonell [10]
obtained a somewhat different result that the most populated
state (N = N0) is 29 rather than 30 at Ecoll < 2.72 × 10−7 eV.
Tong et al. [24] calculated the capture cross sections σcap(N )
for p̄ + H at energies Ecoll � 2.72 eV, and found that the most
populated state is N0 = Nmax(=33) at Ecoll = 2.72 eV and
becomes N0 < Nmax at Ecoll � 5.44 eV. The results except
for Voronin and Carbonell [10] indicate that the low-energy
capture leads to preferably slower-electron emission.

Figure 9 shows the L-state distribution of the capture
products p̄p in the N = Nmax(=30) state for several collision
energies. The L distribution becomes broader as the energy
increases, and has the maximum at L � Jorb. In the present
energy range, so-called circular orbits of p̄p (L � N − 1),
which are the most stable against annihilation within the
same N , can hardly be formed in the capture. The efficient
formation of the circular orbits requires much higher collision
energies [5,24,54]. The distribution of low L states reflects the
statistical weight, i.e., σ (N,L) ∝ (2L + 1), until L reaches
∼Jorb.

D. Annihilation and capture cross sections

Figure 10 shows the direct annihilation cross sections σann at
collision energies Ecoll = 10−8–10−1 eV. In the present study,
the p̄p atoms in the s states annihilate as time passes (indirect

σ
σ σ
σ

FIG. 10. (Color online) (a) Direct annihilation cross sections
σann at collision energies Ecoll = 10−8–10−1 eV. Also shown are
the total annihilation cross section σ tot

ann = σann + σcap(L = 0), the
capture cross section “σcap(L = 0) (point charge)” obtained by using
the point-charge approximation, and the 2B annihilation cross section
σ 2B

ann of p̄ + p. (b) The fraction “σcap(L = 0) (point charge)′′/σ tot
ann at

collision energies Ecoll = 10−8–10−1 eV.

annihilation). Accordingly, one may define the total (direct
plus indirect) annihilation cross section by

σ tot
ann = σann + σcap(L = 0). (55)

This total cross section is compared with σcap(L = 0) obtained
by using the point-charge approximation. (By definition,
σann = 0 in the point-charge approximation.) Figure 10
includes these two cross sections and also the fraction
“σcap(L = 0) (point charge)′′/σ tot

ann to clarify their difference.
About 90% of the total annihilation cross section σ tot

ann can
be reproduced by the point-charge approximation if Ecoll �
10−5 eV. At low energies Ecoll < 10−5 eV, the difference be-
comes larger although the capture probability P J=0

cap can be es-
timated adequately by the point-charge approximation (Fig. 5).

For comparison, the annihilation cross section σ 2B
ann =

πk−2P 0
p̄+p in the 2B p̄ + p collisions, with the use of P 0

p̄+p =
0.240 in the zero-energy limit, is also plotted in Fig. 10. The
2B annihilation cross section σ 2B

ann is larger than σann at
all the energies, but smaller than σ tot

ann at Ecoll > 10−7 eV.
Thus, the neutral target is found to play an important role
not only for the capture of p̄ but also for the annihilation of p̄.
Because of the Coulomb attraction between p̄ and p, the 2B
cross section σ 2B

ann has the energy dependence (Ecoll)−1 even at
Ecoll → 0, and becomes larger than σ tot

ann at very low energies
Ecoll < 10−7 eV. If Ecoll > 10−5 eV, since the direct annihila-
tion and capture probabilities for J = 0 are almost independent
of Ecoll, the cross sections σann and σ tot

ann have the same energy
dependence (Ecoll)−1 as that of σ 2B

ann. At very low energies,
however, σann and σ tot

ann have the (Ecoll)−1/2 energy dependence.
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σ
σ σ

FIG. 11. (Color online) Capture cross sections σcap at collision en-
ergies Ecoll = 10−8–10−1 eV. Also shown are σ net

cap = σcap − σcap(L =
0) and the classical Langevin cross section σLangevin.

Figure 11 shows the total capture cross section σcap at
collision energies Ecoll = 10−8–10−1 eV. The structure of
undulation seen in the cross section is a real one. When Ecoll �
10−7 eV, this undulation becomes absent since the partial
waves J � 1 are negligible. As exemplification of a typical
low-energy ion-molecule reaction, also plotted in Fig. 11
is the classical Langevin (orbiting) cross section σLangevin =
π (2αpol/Ecoll)1/2 [53]. The capture cross section has, on
average, roughly the same energy dependence as σLangevin, and
is even close to σLangevin at very low energies. The latter is rather
accidental: The classical picture should be poor at very low en-
ergies, where only J = 0 can contribute to the capture and the
quantal Langevin cross section becomes indeed much larger
than σLangevin [52]. As discussed just before, the production of
the s states may be finally excluded as the capture process.
Then, one may define the net capture cross section given by

σ net
cap = σcap − σcap(L = 0). (56)

It is seen in Fig. 11 that the difference between σ net
cap and σcap

becomes prominent at Ecoll < 10−4 eV. The net capture cross
section σ net

cap does not tend to zero at Ecoll → 0 since the J = 0
wave can produce a non-negligible amount of p̄p in the p or
d states.

IV. SUMMARY AND DISCUSSION

A unified quantum-mechanical treatment of p̄-p annihila-
tion and p̄p formation in p̄ + H collisions has been developed
by using an R-matrix method. The annihilation decay has been

expressed as complex-valued R-matrix elements on the inner
boundary set at a very small p̄-p distance R = A (=10−4

a.u.). This hadronic R matrix, which is actually independent
of energy, can be deduced from energy-level shifts and widths
obtained by x-ray measurements of p̄p or from scattering
lengths obtained by collision experiments of p̄ + p. The
R-matrix diagonalization problem of the Coulomb 3B (p̄-p-e)
dynamics has been solved only in a purely atomic domain
defined by R ∈ (A,B) and r ∈ (0,b), with B = 2.7 a.u. and
b = 8 a.u. Although the hadronic R-matrix elements are
complex numbers, the R-matrix diagonalization in the atomic
domain can be made by a real-number calculation.

Propagating the R matrix to an appropriate outer boundary,
one has been able to calculate the probabilities of the annihila-
tion and the p̄ capture. In the calculation of the asymptotic e +
p̄p scattering, the annihilation effect of p̄p has been neglected
at Ecoll < EN=31 − EH since the time scale of electron
emission is shorter than the annihilation lifetime. However,
if the collision energy is just above the threshold EN − EH

(N � 31), very slow electrons can be emitted, and the
annihilation of p̄p may be significant before the electron runs
away.

In the present energy range, the direct annihilation occur-
ring during the p̄ + H collision is important, and should be
distinguished from the indirect annihilation of p̄p occurring
after the capture process. For the direct annihilation during
the collision, only the J = 0 wave is important, and the
other J � 1 waves have been found negligible. As a result,
the point-charge approximation is always very good for the
capture probabilities of J � 1. At very low energies, however,
the point-charge approximation becomes good also for the
capture of J = 0. Only in the case that the collision energy
is extremely low, can one estimate the direct annihilation
probability by using the BO model. The total annihilation
cross section σ tot

ann = σann + σcap(L = 0) becomes larger than
the net capture cross section σ net

cap = σcap − σcap(L = 0) when
Ecoll � 10−6 eV. The point-charge approximation provides
about 80–90% of σ tot

ann in the present energy range. The 2B
annihilation cross section of p̄ + p is always larger than σann,
but becomes smaller than σ tot

ann at high energies. This is an
interesting finding in understanding plausible processes of p̄

annihilation in gases.
The total and N -state selected capture cross sections show

an undulation structure which is more pronounced than ex-
pected in the quantal Langevin model [52]. At a fixed collision
energy, the L-state selected capture cross section becomes the
largest for L ∼ Jorb (the orbiting angular momentum), and
is roughly proportional to the statistical weight (2L + 1) for
L � Jorb. The energetically highest N = 30 product state is
the most populated in the capture, and the population of this
state accounts for about 50% of the total capture.

In a previous study of μ− + H [26], the calculation was
carried out up to a collision energy above the threshold of a
higher capture channel. The state-selected cross section for
this capture channel rises abruptly from zero at energies just
above the threshold, and soon becomes larger than the others
when the energy increases only slightly from the threshold.
For this reason, the total capture cross section for μ− + H has
a cusp structure around the threshold [55]. The same feature
is also expected in the present p̄ + H system.
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