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The total energies of 28 bound S, P , D, F , G, H , and I states in the three-electron Li atom and Be+

ion, respectively, are determined with the use of the configuration interaction (CI) with Slater orbitals and
LS eigenfunctions and the Hylleraas-configuration-interaction (Hy-CI) methods. We discuss the construction
and selection of the configurations in the wave functions, optimization of the orbital exponents, and advanced
computational techniques. Finally, we have developed an effective procedure which allows one to determine the
energies of the excited states in three-electron atoms and ions to high accuracy by using compact wave functions.
For the ground and low-lying excited states our best accuracy was ≈1 × 10−6 a.u. with the Hy-CI method and
1 × 10−4 a.u. for other excited states. Analogous accuracy of the CI method is substantially lower, ≈1 × 10−3 a.u.
Rotationally excited (bound) states in the three-electron Li atom and Be+ ion are evaluated here to high accuracy.

DOI: 10.1103/PhysRevA.88.012505 PACS number(s): 31.15.ac

I. INTRODUCTION

Nowadays the Li atom has become, like the He atom years
before, a system to test quantum chemistry and high-precision
atomic physics [1]. The nonrelativistic wave functions of three-
electron atoms and ions are of great interest in applications
related to highly accurate evaluations of the lowest-order
relativistic and QED corrections. At this moment we do not
have any closed procedure which can be used to construct
Dirac-type, manifestly Lorentz-invariant wave functions for
two- and three-electron systems.

As a consequence, in actual applications such few-electron
wave functions are approximated by the solutions of the non-
relativistic Schrödinger equation. All corrections are evaluated
with the use of the regular Rayleigh-Schrödinger perturbation
theory. Therefore, the nonrelativistic wave functions of three-
electron atoms and ions are of paramount importance. On
the other hand, the accuracy of modern laser-based atomic
experiments allows one to determine many transition lines
(or transition energies) in three-electron atoms and ions to an
accuracy which could not be expected even 20 years ago. To
match these experimental results we need to increase (and
very substantially) the accuracy of our current nonrelativistic
three-electron wave functions.

In the last few years the low-lying states of the Li atom have
been calculated to the accuracy from a nanohartree to beyond
a picohartree (1 × 10−9–10−12 a.u.) [2–6]. The corresponding
wave functions usually contain many thousands of basis
functions (or configurations). Such sets of basis functions
used in these approaches include Hylleraas [7], Hylleraas-
configuration-interaction [8] three-electron functions (and
their close modifications). Recently, also the four-dimensional
Gaussoid functions of the relative coordinates (see, e.g., [9,10]
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and earlier references therein) has started to be used again
for accurate calculations of the three-electron atomic systems.
An alternative approach is based on the construction of the
compact wave functions, which are constructed by selecting
the most contributing basis functions (or configurations) and
intensive optimization of the nonlinear parameters [11–15].

For the calculation of properties it would be desirable to
have at hand all energies and wave functions for ground and
all excited states. In addition, these states should be calculated
with approximately the same accuracy. Moreover, numerous
excited states of all symmetry types (S, P , D, F , G, H , I , . . .)
are usually needed, e.g., for the calculation of the probability
of ionization. No less importantly, the computational time
should be acceptable. The example of the Li atom can serve to
test methods and techniques developed for the calculations of
properties, such as excitation energies, transition probabilities,
ionization energies, analysis of optical spectra, energy levels
in confinement conditions, nuclear reactions and β± decay,
etc.; see, e.g., Ref. [16]

In this work we employ the Hylleraas-configuration-
interaction (Hy-CI) method and the configuration interaction
(CI) method with Slater orbitals and LS eigenfunctions to
calculate a number of states of the Li atom and Be+ ion
which lie below their respective energy limits of electronic
ionization. The determination of non-S states with the Hy-CI
wave function is easy, since the wave function retains the
orbital picture. In the next sections we discuss the procedures
for selecting the energetically important configurations and
optimizing the orbital exponents in order to calculate accurate
compact wave function expansions. Using this method we have
obtained several benchmark energies.

II. THE Hy-CI AND CI METHODS

The Hy-CI method was proposed by Sims and Hagstrom
[8,17,18]. The advantage of the Hy-CI method with respect
to the other Hylleraas-type methods is that only up to one
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interelectronic coordinate rij per configuration is introduced
into the wave function and, therefore, the method can, in
principle, be applied to any atom. Calculations with the use of
Hy-CI wave functions for few-electron atoms (from He to B)
and for the H2 molecule were reported in Refs. [2,19–24]. The
CI wave function with Slater orbitals and LS eigenfunctions
can be considered a basic part of the Hy-CI wave function. In
this work we start our calculations with the CI wave functions.
In this respect, we follow the same method as Weiss and
Bunge [25,26] and use relatively small basis sets. Recent
extensive CI calculations with Slater orbitals on Be and B
atoms which are more accurate can be found in Refs. [27,28].
Both Hy-CI and CI wave functions can be summarized in the
following expression:

� =
N∑

p=1

Cp�p, �p = Ô(L̂2)Âψpχ. (1)

The Hy-CI and CI wave functions are linear combinations of
N symmetry-adapted configurations �p and the coefficients
Cp, which are determined variationally. In this work, the
symmetry-adapted configurations are constructed “a priori” so
that they are eigenfunctions of the angular momentum operator
L̂2. Another possibility would be the posterior projection of
the configurations over the proper spatial space, as indicated
in Eq. (1) by the projection operator Ô(L̂2), where Â is the
antisymmetrization operator and χ is the spin eigenfunction.

In the case of the Li atom, it is sufficient to use only one spin
function (formally a linear combination of the two possible
spin eigenfunctions would be necessary):

χ = [(αβ − βα)α] . (2)

This is because the energetic contribution of the second spin
eigenfunction has been proven to be small (in the order of

1 × 10−9 a.u. [3,29]). Moreover, the Slater determinants pro-
duced by the second spin eigenfunction (2ααβ − βαα − αβα)
(due to antisymmetry) are repeated when considering the first
spin eigenfunction (αβα − βαα). The spatial part of the basis
functions consists of Hartree products of Slater orbitals,

ψp = rν
ij

n∏
k=1

φk(rk,θk,ϕk), (3)

where ν = 0,1 are employed for CI and Hy-CI wave functions,
respectively. Powers ν > 1 are effectively reduced to ν = 0,1,
since all even and odd powers of rij can be expressed as a
product of rij times a polynomial in ri ,rj and angular functions.

The basis functions φp are products of Slater orbitals. For
the CI wave functions presented in this work, we use s, p, d,
f , g, h, and i Slater orbitals. In contrast, for the Hy-CI wave
functions we use only s, p, d, and f Slater orbitals. Higher
angular orbitals are, in practice, required only to obtain an
accuracy in the nanohartree regime (1 × 10−9 a.u.) or higher
with the Hy-CI method (see Ref. [2]). We use un-normalized
complex Slater orbitals, for which the exponents are adjustable
parameters. These are defined as

φ(r) = rn−1e−αrYm
l (θ,ϕ). (4)

The spherical harmonics with Condon and Shortley phase [30,
p. 52] are given by

Ym
l (θ,ϕ) = (−1)m

[
2l + 1

4π

(l − m)!

(l + m)!

]1/2

P m
l (cos θ )eimϕ, (5)

where P m
l (cos θ ) are the associated Legendre functions. The

spherical harmonics and associated Legendre functions used
in this work are written explicitly in Ref. [31, p. 14].

The Hamiltonian in Hylleraas coordinates may be written
in the infinite nuclear mass model [32,33]:

Ĥ = −1
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The angular momentum operator can be extracted from Eq. (6),

n∑
i=1

1

r2
i

L̂2
i = −1

2

n∑
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1
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r2
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∂

∂θi

, (7)

and its eigenvalue equation is

L2
i φi = li(li + 1)φi, (8)

with li being the angular momentum quantum number of the
orbital φi . In the case of Hy-CI wave functions, the variables
∂2/(∂rij ∂rik) vanish.

The kinetic energy operator has been separated into several
radial and angular parts. This operator has the advantage that,
for the case of three-electron kinetic integrals, the expansion of
rij into r< and r> is avoided, and therefore no three-electron
auxiliary integrals W are required; see Ref. [34]. This fact
saves not only calculations, but also memory space. Only the
easily computed two-electron auxiliary integrals V (n,m; α,β)
are needed.
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From the variational principle, one obtains the matrix
eigenvalue problem

(H − ES)C = 0, (9)

where the matrix elements are

Hkl =
∫

�kH�ldτ, Skl =
∫

�k�ldτ. (10)

The integrals occurring in the Hy-CI calculations of three-
electron systems, can be divided into two- and three-electron
integrals. The two-electron integrals are of the types

〈r12〉,
〈
r2

12

〉
,

〈
1

r12

〉
,

〈r12〉〈r34〉, 〈r12〉
〈

1

r34

〉
, (11)

where the notation 〈r12〉 represents an integral, in which
orbitals of electrons 1 and 2 are involved on the left- and
right-hand sides, e.g.,

〈φ(r1)φ(r2)r12φ(r1)φ(r2)〉 . (12)

These two-electron integrals were evaluated with the algo-
rithms described in Ref. [35].

The three-electron integrals are of the following types:

〈r12r13〉 ,
〈
r2

12r13
〉
,

〈
r12

r13

〉
,

〈
r12r13

r23

〉
. (13)

The first three cases are evaluated by direct integration over
one rij and the coordinates of one electron. They are thus
reduced to a linear combination of two-electron integrals [36].
For the so-called triangle integrals 〈r12r13/r23〉 we use a very
efficient subroutine by Sims and Hagstrom [37]. Finally the
two- and three-electron kinetic energy integrals are evaluated
using the Hamiltonian of Eq. (6) [34,35].

The integration of these three-electron integrals leads to
a limited linear combination of two-electron integrals. These
can be calculated very accurately in terms of two-electron
auxiliary integrals V (m,n; α,β), defined as

V (m,n; α,β) =
∫ ∞

0
rm

1 e−αr1dr1

∫ ∞

r1

rn
2 e−βr2dr2. (14)

The two-electron auxiliary integrals with positive indices m,n

are, in turn, evaluated in terms of one-electron auxiliary
integrals A(n,α) [38].

In summary, only two-electron integrals, as in the CI
method, and triangle integrals have to be computed. This fact
will be extremely helpful when extending the application of the
Hy-CI method to larger systems. In our code, approximately
the same amount of memory is required for CI and Hy-CI
calculations. Note also that, if the Hy-CI method is applied
to many-electron atoms or molecules, the highest order of
required electron integrals is four.

To perform these computations, we have written a three-
electron Hy-CI computer program for three-electron systems
in Fortran 90. The calculations were conducted with the use
of quadruple precision arithmetics. The program has been
thoroughly checked by comparing results of our numerical
calculations with the results by Sims and Hagstrom [2] and

King [12] for the lithium atom. In these calculations we have
obtained complete agreement.

III. CALCULATIONS

A. Construction and selection of the
symmetry-adapted configurations

The ground-state configuration of the Li atom and Be+ ion
is sss [i.e., s(1)s(2)s(3)]. The further considered configura-
tions for S symmetry states (L = 0) are, ordered by decreasing
energetic contribution, spp, pps, sdd, dds, sff , and ff s.
The energetically important configurations for L = 0–6 are
listed in Table I. The quantum number M = 0 was chosen
because for this case a smaller number of Slater determinants
is required. We performed a systematical selection of the CI
configurations according to their energy contribution. This
was done by performing calculations on blocks constructed
for all possible configurations. The eigenvalue equation was
diagonalized upon each addition of a configuration. In this
manner, the contribution of every single configuration and of
each block of a given type to the total energy was evaluated.
Configurations with an overall energy contribution below
1 × 10−8 a.u. were not considered.

Usually the contribution of a configuration is larger, the
smaller is the sum of the l quantum numbers of the employed
orbitals l1 + l2 + l3 is; i.e., the contribution of the configuration
ssp > ppp for a P state. In cases such as the P states spd

and ppp, where the sum of li is equal, the two inner electrons
in ppp form a S configuration. The resulting three-electron
configuration is (1S)p (a P configuration) and contributes more
than the spd one. This is especially important in the case
of F , G, H , and I states. Among the many possibilities to
construct configurations of these symmetries, the energetically
most important configurations were proven to be those with an
inner S shell and a single occupied orbital with the symmetry of
the state under consideration, i.e., (1S)f , (1S)g, (1S)h, and (1S)i.
The inner shell is described with a sum of configurations (1S) =
ss + pp + dd + ff + gg + hh + ii. In the CI calculations of
S, P , and D states we employed s, p, d, and f orbitals (see
Table I). In the CI calculations of the F , G, H , and I states we
have used in addition g, h, and i orbitals as shown in Table I.
The energetic order determined for the CI calculations was
kept for the Hy-CI calculations, where every CI configuration
is multiplied by an interelectronic distance: Hy-CI = CI×{1 +
r12 + r13 + r23}.

Obviously, more types of configurations than the ones dis-
cussed here can be constructed for a given L quantum number.
For instance, configurations like psp could be considered, if
the exponents α1 �= α2. However, we kept the orbital exponents
in the K shell equal; see Tables II and III. Therefore, the
configuration psp is equivalent to the configuration spp. Other
possible higher energy configurations like ppp for L = 0,
M = 0 exist, but were discarded due to their energetic contri-
bution. Table I shows how the configurations used in this work
were constructed from s, p, d, f , g, h, and i Slater orbitals.

Finally, there are more possible “degenerate L eigen-
function” solutions with a larger number of Slater deter-
minants. Specifically, these are degenerate with respect to
the quantum numbers L and M , but with possible different
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TABLE I. List of the symmetry-adapted configurations with quantum numbers L = 0–6 and MZ = 0 employed in the CI and Hy-CI
calculations of the Li atom and Be+ ion. The notation sss stands for s(1)s(2)s(3). The Hy-CI configurations are obtained from the CI ones by
multiplying them by the factor R = {1 + r12 + r13 + r23}. Normalization factors are omitted.

L Configurations Construction

0 sss sss

0 spp sp0p0 − sp1p−1 − sp−1p1

0 pps p0p0s − p1p−1s − p−1p1s

0 sdd sd0d0 − sd1d−1 − sd−1d1 + sd2d−2 + sd−2d2

0 dds d0d0s − d1d−1s − d−1d1s + d2d−2s + d−2d2s

0 sff sf0f0 − sf1f−1 − sf−1f1 + sf2f−2 + sf−2f2 − sf3f−3 − sf−3f3

0 ff s f0f0s − f1f−1s − f−1f1s + f2f−2s + f−2f2s − f3f−3s − f−3f3s

1 ssp ssp0

1 sps sp0s

1 ppp p0p0p0 − p1p−1p0 − p−1p1p0

1 ddp d0d0p0 − d1d−1p0 − d−1d1p0 + d2d−2p0 + d−2d2p0

1 pdd p0d0d0 − p0d1d−1 − p0d−1d1 + p0d2d−2 + p0d−2d2

1 spd sp0d0 − sp1d−1 − sp−1d1

1 pds p0d0s − p1d−1s − p−1d1s

1 sdp sd0p0 − sd1p−1 − sd−1p1

2 ssd ssd0

2 sds sd0s

2 spp sp0p0 + sp1p−1 + sp−1p1

2 pps p0p0s + p1p−1s + p−1p1s

2 ppd p0p0d0 − p1p−1d0 − p−1p1d0

2 ddd d0d0d0 − d1d−1d0 − d−1d1d0 + d2d−2d0 + d−2d2d0

2 spf sp0f0 − sp1f−1 − sp−1f1

2 pf s p0f0s − p1f−1s − p−1f1s

2 sfp sf0p0 − sf1p−1 − sf−1p1

3 ssf ssf0

3 sf s sf0s

3 ppf p0p0f0 − p1p−1f0 − p−1p1f0

3 ddf d0d0f0 − d1d−1f0 − d−1d1f0 + d2d−2f0 + d−2d2f0

3 fff f0f0f0 − f1f−1f0 − f−1f1f0 + f2f−2f0 + f−2f2f0 − f3f−3f0 − f−3f3f0

3 ggf g0g0f0 − g1g−1f0 − g−1g1f0 + g2g−2f0 + g−2g2f0 − g3g−3f0 − g−3g3f0 + g4g−4f0 + g−4g4f0

3 hhf h0h0f0 − h1h−1f0 − h−1h1f0 + h2h−2f0 + h−2h2f0 − h3h−3f0 − h−3h3f0 + h4h−4f0

+ h−4h4f0 − h5h−5f0 − h−5h5f0

4 ssg ssg0

4 sgs sg0s

4 ppg p0p0g0 − p1p−1g0 − p−1p1g0

4 ddg d0d0g0 − d1d−1g0 − d−1d1g0 + d2d−2g0 + d−2d2g0

4 ffg f0f0g0 − f1f−1g0 − f−1f1g0 + f2f−2g0 + f−2f2g0 − f3f−3g0 − f−3f3g0

4 ggg g0g0g0 − g1g−1g0 − g−1g1g0 + g2g−2g0 + g−2g2g0 − g3g−3g0 − g−3g3g0 + g4g−4g0 + g−4g4g0

4 hhg h0h0g0 − h1h−1g0 − h−1h1g0 + h2h−2g0 + h−2h2g0 − h3h−3g0 − h−3h3g0 + h4h−4g0

+ h−4h4g0 − h5h−5g0 − h−5h5g0

5 ssh ssh0

5 shs sh0s

5 pph p0p0h0 − p1p−1h0 − p−1p1h0

5 ddh d0d0h0 − d1d−1h0 − d−1d1h0 + d2d−2h0 + d−2d2h0

5 ff h f0f0h0 − f1f−1h0 − f−1f1h0 + f2f−2h0 + f−2f2h0 − f3f−3h0 − f−3f3h0

5 ggh g0g0h0 − g1g−1h0 − g−1g1h0 + g2g−2h0 + g−2g2h0 − g3g−3h0 − g−3g3h0 + g4g−4h0 + g−4g4h0

5 hhh h0h0h0 − h1h−1h0 − h−1h1h0 + h2h−2h0 + h−2h2h0 − h3h−3h0 − h−3h3h0 + h4h−4h0

+ h−4h4h0 − h5h−5h0 − h−5h5h0

6 ssi ssi0

6 sis si0s

6 ppi p0p0i0 − p1p−1i0 − p−1p1i0

6 ddi d0d0i0 − d1d−1i0 − d−1d1i0 + d2d−2i0 + d−2d2i0

6 ff i f0f0i0 − f1f−1i0 − f−1f1i0 + f2f−2i0 + f−2f2i0 − f3f−3i0 − f−3f3i0

6 ggi g0g0i0 − g1g−1i0 − g−1g1i0 + g2g−2i0 + g−2g2i0 − g3g−3i0 − g−3g3i0 + g4g−4i0 + g−4g4i0
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TABLE I. (Continued.)

L Configurations Construction

6 hhi h0h0i0 − h1h−1i0 − h−1h1i0 + h2h−2i0 + h−2h2i0 − h3h−3i0 − h−3h3i0 + h4h−4i0

+ h−4h4i0 − h5h−5i0 − h−5h5i0

6 iii i0i0i0 − i1i−1i0 − i−1i1i0 + i2i−2i0 + i−2i2i0 − i3i−3i0 − i−3i3i0 + i4i−4i0 + i−4i4i0 − i5i−5i0

− i−5i5i0 + i6i−6i0 + i−6i6i0

energy contribution, i.e., nondegenerate with respect to the
energy [26]. Although the inclusion of various degenerate
configurations has been shown to improve the energy of the
state, this contribution is very small. This is important for very
accurate CI calculations, as reported, e.g., by Bunge [27,28].
In our work, we have concentrated on the energetically most
important CI configurations in order to use them as the basis
for Hy-CI configurations (i.e., configurations multiplied by an
interelectronic distance rij ).

After selecting the types of configurations, we constructed
complete blocks of these configurations for a given basis
set. For instance, for the basis n = 4 (i.e., [4s3p2d1f ]
or [1s2s3s4s2p3p3d4f ]) in the sss block the following
configurations were considered: 1s1s2s, 1s2s2s, 2s2s2s,
1s1s3s, 1s2s3s, 2s2s3s, . . . ,4s4s4s. Note that the configu-
ration 1s1s1s has no physical meaning but displays a large

energy contribution. Altogether, our CI calculations can be
considered “selected” with respect to the type of configuration,
and “full-CI” with respect to the orbitals basis set.

Another important aspect in CI and Hy-CI calculations is
the symmetry adaptation of the configurations. As mentioned
above, the configurations are constructed a priori to be
eigenfunctions of the angular momentum operator L̂2. In
the sums of Table I, the configurations are formed by Slater
determinants. The determinants are pairwise symmetric (i.e.,
sp1p−1 and sp−1p1 in the spp configuration) and lead to the
same values of the electronic integrals. Therefore, it is possible
and desirable to consider only one of the determinants and to
deduce the result from the other.

In other words, the solution of the eigenvalue problem
obtained when using reduced 1 × 1 matrix elements (where the
integrals are added, configuration sp1p−1 + sp−1p1) or when

TABLE II. Orbital exponents used in the CI and Hy-CI calculations of the Li atom of Tables IV and VI. The shells are doubly occupied
α = β and γ is the exponent of the single occupied orbital. The virial factor has been obtained during the optimization of orbital exponents.

No. State αCI = βCI γCI VirialCI αHy-CI = βHy-CI γHy-CI VirialHy-CI

1 2 2S 4.644 060 1.107 868 2.000 000 2.994 250 0.839 625 2.000 000
3 3 2S 4.698 079 0.561 144 2.000 000 3.550 050 0.438 800 2.000 028
6 4 2S 4.605 560 0.359 164 2.000 196 3.241 342 0.304 425 2.000 483
10 5 2S 4.639 431 0.258 794 2.001 368 3.906 990 0.235 023 2.000 534
15 6 2S 4.602 371 0.191 464 2.003 141 4.602 371 0.191 464 2.002 362
24 7 2S 4.696 442 0.154 444 2.002 970 3.384 262 0.134 132 2.003 046
28 8 2S 5.039 868 0.094 174 2.003 949 2.857 940 0.134 896 2.003 993

2 2 2P 4.451 592 0.827 973 2.000 016 3.140 842 0.725 092 2.000 000
4 3 2P 4.507 292 0.504 441 2.000 053 3.520 217 0.370 508 2.000 087
7 4 2P 4.486 842 0.320 982 2.000 175 3.523 842 0.255 675 2.001 194
13 5 2P 4.577 346 0.230 959 2.000 776 3.844 842 0.204 309 2.001 203
19 6 2P 4.513 159 0.169 635 2.003 267 3.426 592 0.170 633 2.001 447
26 7 2P 4.581 002 0.144 740 2.004 915 3.971 050 0.144 667 2.003 926

5 3 2D 4.512 037 0.459 812 2.000 000 3.359 717 0.347 508 2.000 005
8 4 2D 4.483 217 0.247 508 2.000 012 3.496 259 0.253 341 1.999 654
14 5 2D 4.483 288 0.200 160 2.000 073 3.841 288 0.200 160 2.000 234
20 6 2D 4.539 008 0.166 704 2.000 433 4.960 208 0.150 343 2.003 830
27 7 2D 4.492 642 0.143 125 2.001 133 4.492 642 0.143 125 2.000 086

9 4 2F 4.630 029 0.299 372 2.000 027
12 5 2F 4.645 336 0.186 989 2.000 041
18 6 2F 4.669 615 0.174 730 2.000 061
25 7 2F 4.763 930 0.141 984 2.000 367

11 5 2G 5.165 095 0.234 090 1.999 983
17 6 2G 5.127 263 0.207 967 1.999 997
26 7 2G 5.076 262 0.142 897 2.000 050
16 6 2H 5.077 561 0.181 168 2.000 011
22 7 2H 5.077 536 0.141 189 2.000 021

21 7 2I 5.077 551 0.144 224 2.000 014
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TABLE III. Orbital exponents used in the CI and Hy-CI calculations of the Be+ ion of Tables V and VII. The shells are doubly occupied
α = β and γ is the exponent of the single occupied orbital. The virial factor has been obtained during the optimization of orbital exponents.

No. State αCI = βCI γCI VirialCI αHy-CI = βHy-CI γHy-CI VirialHy-CI

1 2 2S 6.345 407 1.950 188 2.000 000 4.173 235 1.406 372 2.000 000
3 3 2S 6.307 744 1.019 290 2.000 017 4.838 717 0.876 476 2.000 009
6 4 2S 6.280 890 0.665 840 2.000 087 4.766 466 0.585 863 2.000 153
10 5 2S 6.327 154 0.479 516 2.001 115 5.331 658 0.442 445 2.001 495
15 6 2S 6.304 912 0.364 545 2.003 618 5.150 658 0.401 445 2.000 714
21 7 2S 6.341 861 0.304 815 2.004 436 4.475 332 0.287 333 2.002 761
28 8 2S 6.397 917 0.248 083 2.005 359 4.201 068 0.260 587 2.003 766

2 2 2P 6.141 069 1.760 345 2.000 000 4.746 625 1.321 000 2.000 002
4 3 2P 6.148 030 0.964 810 2.000 031 4.837 058 0.712 777 2.000 045
7 4 2P 6.158 844 0.631 221 2.000 183 4.800 125 0.516 000 2.000 749
11 5 2P 6.168 223 0.465 315 2.001 420 5.069 200 0.532 429 2.000 760
19 6 2P 6.189 834 0.344 862 2.006 738 3.951 567 0.339 598 2.007 193
26 7 2P 6.222 913 0.290 957 2.010 724 4.743 317 0.289 533 2.008 245

5 3 2D 6.132 817 0.867 614 2.000 005 4.804 284 0.670 348 2.000 004
9 4 2D 6.159 980 0.591 028 2.000 005 4.750 784 0.588 652 2.000 012
14 5 2D 6.134 907 0.434 209 2.000 047 5.720 102 0.381 441 2.000 363
20 6 2D 6.484 197 0.337 802 2.000 781 5.539 008 0.443 304 2.000 114
27 7 2D 6.157 877 0.286 801 2.002 368 4.849 877 0.286 801 2.001 541

8 4 2F 6.440 871 0.589 239 1.999 989
13 5 2F 6.446 382 0.372 527 2.000 019
18 6 2F 6.352 375 0.344 411 2.000 119
25 7 2F 6.419 948 0.285 310 2.000 794

12 5 2G 6.844 762 0.442 011 2.000 017
17 6 2G 6.896 092 0.360 327 2.000 012
24 7 2G 7.030 220 0.289 953 2.000 041

16 6 2H 6.923 097 0.337 191 2.000 007
23 7 2H 6.902 410 0.283 624 2.000 024

22 7 2I 6.977 235 0.288 487 2.000 000

using explicit 2 × 2 matrix elements of the Slater determinants
is the same. The symmetry adaptation is computationally
favorable, since the number of Slater determinants in the input
is smaller and the repeated computation of equal integrals is
avoided. As can be seen in Table I, this procedure may be
applied to all the constructed configurations.

The Hy-CI configuration blocks were constructed by
including (1) the corresponding CI block, (2) the CI block
multiplied by the interelectronic coordinate r12, (3) the CI
block multiplied by r13, and (4) the CI block multiplied by
r23. Here, one has to take into account possible symmetries
between equivalent configurations. This can produce linear
dependencies which cause the calculation to break down (due
to linearly dependent equations in the eigenvalue problem). For
example, 2s2s3s · r13 is equal or equivalent to 2s2s3s · r23.

In general, energetically important Hy-CI configurations
must not be the same as the corresponding CI ones, but usually
this is the case. Therefore, we constructed Hy-CI blocks of
configurations based on the selected CI ones. The number
of configurations grows very fast when adding the three rij

factors. Therefore, we filtered the configurations within a block
one by one, calculating the total energy Ei every time a single
configuration was added and comparing it to the total energy
without this configuration Ei−1.

Again, if the difference of the energy was smaller than
the energy criterion |Ei−1 − Ei | < 1 × 10−8 a.u, the new
configuration was discarded. In this manner, all configurations
were checked, leading to a relatively compact Hy-CI wave
function. Since the configuration selection process was carried
out for every state, the length of the final wave functions
and the configurations included differ from state to state and
between Li and Be+. This is natural, since we need different
configurations to describe different excited states.

B. Optimization of the orbital exponents

The orbital exponents were optimized for each atomic state
of the Li atom and Be+ ion. A set of two exponents was used
(one for the K shell and the other for the odd-electron in the
L shell) and kept equal for all configurations. This technique
accelerates the computations, while still producing sufficiently
accurate results for the calculation of properties. It is clear that,
for highly accurate energies beyond microhartree accuracy
(1 × 10−6 a.u.), more flexibility in the exponents is needed, as
shown in recent calculations on the lithium atom with extensive
optimization [2,12–14] or in calculations with very large wave
functions and carefully chosen exponents [2,3,6,29].
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The virial factor,

χ = −〈V 〉
〈T 〉 , (15)

is used to check the quality of the wave function and guides
the numerical optimization of the exponents in the trial wave
functions. In general, it is observed that the accuracy obtained
in the virial factor predicts approximately the number of the
accurate decimal digits in the energy. For instance, the ground-
state energy of the Li atom has been calculated to −7.478 058
893 a.u. (six decimal digits accurate) and its corresponding
virial factor is 2.000 000 954 (six digits are zero), whereas
the higher energy state 6 2S with energy −7.295 739 603 a.u.
(three decimal digits accurate) has a virial factor of 2.002 361.

The optimization of two exponents at the same time, in the
case of Li for all configurations, has the advantage that (being a
global optimization) it is very fast, in contrast with the partial
optimization of configurations one by one, which may take
very long computational times.

The optimization of the orbital exponents was carried out
via a parabolic procedure. Shortly, the orbital exponents are

varied by a step size. Three energy values are thus calculated
and fitted to a parabola, and the minimum of the parabola is
calculated. Subsequently, this value is kept fixed and the same
is done for the next exponent. The step size is continually
decreased by a given factor as the cycles of exponent
optimization are repeated. At every step the virial factor is
calculated. The optimization is performed until the energy
no longer improves, and the best virial and energy values
agree. The optimization program is completely automatic and
the exponents can be optimized for every state and nuclear
charge.

For the CI calculations, the orbital exponents were opti-
mized until the same energy minimum was obtained in two
successive optimizations, starting with a basis of n = 4. These
exponents were then used in a CI calculation with the basis
n = 5 and optimized again, and so on, up to the basis n = 7.
The optimized exponents of the basis n = 7 are reported in
Table II. For Be+ the same procedure was repeated with the
nuclear charge Z = 4. The excited states were determined
by optimization of the orbital exponents for the second,
third, . . . eigenvalue. Note that in strictly variational methods,

TABLE IV. Convergence of Full-CI (LS) calculations on the ground and excited states of the Li atom with respect to the basis set. The
basis sets are constructed with Slater orbitals; see Table I. The optimized orbital exponents for the largest basis are given in Table II. No. is the
ordering number of the state. N is the number of symmetry-adapted configurations (Table I). All energies are given in a.u., while Difference
refers to the energy differences between the present and the reference energies in microhratrees (1 × 10−6 a.u.).

No. State N n = 6 N n = 7 N Reference energy Ref. Difference

1 2 2S 596 −7.476 817 991 −7.477 192 34020 −7.478 060 323 910 146 894 [3] 868.7
3 3 2S 596 −7.352 980 991 −7.353 249 34020 −7.354 098 421 444 364 045 [3] 849.7
6 4 2S 596 −7.317 410 991 −7.317 679 34020 −7.318 530 845 998 906 901 [3] 851.9
10 5 2S 596 −7.302 342 991 −7.302 682 34020 −7.303 551 579 226 734 650 [3] 870.0
15 6 2S 596 −7.294 676 991 −7.294 935 34020 −7.295 859 510 844 131 039 [3] 924.3
24 7 2S 991 −7.289 596 17072 −7.291 392 273 116 [2] 1796.3

n = 8a

28 82S 508 −7.285 695
2 22P 849 −7.408 437 1430 −7.408 619 32200 −7.410 156 532 652 370 [3] 1537.8
4 32P 849 −7.335 436 1430 −7.335 658 7000 −7.337 151 707 93 [4] 1493.5
7 42P 849 −7.310 200 1430 −7.310 383 7000 −7.311 889 059 38 [4] 1506.1
13 52P 849 −7.298 615 1430 −7.298 802 7000 −7.300 288 164 88 [4] 1486.0
19 62P 849 −7.292 380 1430 −7.292 545 7000 −7.294 020 052 93 [4] 1475.3
26 72P 1430 −7.288 749 7000 −7.290 254 908 09 [4] 1506.0
5 32D 646 −7.333 935 1056 −7.334 100 32760 −7.335 523 543 524 685 [3] 1423.5
8 42D 646 −7.309 598 1056 −7.309 761 4000 −7.311 189 578 43 [5] 1428.1
14 52D 646 −7.298 340 1056 −7.298 502 4000 −7.299 927 555 94 [5] 1425.6
20 62D 646 −7.292 225 1056 −7.292 387 4000 −7.293 810 713 64 [5] 1423.5
27 72D 1056 −7.288 700 4000 −7.290 122 856 24 [5] 1422.2
9 42F 286 −7.310 288 532 −7.310 610 −7.311 168 7 [12] 559.1
12 52F 286 −7.298 989 532 −7.299 340 −7.299 917 1 [12] 576.8
18 62F 286 −7.292 769 532 −7.293 211
25 72F 532 −7.289 401

n = 7 n = 8
11 52G 395 −7.299 248 694 −7.299 430
17 62G 395 −7.293 125 694 −7.293 294
26 72G 395 −7.289 383 694 −7.289 605
16 62H 272 −7.293 138 519 −7.293 320
22 72H 272 −7.289 435 519 −7.289 625
21 72I 350 −7.289 638

aFor the calculation of the 8 2S, 7 2G, 7 2H , and 7 2I states larger basis sets including n = 8 orbitals are needed.
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the successive excited states are the roots of the eigenvalue
problem. The exponent γ of the singly occupied orbital gets
smaller as the quantum number increases. We have obtained
energies that are about 1 millihartree accurate (1 × 10−3 a.u.)
with respect to the nonrelativistic values reported in the
literature.

The Hy-CI orbital exponents of the three lower states of
every symmetry were optimized using a basis set n = 4 of
about 400 configurations of all types considered. Subsequently,
the exponents were kept fixed for calculations with n = 5–8
basis sets. The orbital exponents for the higher excited
states were optimized using few types of configurations (the
energetically most important ones) and a larger basis set n = 8.
In Tables II and III the optimized exponents of the CI and
Hy-CI wave functions are given. Note that the CI exponents
are in general larger than the Hy-CI ones. This is in part because
the Hy-CI wave functions employ a smaller basis set.

The described method of optimization of the exponents
is very successful for the determination of ground and low-
lying excited states. For higher excited states, is not possible
to obtain a good virial factor with this type of optimization.
A larger orbital basis and more flexibility in the number of
exponents would be needed.

IV. RESULTS

We calculated S, P , D, F , G, H , and I symmetry states
for the Li atom with the CI method, using the symmetry-
adapted configurations shown in Table I. The CI calculations
were carried out using double precision arithmetic (about 15
decimal digits accuracy on our workstations). In this manner,
we determined the energy of seven S states, six P states, five
D states, four F states, three G states, two H states, and one
I state.

The total energies of the 28 states of the Li atom considered
in this study are below the total energy of the ground state of the
∞Li+ ion, i.e., Etr ≈ −7.279 913 412 669 305 964 918 75(25)
a.u. [39]. This total energy of the ground state in the two-
electron ∞Li+ ion is the natural threshold energy for an
arbitrary bound state in the three-electron Li atom.

For the Be+ ion we determined the total energies of the
28 bound states, including seven S states, six P states, five D

states, four F states, three G states, two H states, and one I

state. The results of our calculations can be found in Tables IV
and V. In all these calculations we applied the CI method.
The computed energies are lower than the corresponding
ionization energy of the Be+ ion [20]. The accuracy of the

TABLE V. Convergence of Full-CI (LS) calculations on the ground and excited states of the Be+ ion with respect to the basis set. The basis
set and symmetry-adapted configurations used are the same than for the Li atom calculations of Table IV. All energies are given in a.u., while
Difference refers to the energy differences between the present and the reference energies in microhartrees (1 × 10−6 a.u.).

No. State N n = 6 N n = 7 N Reference energy Ref. Difference

1 2 2S 596 −14.323 468 991 −14.323 769 13944 −14.324 763 176 790 43(22) [6] 994.6
3 3 2S 596 −13.921 529 991 −13.921 830 10000 −13.922 789 268 544 2 [29] 959.2
6 4 2S 596 −13.797 444 991 −13.797 754 1888 −13.798 716 609 2 [44] 962.8
10 5 2S 596 −13.743 267 991 −13.743 655 1091 −13.744 631 82 [45] 977.0
15 6 2S 596 −13.714 814 991 −13.715 222 2058 −13.716 286 24 [45] 1064.1
21 7 2S 596 −13.689 753 991 −13.697 421

n = 8
28 8 2S 991 −13.684 764
2 2 2P 849 −14.177 210 1430 −14.177 409 10000 −14.179 333 293 342 7 [29] 1924.4
4 3 2P 849 −13.883 174 1430 −13.883 425 −13.885 15 [46] 1725.3
7 4 2P 849 −13.781 745 1430 −13.781 975 1021 −13.783 518 3 [47] 1543.5
11 5 2P 849 −13.735 200 1430 −13.735 466 −13.737 18 [46] 1714.1
19 6 2P 849 −13.710 140 1430 −13.710 331 −13.712 06 [46] 1729.2
26 7 2P 1430 −13.695 228
5 3 2D 646 −13.876 261 1056 −13.876 447 841 −13.877 871 0 [48] 1424.3
9 4 2D 646 −13.778 890 1056 −13.779 084 841 −13.780 514 4 [48] 1430.8
14 5 2D 646 −13.733 841 1056 −13.734 024 841 −13.735 455 4 [48] 1431.8
20 6 2D 646 −13.709 377 1056 −13.709 538
27 7 2D 1056 −13.694 804
8 4 2F 286 −13.779 403 532 −13.779 946
13 5 2F 286 −13.734 363 532 −13.734 924
18 6 2F 286 −13.709 788 532 −13.710 457
25 7 2F 532 −13.695 579

n = 7 n = 8
12 5 2G 395 −13.734 819 694 −13.735 021
17 6 2G 395 −13.710 358 694 −13.710 575
24 7 2G 395 694 −13.695 806
16 6 2H 272 −13.710 376 519 −13.710 578
23 7 2H 272 −13.695 613 519 −13.695 828
22 72I 350 −13.695 844
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TABLE VI. Calculated Hy-CI energies of the ground S state and first S, P , and D excited states of Li atom. Convergence of the calculations
and comparison with energy values of the literature are shown. n is the odering number of the states. N is the number of symmetry-adapted
configurations. All energies are given in a.u., while Difference refers to the energy differences between the present and the reference energies
in microhartrees (1 × 10−6 a.u.).

No. State N n = 4 N n = 5–7 N Reference energy Ref. Difference

1 2 2S 309 −7.478 053 222 693 −7.478 058 969 34020 −7.478 060 323 910 146 894 [3] 1.3
3 3 2S 307 −7.354 078 275 549 −7.354 093 706 34020 −7.354 098 421 444 364 045 [3] 4.7
6 4 2S 252 −7.318 481 008 591 −7.318 517 759 34020 −7.318 530 845 998 906 901 [3] 13.
10 52S 718 −7.303 512 964 34020 −7.303 551 579 226 734 650 [3] 38.6
15 6 2S 491 −7.295 739 603 34020 −7.295 859 510 844 131 039 [3] 120.0

n = 8
24 7 2S 506 −7.291 085 910 17072 −7.291 392 273 116 [2] 306.2
28 8 2S 816 −7.288 391 657
2 2 2P 381 −7.410 134 123 616 −7.410 149 407 32200 −7.410 156 532 652 370 [3] 7.1
4 3 2P 530 −7.337 055 167 766 −7.337 113 796 7000 −7.337 151 707 93 [4] 37.9
7 4 2P 466 −7.311 724 861 752 −7.311 811 529 7000 −7.311 889 059 38 [4] 77.5
13 5 2P 750 −7.300 137 068 7000 −7.300 288 164 88 [4] 151.1
19 6 2P 847 −7.293 967 122 7000 −7.294 020 052 93 [4] 52.9

n = 8
26 7 2P 502 −7.289 814 402
5 3 2D 188 −7.335 505 135 490 −7.335 512 623 32760 −7.335 523 543 524 685 [3] 10.9
8 4 2D 176 −7.311 192 543 187 −7.311 211 047 4000 −7.311 189 578 43 [5] −21.5
14 5 2D 273 −7.298 186 482 509 −7.299 889 424 4000 −7.299 927 555 94 [5] 38.1
20 6 2D 271 −7.293 697 654 4000 −7.293 810 713 64 [5] 113.1

n = 8
27 7 2D 423 −7.289 806 792 4000 −7.290 122 856 24 [5] 324.1

calculations is ≈1 mhartree (1 × 10−3 a.u.). Note that the F ,
G, H , and I states calculated with the CI method are reported
here.

For Hy-CI calculations, we employed the same blocks
of configurations as in the CI calculations (see Table I)
and added blocks of these configurations multiplied by one

TABLE VII. Calculated Hy-CI energies of the ground S state and first S, P , and D excited states of the Be+ ion. Convergence of the
calculations and comparison with energy values of the literature are shown here. n is the ordering number of the states. N is the number
of symmetry-adapted configurations. All energies are given in a.u., while Difference refers to the energy differences in microhartrees (1 ×
10−6 a.u.).

No. State N n = 4 N n = 5,7 N Reference energy Ref. Difference

1 2 2S 514 −14.324 757 377 1028 −14.324 761 678 13944 −14.324 763 176 790 150 [6] 1.5
3 3 2S 502 −13.922 759 980 1199 −13.922 784 968 10000 −13.922 789 268 554 2 [29] 4.3
6 4 2S 409 −13.798 520 453 757 −13.798 706 849 1888 −13.798 716 609 2 [44] 9.8
10 52S 698 −13.744 580 355 1940 −13.744 631 82 [45] 51.5
14 6 2S 649 −13.716 223 859 2058 −13.716 286 24 [45] 62.4
18 7 2S 810 −13.699 298 491

n = 8
28 8 2S 556 −13.687 885 004
2 2 2P 373 −14.179 314 875 616 −14.179 327 999 10000 −14.179 333 293 342 7 [29] 5.3
4 3 2P 499 −13.885 035 680 707 −13.885 115 345 −13.885 15 [46] 34.7
7 4 2P 352 −13.783 432 326 582 −13.783 574 124 1021 −13.783 518 3 [47] −56.1
11 5 2P 788 −13.736 854 458 −13.737 18 [46] 326
16 6 2P 1232 −13.711 935 268 −13.712 06 [46] 124.7

n = 8
20 7 2P 503 −13.696 356 527
5 3 2D 265 −13.878 005 890 426 −13.878 041 021 841 −13.877 871 0 [48] −170.0
9 4 2D 230 −13.779 724 788 450 −13.780 663 883 841 −13.780 514 4 [48] −149.4
13 5 2D 250 −13.728 658 182 354 −13.735 539 056 841 −13.735 455 4 [48] −83.7
17 6 2D 444 −13.710 204 495

n = 8
27 7 2D 1009 −13.695 586 302
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TABLE VIII. The total energies of the S, P , D, F , G, H , and I states of the Li atom (in a.u.) ordered by their energy. The bound states lay
below the ionization threshold of the Li+ ion, which in nonrelativistic values is −7.279 913 412 669 305 964 918 10(15) a.u. [39].

No. State E(FCI) E(Hy-CI) Reference energy Ref.

1 2 2S −7.477 20(1) −7.478 060(2) −7.478 060 323 910 147(1) [3]
2 2 2P −7.408 70(9) −7.410 150(6) −7.410 156 532 652 41(4) [3]
3 3 2S −7.353 25(1) −7.354 095(2) −7.354 098 421 444 37(1) [3]
4 3 2P −7.335 70(4) −7.337 120(7) −7.337 151 707 93 [4]
5 3 2D −7.334 20(9) −7.335 520(8) −7.335 523 543 524 688(3) [3]
6 4 2S −7.317 70(3) −7.318 520(3) −7.318 530 845 998 91(1) [3]
7 4 2P −7.310 40(2) −7.311 820(9) −7.311 889 059 38 [4]
8 4 2D −7.309 80(4) −7.311 220(9) −7.311 189 578 43(200) [5]
9 4 2F −7.309 60(9)

10 5 2S −7.302 70(2) −7.303 51(3) −7.303 551 579 226 77(4) [3]
11 5 2G −7.299 50(7)
12 5 2F −7.299 40(6)
13 5 2P −7.298 90(10) −7.300 20(7) −7.300 288 164 88 [4]
14 5 2D −7.298 60(10) −7.299 91(1) −7.299 927 555 94(300) [5]
15 6 2S −7.296 00(6) −7.295 80(6) −7.295 859 510 844 19(6) [3]
16 6 2H −7.293 40(8)
17 6 2G −7.293 30(1)
18 6 2F −7.293 30(9)
19 6 2P −7.293 60(5) −7.294 00(4) −7.294 020 052 93 [4]
20 6 2D −7.292 40(1) −7.293 70(3) −7.293 810 713 64(500) [5]
21 7 2I −7.289 71(7)
22 7 2H −7.289 70(7)
23 7 2G −7.289 65(4)
24 7 2S −7.285 70(5) −7.291 10(15) −7.291 392 276(3) [2]
25 7 2F −7.289 45(5)
26 7 2P −7.289 8(5) −7.290 00(9)
27 7 2D −7.289 8(10) −7.289 90(10) −7.290 122 856 24(2000) [5]
28 8 2S −7.286 7(10) −7.288 50(10)

interelectronic coordinate at a time, i.e., CI × (1 + r12 + r13 +
r23). Details on the selection of configurations are given above.
Hy-CI calculations up to the basis n = 6–8 were performed.

It is important to note that in Hy-CI calculations it is usually
not necessary to use basis sets as large as in CI calculations,
since the wave function expansion converges faster to the
exact solution. This is due to the explicit inclusion of the
interelectronic coordinate in the wave function. In contrast, in
the CI method the interelectronic coordinate is not explicitly
considered, and its effect is replaced by the use of high angular
momentum orbitals. In short, for Hy-CI calculations high
angular momentum orbitals (l � 3) are not required to achieve
an accuracy in the microhartree regime (1 × 10−6 a.u.),
which is the purpose of this paper. Note that highly accurate
Hy-CI calculations can be afforded if using long wave-function
expansions; see the benchmark energy values for the 6 2S and
7 2S states of Li atom [2].

The bound, rotationally excited F , G, H , and I states
have never been calculated with the use of the Hy-CI method
due to the complexity of the related problems. Some recent
developments, however, make such calculations possible. For
instance, in our computer program, the electronic integrals
are defined for every l quantum number, but the kinetic
energy integrals are currently restricted to l � 2, see Ref. [34].
The theoretical and computational implementation of higher

quantum numbers is somewhat cumbersome and will be
reported elsewhere.

The nonrelativistic total energies of the four and/or five
lowest bound states of S, P , and D symmetry are now
known to high accuracy, whereas other similar states have
been determined to less accuracy, since in these cases
we have used shorter trial wave functions (see Tables VI
and VII).

In the Hy-CI calculations of the Li atom (see Table VI) the
maximum achieved accuracy is of a few microhartrees (1 ×
10−6 a.u.) for the ground state and first S, P , and D excited
states. For higher excited states the accuracy is slightly lower.
For highly excited bound states it is less than 1 mhartree (1 ×
10−3 a.u.), as far as values for these states were known. This is
because the use of a set of two exponents for all configurations
is not as appropriate for highly excited states as for the ground
and low-excited bound states. For instance, we determined
the total energy of the 8 2S (E = −7.288 391 657 a.u.) state.
By performing analogous calculations for the 4 2D state we
obtained the total energy which is the best to date for this state
E = −7.311 211 047 a.u.

For the Be+ ion, the maximal accuracy is slightly better,
which is directly related with the larger nuclear charge (see
Table VII) and more compact electron wave function. For the
ground state and low excited states of the Li atom we obtained
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TABLE IX. The total energies of the S, P , D, F , G, H , and I states of the Be+ ion ordered by their total energies. All these bound
states are stable, since their total energies are below the ionization threshold which coincide with the nonrelativistic energy of the Be2+ ion
Etr = −13.655 566 238 423 586 702 078 10(15) a.u. [39].

No. State E(FCI) E(Hy-CI) Ref. energy Ref.

1 2 2S −14.323 80(3) −14.324 763(2) −14.324 763 176 790 43(22) [6]
2 2 2P −14.177 43(2) −14.179 330(3) −14.179 333 293 42(3) [29]
3 3 2S −13.921 90(3) −13.922 786(2) −13.922 789 268 570(10) [29]
4 3 2P −13.883 50(7) −13.885 120(5) −13.885 15 [46]
5 3 2D −13.876 50(5) −13.878 050(5) −13.877 871 0 [48]
6 4 2S −13.797 80(5) −13.798 710(4) −13.798 716 609 2 [44]
7 4 2P −13.782 00(2) −13.783 580(5) −13.783 518 3 [47]
8 4 2F −13.778 00(5)
9 4 2D −13.779 10(2) −13.780 70(4) −13.780 514 4 [48]

10 5 2S −13.743 70(4) −13.744 60(2) −13.744 631 82 [45]
11 5 2P −13.735 50(3) −13.736 90(5) −13.737 18 [46]
12 5 2G −13.735 10(8)
13 5 2F −13.735 00(7)
14 5 2D −13.734 10(7) −13.735 60(4) −13.735 455 4 [48]
15 6 2S −13.715 30(8) −13.716 25(3) −13.716 286 24 [45]
16 6 2H −13.710 65(2)
17 6 2G −13.710 60(3)
18 6 2F −13.710 50(4)
19 6 2P −13.710 20(6) −13.712 00(7) −13.712 06 [46]
20 6 2D −13.709 60(6) −13.710 25(5)
21 7 2S −13.697 50(8) −13.699 30(8)
22 7 2I −13.695 86(2)
23 7 2H −13.695 85(2)
24 7 2G −13.695 83(2)
25 7 2F −13.695 60(2)
26 7 2P −13.695 3(7) −13.696 40(5)
27 7 2D −13.694 9(10) −13.695 60(11)
28 8 2S −13.684 8(3) −13.688 00(12)

an accuracy of few microhartrees (1 × 10−6 a.u.), using less
than 1000 configurations, whereas the best calculations in the
literature use up to 14 000 configurations.

The benchmarks obtained for Be+ ion are the
4 2P state (E = −13.783 574 124 a.u.), 3 2D state (E =
−13.878 041 021 a.u.), 4 2D state (E = −13.780 663 883 a.u.),
and 5 2D state (E = −13.735 537 780 a.u.). The newly calcu-
lated states are 7 2S (E = −13.699 298 491 a.u.), 8 2S (E =
−13.687 885 004 a.u.), 7 2P (E = −13.696 356 527 a.u.), 6 2D

(E = −13.710 204 495 a.u.), and 7 2D (E = −13.695 586 302
a.u.). The dissociation threshold for the three-electron ∞Be+
ion is ≈−13.655 566 238 423 586 702 079 65(25) a.u. [39].
This value coincides with the total energy of the ground 1 1S

state of a Be2+ ion with an infinitely heavy nucleus. The optical
spectra of the Li atom and Be+ ions can be found in Ref. [40].
The optical spectrum of the Li atom determined in this study
is in good agreement with the spectrum of the Li atom shown
in that work.

We obtained this accuracy with less than 1% of the
configurations used in the most highly accurate calculations
reported. All calculated states are ordered by their energy
and presented in Tables VIII and IX. The total energies of
these states are below the corresponding threshold energy
(or ionization energy) for the three-electron atomic systems
considered here.

V. CONCLUSIONS AND PERSPECTIVES

We have determined the total energies of 28 bound states
in the Li atom and Be+ ion, respectively. The variational wave
functions of the S, P , D, F , G, H , and I bound states in
these three-electron atomic systems were constructed with the
use of the CI and Hy-CI methods. The procedure consisted in
the appropriate selection of configurations and optimization of
one set of orbital exponents for every state. The total energies of
the low-lying states are microhartree accurate (1 × 10−6 a.u.),
while for excited states the accuracy is ≈1 × 10−4−10−5 a.u.
We have obtained several benchmarks and reported the energy
of some highly excited states. These wave functions are
convenient for the calculation of properties. Consequently,
these wave functions have been used for the calculation of
the transition probabilities during nuclear β decay, where
wave functions of very good quality are necessary to describe
the atomic effects during nuclear reactions [41–43]. Our
future plan include this systematic method of calculations to
determine ground and excited states of the following atoms
and isoelectronic ions in the periodic table, such as Be, B,
and C.

The results of our study are of great interest in various
applications which includes different problems in astrophysics
(e.g., to analyze the emission spectra of the hot Wolf-Rayet
stars [49]), physics of stellar and laboratory plasmas, physics
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of few-body systems, etc. Analougous calculations of various
rotationally and “vibrationally” excited (bound) states in
two-electron helium atom were conducted by Drake [50].
It is clear that the total energies reported by Drake [50] are
more accurate, but we consider a much more complicated
case of bound states in three-electron atoms and ions. Note
also that the spectra of the two-electron atoms and ions
include two independent series, singlet and triplet, while for
three-electron atoms or ions only doublet spin states belong
to the actual discrete spectrum. All quartet spin states of the
three-electron atoms or ions are in the continuum; i.e., they are
not truly bound states and any interaction (such as spin-spin
interactions) that breaks electron permutation symmetry will
force the quadruplet states to decay. Here we do not want

to discuss the quadruple states in the three-electron atomic
systems, since (1) they are not truly bound states and (2) our
method does not allow to analyze the properties of such states,
which can be observed as quasibound states at very special
experimental conditions.
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