Hylleraas-configuration-interaction analysis of the low-lying states in the three-electron Li atom and Be^{+}ion

María Belén Ruiz* and Johannes T. Margraf ${ }^{\dagger}$
Department of Theoretical Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany

Alexei M. Frolov ${ }^{\ddagger}$
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6H 5B7

(Received 17 May 2013; published 11 July 2013)

Abstract

The total energies of 28 bound S, P, D, F, G, H, and I states in the three-electron Li atom and Be^{+} ion, respectively, are determined with the use of the configuration interaction (CI) with Slater orbitals and $L S$ eigenfunctions and the Hylleraas-configuration-interaction (Hy-CI) methods. We discuss the construction and selection of the configurations in the wave functions, optimization of the orbital exponents, and advanced computational techniques. Finally, we have developed an effective procedure which allows one to determine the energies of the excited states in three-electron atoms and ions to high accuracy by using compact wave functions. For the ground and low-lying excited states our best accuracy was $\approx 1 \times 10^{-6}$ a.u. with the Hy-CI method and 1×10^{-4} a.u. for other excited states. Analogous accuracy of the CI method is substantially lower, $\approx 1 \times 10^{-3}$ a.u. Rotationally excited (bound) states in the three-electron Li atom and Be^{+}ion are evaluated here to high accuracy.

DOI: 10.1103/PhysRevA.88.012505
PACS number(s): 31.15.ac

I. INTRODUCTION

Nowadays the Li atom has become, like the He atom years before, a system to test quantum chemistry and high-precision atomic physics [1]. The nonrelativistic wave functions of threeelectron atoms and ions are of great interest in applications related to highly accurate evaluations of the lowest-order relativistic and QED corrections. At this moment we do not have any closed procedure which can be used to construct Dirac-type, manifestly Lorentz-invariant wave functions for two- and three-electron systems.

As a consequence, in actual applications such few-electron wave functions are approximated by the solutions of the nonrelativistic Schrödinger equation. All corrections are evaluated with the use of the regular Rayleigh-Schrödinger perturbation theory. Therefore, the nonrelativistic wave functions of threeelectron atoms and ions are of paramount importance. On the other hand, the accuracy of modern laser-based atomic experiments allows one to determine many transition lines (or transition energies) in three-electron atoms and ions to an accuracy which could not be expected even 20 years ago. To match these experimental results we need to increase (and very substantially) the accuracy of our current nonrelativistic three-electron wave functions.

In the last few years the low-lying states of the Li atom have been calculated to the accuracy from a nanohartree to beyond a picohartree ($1 \times 10^{-9}-10^{-12}$ a.u.) [2-6]. The corresponding wave functions usually contain many thousands of basis functions (or configurations). Such sets of basis functions used in these approaches include Hylleraas [7], Hylleraas-configuration-interaction [8] three-electron functions (and their close modifications). Recently, also the four-dimensional Gaussoid functions of the relative coordinates (see, e.g., [9,10]

[^0]and earlier references therein) has started to be used again for accurate calculations of the three-electron atomic systems. An alternative approach is based on the construction of the compact wave functions, which are constructed by selecting the most contributing basis functions (or configurations) and intensive optimization of the nonlinear parameters [11-15].

For the calculation of properties it would be desirable to have at hand all energies and wave functions for ground and all excited states. In addition, these states should be calculated with approximately the same accuracy. Moreover, numerous excited states of all symmetry types $(S, P, D, F, G, H, I, \ldots)$ are usually needed, e.g., for the calculation of the probability of ionization. No less importantly, the computational time should be acceptable. The example of the Li atom can serve to test methods and techniques developed for the calculations of properties, such as excitation energies, transition probabilities, ionization energies, analysis of optical spectra, energy levels in confinement conditions, nuclear reactions and $\beta^{ \pm}$decay, etc.; see, e.g., Ref. [16]

In this work we employ the Hylleraas-configurationinteraction (Hy-CI) method and the configuration interaction (CI) method with Slater orbitals and $L S$ eigenfunctions to calculate a number of states of the Li atom and Be^{+}ion which lie below their respective energy limits of electronic ionization. The determination of non- S states with the Hy -CI wave function is easy, since the wave function retains the orbital picture. In the next sections we discuss the procedures for selecting the energetically important configurations and optimizing the orbital exponents in order to calculate accurate compact wave function expansions. Using this method we have obtained several benchmark energies.

II. THE Hy-CI AND CI METHODS

The Hy-CI method was proposed by Sims and Hagstrom [$8,17,18]$. The advantage of the Hy-CI method with respect to the other Hylleraas-type methods is that only up to one
interelectronic coordinate $r_{i j}$ per configuration is introduced into the wave function and, therefore, the method can, in principle, be applied to any atom. Calculations with the use of $\mathrm{Hy}-\mathrm{CI}$ wave functions for few-electron atoms (from He to B) and for the H_{2} molecule were reported in Refs. [2,19-24]. The CI wave function with Slater orbitals and $L S$ eigenfunctions can be considered a basic part of the Hy-CI wave function. In this work we start our calculations with the CI wave functions. In this respect, we follow the same method as Weiss and Bunge $[25,26]$ and use relatively small basis sets. Recent extensive CI calculations with Slater orbitals on Be and B atoms which are more accurate can be found in Refs. [27,28]. Both Hy-CI and CI wave functions can be summarized in the following expression:

$$
\begin{equation*}
\Psi=\sum_{p=1}^{N} C_{p} \Phi_{p}, \quad \Phi_{p}=\hat{O}\left(\hat{L}^{2}\right) \hat{\mathcal{A}} \psi_{p} \chi \tag{1}
\end{equation*}
$$

The Hy-CI and CI wave functions are linear combinations of N symmetry-adapted configurations Φ_{p} and the coefficients C_{p}, which are determined variationally. In this work, the symmetry-adapted configurations are constructed "a priori" so that they are eigenfunctions of the angular momentum operator \hat{L}^{2}. Another possibility would be the posterior projection of the configurations over the proper spatial space, as indicated in Eq. (1) by the projection operator $\hat{O}\left(\hat{L}^{2}\right)$, where $\hat{\mathcal{A}}$ is the antisymmetrization operator and χ is the spin eigenfunction.

In the case of the Li atom, it is sufficient to use only one spin function (formally a linear combination of the two possible spin eigenfunctions would be necessary):

$$
\begin{equation*}
\chi=[(\alpha \beta-\beta \alpha) \alpha] . \tag{2}
\end{equation*}
$$

This is because the energetic contribution of the second spin eigenfunction has been proven to be small (in the order of
1×10^{-9} a.u. [3,29]). Moreover, the Slater determinants produced by the second spin eigenfunction ($2 \alpha \alpha \beta-\beta \alpha \alpha-\alpha \beta \alpha$) (due to antisymmetry) are repeated when considering the first spin eigenfunction $(\alpha \beta \alpha-\beta \alpha \alpha)$. The spatial part of the basis functions consists of Hartree products of Slater orbitals,

$$
\begin{equation*}
\psi_{p}=r_{i j}^{\nu} \prod_{k=1}^{n} \phi_{k}\left(r_{k}, \theta_{k}, \varphi_{k}\right), \tag{3}
\end{equation*}
$$

where $v=0,1$ are employed for CI and Hy -CI wave functions, respectively. Powers $v>1$ are effectively reduced to $v=0,1$, since all even and odd powers of $r_{i j}$ can be expressed as a product of $r_{i j}$ times a polynomial in r_{i}, r_{j} and angular functions.

The basis functions ϕ_{p} are products of Slater orbitals. For the CI wave functions presented in this work, we use s, p, d, f, g, h, and i Slater orbitals. In contrast, for the Hy-CI wave functions we use only s, p, d, and f Slater orbitals. Higher angular orbitals are, in practice, required only to obtain an accuracy in the nanohartree regime (1×10^{-9} a.u.) or higher with the Hy-CI method (see Ref. [2]). We use un-normalized complex Slater orbitals, for which the exponents are adjustable parameters. These are defined as

$$
\begin{equation*}
\phi(\mathbf{r})=r^{n-1} e^{-\alpha r} Y_{l}^{m}(\theta, \varphi) . \tag{4}
\end{equation*}
$$

The spherical harmonics with Condon and Shortley phase [30, p. 52] are given by

$$
\begin{equation*}
Y_{l}^{m}(\theta, \varphi)=(-1)^{m}\left[\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}\right]^{1 / 2} P_{l}^{m}(\cos \theta) e^{i m \varphi} \tag{5}
\end{equation*}
$$

where $P_{l}^{m}(\cos \theta)$ are the associated Legendre functions. The spherical harmonics and associated Legendre functions used in this work are written explicitly in Ref. [31, p. 14].

The Hamiltonian in Hylleraas coordinates may be written in the infinite nuclear mass model $[32,33]$:

$$
\begin{align*}
\hat{H}= & -\frac{1}{2} \sum_{i=1}^{n} \frac{\partial^{2}}{\partial r_{i}^{2}}-\sum_{i=1}^{n} \frac{1}{r_{i}} \frac{\partial}{\partial r_{i}}-\sum_{i=1}^{n} \frac{Z}{r_{i}}-\sum_{i<j}^{n} \frac{\partial^{2}}{\partial r_{i j}^{2}}-\sum_{i<j}^{n} \frac{2}{r_{i j}} \frac{\partial}{\partial r_{i j}}+\sum_{i<j}^{n} \frac{1}{r_{i j}}-\frac{1}{2} \sum_{i \neq j}^{n} \frac{r_{i}^{2}+r_{i j}^{2}-r_{j}^{2}}{r_{i} r_{i j}} \frac{\partial^{2}}{\partial r_{i} \partial r_{i j}} \\
& -\frac{1}{2} \sum_{i \neq j}^{n} \sum_{k>j}^{n} \frac{r_{i j}^{2}+r_{i k}^{2}-r_{j k}^{2}}{r_{i j} r_{i k}} \frac{\partial^{2}}{\partial r_{i j} \partial r_{i k}}-\frac{1}{2} \sum_{i=1}^{n} \frac{1}{r_{i}^{2}} \frac{\partial^{2}}{\partial \theta_{i}^{2}}-\frac{1}{2} \sum_{i=1}^{n} \frac{1}{r_{i}^{2} \sin ^{2} \theta_{i}} \frac{\partial^{2}}{\partial \varphi_{i}^{2}}-\frac{1}{2} \sum_{i=1}^{n} \frac{\cot \theta_{i}}{r_{i}^{2}} \frac{\partial}{\partial \theta_{i}} \\
& -\sum_{i \neq j}^{n}\left(\frac{r_{j}}{r_{i} r_{i j}} \frac{\cos \theta_{j}}{\sin \theta_{i}}+\frac{1}{2} \cot \theta_{i} \frac{r_{i j}^{2}-r_{i}^{2}-r_{j}^{2}}{r_{i}^{2} r_{i j}}\right) \frac{\partial^{2}}{\partial \theta_{i} \partial r_{i j}}-\sum_{i \neq j}^{n} \frac{r_{j}}{r_{i} r_{i j}} \frac{\sin \theta_{j}}{\sin \theta_{i}} \sin \left(\varphi_{i}-\varphi_{j}\right) \frac{\partial^{2}}{\partial \varphi_{i} \partial r_{i j}} . \tag{6}
\end{align*}
$$

The angular momentum operator can be extracted from Eq. (6),

$$
\begin{align*}
\sum_{i=1}^{n} \frac{1}{r_{i}^{2}} \hat{L}_{i}^{2}= & -\frac{1}{2} \sum_{i=1}^{n} \frac{1}{r_{i}^{2}} \frac{\partial^{2}}{\partial \theta_{i}^{2}}-\frac{1}{2} \sum_{i=1}^{n} \frac{1}{r_{i}^{2} \sin ^{2} \theta_{i}} \frac{\partial^{2}}{\partial \varphi_{i}^{2}} \\
& -\frac{1}{2} \sum_{i=1}^{n} \frac{\cot \theta_{i}}{r_{i}^{2}} \frac{\partial}{\partial \theta_{i}} \tag{7}
\end{align*}
$$

and its eigenvalue equation is

$$
\begin{equation*}
L_{i}^{2} \phi_{i}=l_{i}\left(l_{i}+1\right) \phi_{i} \tag{8}
\end{equation*}
$$

with l_{i} being the angular momentum quantum number of the orbital ϕ_{i}. In the case of Hy-CI wave functions, the variables $\partial^{2} /\left(\partial r_{i j} \partial r_{i k}\right)$ vanish.

The kinetic energy operator has been separated into several radial and angular parts. This operator has the advantage that, for the case of three-electron kinetic integrals, the expansion of $r_{i j}$ into $r_{<}$and $r_{>}$is avoided, and therefore no three-electron auxiliary integrals W are required; see Ref. [34]. This fact saves not only calculations, but also memory space. Only the easily computed two-electron auxiliary integrals $V(n, m ; \alpha, \beta)$ are needed.

From the variational principle, one obtains the matrix eigenvalue problem

$$
\begin{equation*}
(\mathbf{H}-E \mathbf{S}) \mathbf{C}=\mathbf{0} \tag{9}
\end{equation*}
$$

where the matrix elements are

$$
\begin{equation*}
H_{k l}=\int \Phi_{k} H \Phi_{l} d \tau, \quad S_{k l}=\int \Phi_{k} \Phi_{l} d \tau \tag{10}
\end{equation*}
$$

The integrals occurring in the Hy-CI calculations of threeelectron systems, can be divided into two- and three-electron integrals. The two-electron integrals are of the types

$$
\begin{array}{ll}
\left\langle r_{12}\right\rangle, & \left\langle r_{12}^{2}\right\rangle,
\end{array}\left\langle\frac{1}{r_{12}}\right\rangle, \quad \begin{aligned}
& \left\langle r_{12}\right\rangle\left\langle r_{34}\right\rangle,
\end{aligned}\left\langle r_{12}\right\rangle\left\langle\frac{1}{r_{34}}\right\rangle,
$$

where the notation $\left\langle r_{12}\right\rangle$ represents an integral, in which orbitals of electrons 1 and 2 are involved on the left- and right-hand sides, e.g.,

$$
\begin{equation*}
\left\langle\phi\left(\mathbf{r}_{1}\right) \phi\left(\mathbf{r}_{2}\right) r_{12} \phi\left(\mathbf{r}_{1}\right) \phi\left(\mathbf{r}_{2}\right)\right\rangle \tag{12}
\end{equation*}
$$

These two-electron integrals were evaluated with the algorithms described in Ref. [35].

The three-electron integrals are of the following types:

$$
\begin{equation*}
\left\langle r_{12} r_{13}\right\rangle, \quad\left\langle r_{12}^{2} r_{13}\right\rangle, \quad\left\langle\frac{r_{12}}{r_{13}}\right\rangle,\left\langle\frac{r_{12} r_{13}}{r_{23}}\right\rangle . \tag{13}
\end{equation*}
$$

The first three cases are evaluated by direct integration over one $r_{i j}$ and the coordinates of one electron. They are thus reduced to a linear combination of two-electron integrals [36]. For the so-called triangle integrals $\left\langle r_{12} r_{13} / r_{23}\right\rangle$ we use a very efficient subroutine by Sims and Hagstrom [37]. Finally the two- and three-electron kinetic energy integrals are evaluated using the Hamiltonian of Eq. (6) $[34,35]$.

The integration of these three-electron integrals leads to a limited linear combination of two-electron integrals. These can be calculated very accurately in terms of two-electron auxiliary integrals $V(m, n ; \alpha, \beta)$, defined as

$$
\begin{equation*}
V(m, n ; \alpha, \beta)=\int_{0}^{\infty} r_{1}^{m} e^{-\alpha r_{1}} d r_{1} \int_{r_{1}}^{\infty} r_{2}^{n} e^{-\beta r_{2}} d r_{2} \tag{14}
\end{equation*}
$$

The two-electron auxiliary integrals with positive indices m, n are, in turn, evaluated in terms of one-electron auxiliary integrals $A(n, \alpha)$ [38].

In summary, only two-electron integrals, as in the CI method, and triangle integrals have to be computed. This fact will be extremely helpful when extending the application of the Hy-CI method to larger systems. In our code, approximately the same amount of memory is required for CI and Hy-CI calculations. Note also that, if the Hy-CI method is applied to many-electron atoms or molecules, the highest order of required electron integrals is four.

To perform these computations, we have written a threeelectron Hy-CI computer program for three-electron systems in Fortran 90. The calculations were conducted with the use of quadruple precision arithmetics. The program has been thoroughly checked by comparing results of our numerical calculations with the results by Sims and Hagstrom [2] and

King [12] for the lithium atom. In these calculations we have obtained complete agreement.

III. CALCULATIONS

A. Construction and selection of the symmetry-adapted configurations

The ground-state configuration of the Li atom and Be^{+}ion is $s s s$ [i.e., $s(1) s(2) s(3)]$. The further considered configurations for S symmetry states $(L=0)$ are, ordered by decreasing energetic contribution, $s p p, p p s, s d d, d d s, s f f$, and $f f s$. The energetically important configurations for $L=0-6$ are listed in Table I. The quantum number $M=0$ was chosen because for this case a smaller number of Slater determinants is required. We performed a systematical selection of the CI configurations according to their energy contribution. This was done by performing calculations on blocks constructed for all possible configurations. The eigenvalue equation was diagonalized upon each addition of a configuration. In this manner, the contribution of every single configuration and of each block of a given type to the total energy was evaluated. Configurations with an overall energy contribution below 1×10^{-8} a.u. were not considered.

Usually the contribution of a configuration is larger, the smaller is the sum of the l quantum numbers of the employed orbitals $l_{1}+l_{2}+l_{3}$ is; i.e., the contribution of the configuration $s s p>p p p$ for a P state. In cases such as the P states $s p d$ and $p p p$, where the sum of l_{i} is equal, the two inner electrons in $p p p$ form a S configuration. The resulting three-electron configuration is $\left({ }^{1} S\right) p$ (a P configuration) and contributes more than the spd one. This is especially important in the case of F, G, H, and I states. Among the many possibilities to construct configurations of these symmetries, the energetically most important configurations were proven to be those with an inner S shell and a single occupied orbital with the symmetry of the state under consideration, i.e., $\left({ }^{1} S\right) f,\left({ }^{1} S\right) g,\left({ }^{1} S\right) h$, and $\left({ }^{1} S\right) i$. The inner shell is described with a sum of configurations $\left({ }^{1} S\right)=$ $s s+p p+d d+f f+g g+h h+i i$. In the CI calculations of S, P, and D states we employed s, p, d, and f orbitals (see Table I). In the CI calculations of the F, G, H, and I states we have used in addition g, h, and i orbitals as shown in Table I. The energetic order determined for the CI calculations was kept for the Hy-CI calculations, where every CI configuration is multiplied by an interelectronic distance: $\mathrm{Hy}-\mathrm{CI}=\mathrm{CI} \times\{1+$ $\left.r_{12}+r_{13}+r_{23}\right\}$.

Obviously, more types of configurations than the ones discussed here can be constructed for a given L quantum number. For instance, configurations like $p s p$ could be considered, if the exponents $\alpha_{1} \neq \alpha_{2}$. However, we kept the orbital exponents in the K shell equal; see Tables II and III. Therefore, the configuration $p s p$ is equivalent to the configuration $s p p$. Other possible higher energy configurations like $p p p$ for $L=0$, $M=0$ exist, but were discarded due to their energetic contribution. Table I shows how the configurations used in this work were constructed from s, p, d, f, g, h, and i Slater orbitals.

Finally, there are more possible "degenerate L eigenfunction" solutions with a larger number of Slater determinants. Specifically, these are degenerate with respect to the quantum numbers L and M, but with possible different

TABLE I. List of the symmetry-adapted configurations with quantum numbers $L=0-6$ and $M_{Z}=0$ employed in the CI and Hy-CI calculations of the Li atom and Be^{+}ion. The notation sss stands for $s(1) s(2) s(3)$. The Hy-CI configurations are obtained from the CI ones by multiplying them by the factor $R=\left\{1+r_{12}+r_{13}+r_{23}\right\}$. Normalization factors are omitted.

L	Configurations	Construction
0	sss	sss
0	spp	$s p_{0} p_{0}-s p_{1} p_{-1}-s p_{-1} p_{1}$
0	pps	$p_{0} p_{0} s-p_{1} p_{-1} s-p_{-1} p_{1} s$
0	$s d d$	$s d_{0} d_{0}-s d_{1} d_{-1}-s d_{-1} d_{1}+s d_{2} d_{-2}+s d_{-2} d_{2}$
0	$d d s$	$d_{0} d_{0} s-d_{1} d_{-1} s-d_{-1} d_{1} s+d_{2} d_{-2} s+d_{-2} d_{2} s$
0	$s f f$	$s f_{0} f_{0}-s f_{1} f_{-1}-s f_{-1} f_{1}+s f_{2} f_{-2}+s f_{-2} f_{2}-s f_{3} f_{-3}-s f_{-3} f_{3}$
0	ffs	$f_{0} f_{0} s-f_{1} f_{-1} s-f_{-1} f_{1} s+f_{2} f_{-2} s+f_{-2} f_{2} s-f_{3} f_{-3} s-f_{-3} f_{3} s$
1	ssp	$s s_{0}$
1	sps	$s p_{0} s$
1	ppp	$p_{0} p_{0} p_{0}-p_{1} p_{-1} p_{0}-p_{-1} p_{1} p_{0}$
1	$d d p$	$d_{0} d_{0} p_{0}-d_{1} d_{-1} p_{0}-d_{-1} d_{1} p_{0}+d_{2} d_{-2} p_{0}+d_{-2} d_{2} p_{0}$
1	pdd	$p_{0} d_{0} d_{0}-p_{0} d_{1} d_{-1}-p_{0} d_{-1} d_{1}+p_{0} d_{2} d_{-2}+p_{0} d_{-2} d_{2}$
1	spd	$s p_{0} d_{0}-s p_{1} d_{-1}-s p_{-1} d_{1}$
1	pds	$p_{0} d_{0} s-p_{1} d_{-1} s-p_{-1} d_{1} s$
1	$s d p$	$s d_{0} p_{0}-s d_{1} p_{-1}-s d_{-1} p_{1}$
2	ssd	$s s d_{0}$
2	$s d s$	$s d_{0} s$
2	spp	$s p_{0} p_{0}+s p_{1} p_{-1}+s p_{-1} p_{1}$
2	pps	$p_{0} p_{0} s+p_{1} p_{-1} s+p_{-1} p_{1} s$
2	ppd	$p_{0} p_{0} d_{0}-p_{1} p_{-1} d_{0}-p_{-1} p_{1} d_{0}$
2	$d d d$	$d_{0} d_{0} d_{0}-d_{1} d_{-1} d_{0}-d_{-1} d_{1} d_{0}+d_{2} d_{-2} d_{0}+d_{-2} d_{2} d_{0}$
2	spf	$s p_{0} f_{0}-s p_{1} f_{-1}-s p_{-1} f_{1}$
2	$p f s$	$p_{0} f_{0} s-p_{1} f_{-1} s-p_{-1} f_{1} s$
2	$s f p$	$s f_{0} p_{0}-s f_{1} p_{-1}-s f_{-1} p_{1}$
3	$s s f$	$s s f_{0}$
3	$s f s$	$s f_{0} s$
3	ppf	$p_{0} p_{0} f_{0}-p_{1} p_{-1} f_{0}-p_{-1} p_{1} f_{0}$
3	$d d f$	$d_{0} d_{0} f_{0}-d_{1} d_{-1} f_{0}-d_{-1} d_{1} f_{0}+d_{2} d_{-2} f_{0}+d_{-2} d_{2} f_{0}$
3	fff	$f_{0} f_{0} f_{0}-f_{1} f_{-1} f_{0}-f_{-1} f_{1} f_{0}+f_{2} f_{-2} f_{0}+f_{-2} f_{2} f_{0}-f_{3} f_{-3} f_{0}-f_{-3} f_{3} f_{0}$
3	$g g f$	$g_{0} g_{0} f_{0}-g_{1} g_{-1} f_{0}-g_{-1} g_{1} f_{0}+g_{2} g_{-2} f_{0}+g_{-2} g_{2} f_{0}-g_{3} g_{-3} f_{0}-g_{-3} g_{3} f_{0}+g_{4} g_{-4} f_{0}+g_{-4} g_{4} f_{0}$
3	hhf	$\begin{gathered} h_{0} h_{0} f_{0}-h_{1} h_{-1} f_{0}-h_{-1} h_{1} f_{0}+h_{2} h_{-2} f_{0}+h_{-2} h_{2} f_{0}-h_{3} h_{-3} f_{0}-h_{-3} h_{3} f_{0}+h_{4} h_{-4} f_{0} \\ +h_{-4} h_{4} f_{0}-h_{5} h_{-5} f_{0}-h_{-5} h_{5} f_{0} \end{gathered}$
4	ssg	ssgo
4	sgs	$s g_{0} s$
4	ppg	$p_{0} p_{0} g_{0}-p_{1} p_{-1} g_{0}-p_{-1} p_{1} g_{0}$
4	$d d g$	$d_{0} d_{0} g_{0}-d_{1} d_{-1} g_{0}-d_{-1} d_{1} g_{0}+d_{2} d_{-2} g_{0}+d_{-2} d_{2} g_{0}$
4	ffg	$f_{0} f_{0} g_{0}-f_{1} f_{-1} g_{0}-f_{-1} f_{1} g_{0}+f_{2} f_{-2} g_{0}+f_{-2} f_{2} g_{0}-f_{3} f_{-3} g_{0}-f_{-3} f_{3} g_{0}$
4	ggg	$g_{0} g_{0} g_{0}-g_{1} g_{-1} g_{0}-g_{-1} g_{1} g_{0}+g_{2} g_{-2} g_{0}+g_{-2} g_{2} g_{0}-g_{3} g_{-3} g_{0}-g_{-3} g_{3} g_{0}+g_{4} g_{-4} g_{0}+g_{-4} g_{4} g_{0}$
4	hhg	$\begin{gathered} h_{0} h_{0} g_{0}-h_{1} h_{-1} g_{0}-h_{-1} h_{1} g_{0}+h_{2} h_{-2} g_{0}+h_{-2} h_{2} g_{0}-h_{3} h_{-3} g_{0}-h_{-3} h_{3} g_{0}+h_{4} h_{-4} g_{0} \\ +h_{-4} h_{4} g_{0}-h_{5} h_{-5} g_{0}-h_{-5} h_{5} g_{0} \end{gathered}$
5	ssh	ssh 0_{0}
5	shs	$s h_{0} s$
5	pph	$p_{0} p_{0} h_{0}-p_{1} p_{-1} h_{0}-p_{-1} p_{1} h_{0}$
5	$d d h$	$d_{0} d_{0} h_{0}-d_{1} d_{-1} h_{0}-d_{-1} d_{1} h_{0}+d_{2} d_{-2} h_{0}+d_{-2} d_{2} h_{0}$
5	ffh	$f_{0} f_{0} h_{0}-f_{1} f_{-1} h_{0}-f_{-1} f_{1} h_{0}+f_{2} f_{-2} h_{0}+f_{-2} f_{2} h_{0}-f_{3} f_{-3} h_{0}-f_{-3} f_{3} h_{0}$
5	ggh	$g_{0} g_{0} h_{0}-g_{1} g_{-1} h_{0}-g_{-1} g_{1} h_{0}+g_{2} g_{-2} h_{0}+g_{-2} g_{2} h_{0}-g_{3} g_{-3} h_{0}-g_{-3} g_{3} h_{0}+g_{4} g_{-4} h_{0}+g_{-4} g_{4} h_{0}$
5	hhh	$\begin{gathered} h_{0} h_{0} h_{0}-h_{1} h_{-1} h_{0}-h_{-1} h_{1} h_{0}+h_{2} h_{-2} h_{0}+h_{-2} h_{2} h_{0}-h_{3} h_{-3} h_{0}-h_{-3} h_{3} h_{0}+h_{4} h_{-4} h_{0} \\ +h_{-4} h_{4} h_{0}-h_{5} h_{-5} h_{0}-h_{-5} h_{5} h_{0} \end{gathered}$
6	ssi	ssio
6	sis	$s i_{0} s$
6	ppi	$p_{0} p_{0} i_{0}-p_{1} p_{-1} i_{0}-p_{-1} p_{1} i_{0}$
6	$d d i$	$d_{0} d_{0} i_{0}-d_{1} d_{-1} i_{0}-d_{-1} d_{1} i_{0}+d_{2} d_{-2} i_{0}+d_{-2} d_{2} i_{0}$
6	ffi	$f_{0} f_{0} i_{0}-f_{1} f_{-1} i_{0}-f_{-1} f_{1} i_{0}+f_{2} f_{-2} i_{0}+f_{-2} f_{2} i_{0}-f_{3} f_{-3} i_{0}-f_{-3} f_{3} i_{0}$
6	ggi	$g_{0} g_{0} i_{0}-g_{1} g_{-1} i_{0}-g_{-1} g_{1} i_{0}+g_{2} g_{-2} i_{0}+g_{-2} g_{2} i_{0}-g_{3} g_{-3} i_{0}-g_{-3} g_{3} i_{0}+g_{4} g_{-4} i_{0}+g_{-4} g_{4} i_{0}$

TABLE I. (Continued.)

L	Configurations	Construction
6	hhi	$\begin{aligned} & h_{0} h_{0} i_{0}-h_{1} h_{-1} i_{0}-h_{-1} h_{1} i_{0}+h_{2} h_{-2} i_{0}+h_{-2} h_{2} i_{0}-h_{3} h_{-3} i_{0}-h_{-3} h_{3} i_{0}+h_{4} h_{-4} i_{0} \\ & \quad+h_{-4} h_{4} i_{0}-h_{5} h_{-5} i_{0}-h_{-5} h_{5} i_{0} \end{aligned}$
6	iii	$\begin{gathered} i_{0} i_{0} i_{0}-i_{1} i_{-1} i_{0}-i_{-1} i_{1} i_{0}+i_{2} i_{-2} i_{0}+i_{-2} i_{2} i_{0}-i_{3} i_{-3} i_{0}-i_{-3} i_{3} i_{0}+i_{4} i_{-4} i_{0}+i_{-4} i_{4} i_{0}-i_{5} i_{-5} i_{0} \\ -i_{-5} i_{5} i_{0}+i_{6} i_{-6} i_{0}+i_{-6} i_{6} i_{0} \end{gathered}$

energy contribution, i.e., nondegenerate with respect to the energy [26]. Although the inclusion of various degenerate configurations has been shown to improve the energy of the state, this contribution is very small. This is important for very accurate CI calculations, as reported, e.g., by Bunge [27,28]. In our work, we have concentrated on the energetically most important CI configurations in order to use them as the basis for Hy-CI configurations (i.e., configurations multiplied by an interelectronic distance $r_{i j}$).

After selecting the types of configurations, we constructed complete blocks of these configurations for a given basis set. For instance, for the basis $n=4$ (i.e., $[4 s 3 p 2 d 1 f]$ or [$1 s 2 s 3 s 4 s 2 p 3 p 3 d 4 f$]) in the sss block the following configurations were considered: $1 s 1 s 2 s, 1 s 2 s 2 s, 2 s 2 s 2 s$, $1 s 1 s 3 s, 1 s 2 s 3 s, 2 s 2 s 3 s, \ldots, 4 s 4 s 4 s$. Note that the configuration $1 s 1 s 1 s$ has no physical meaning but displays a large
energy contribution. Altogether, our CI calculations can be considered "selected" with respect to the type of configuration, and "full-CI" with respect to the orbitals basis set.

Another important aspect in CI and Hy-CI calculations is the symmetry adaptation of the configurations. As mentioned above, the configurations are constructed a priori to be eigenfunctions of the angular momentum operator \hat{L}^{2}. In the sums of Table I, the configurations are formed by Slater determinants. The determinants are pairwise symmetric (i.e., $s p_{1} p_{-1}$ and $s p_{-1} p_{1}$ in the $s p p$ configuration) and lead to the same values of the electronic integrals. Therefore, it is possible and desirable to consider only one of the determinants and to deduce the result from the other.

In other words, the solution of the eigenvalue problem obtained when using reduced 1×1 matrix elements (where the integrals are added, configuration $s p_{1} p_{-1}+s p_{-1} p_{1}$) or when

TABLE II. Orbital exponents used in the CI and Hy-CI calculations of the Li atom of Tables IV and VI. The shells are doubly occupied $\alpha=\beta$ and γ is the exponent of the single occupied orbital. The virial factor has been obtained during the optimization of orbital exponents.

No.	State	$\alpha_{\text {CI }}=\beta_{\text {CI }}$	$\gamma_{\text {CI }}$	Virial ${ }_{\text {CI }}$	$\alpha_{\mathrm{Hy}-\mathrm{CI}}=\beta_{\mathrm{Hy}-\mathrm{Cl}}$	$\gamma_{\text {Hy-CI }}$	Virial $_{\text {Hy-CI }}$
1	$2^{2} S$	4.644060	1.107868	2.000000	2.994250	0.839625	2.000000
3	$3^{2} S$	4.698079	0.561144	2.000000	3.550050	0.438800	2.000028
6	$4^{2} S$	4.605560	0.359164	2.000196	3.241342	0.304425	2.000483
10	$5^{2} S$	4.639431	0.258794	2.001368	3.906990	0.235023	2.000534
15	$6^{2} S$	4.602371	0.191464	2.003141	4.602371	0.191464	2.002362
24	$7^{2} S$	4.696442	0.154444	2.002970	3.384262	0.134132	2.003046
28	$8^{2} S$	5.039868	0.094174	2.003949	2.857940	0.134896	2.003993
2	$2^{2} P$	4.451592	0.827973	2.000016	3.140842	0.725092	2.000000
4	$3^{2} P$	4.507292	0.504441	2.000053	3.520217	0.370508	2.000087
7	$4^{2} P$	4.486842	0.320982	2.000175	3.523842	0.255675	2.001194
13	$5^{2} P$	4.577346	0.230959	2.000776	3.844842	0.204309	2.001203
19	$6^{2} P$	4.513159	0.169635	2.003267	3.426592	0.170633	2.001447
26	$7{ }^{2} P$	4.581002	0.144740	2.004915	3.971050	0.144667	2.003926
5	$3^{2} D$	4.512037	0.459812	2.000000	3.359717	0.347508	2.000005
8	$4^{2} D$	4.483217	0.247508	2.000012	3.496259	0.253341	1.999654
14	$5^{2} D$	4.483288	0.200160	2.000073	3.841288	0.200160	2.000234
20	$6^{2} D$	4.539008	0.166704	2.000433	4.960208	0.150343	2.003830
27	$7{ }^{2} D$	4.492642	0.143125	2.001133	4.492642	0.143125	2.000086
9	$4^{2} F$	4.630029	0.299372	2.000027			
12	$5^{2} F$	4.645336	0.186989	2.000041			
18	$6^{2} F$	4.669615	0.174730	2.000061			
25	$7{ }^{2} F$	4.763930	0.141984	2.000367			
11	$5^{2} G$	5.165095	0.234090	1.999983			
17	$6^{2} G$	5.127263	0.207967	1.999997			
26	$7{ }^{2} G$	5.076262	0.142897	2.000050			
16	$6^{2} \mathrm{H}$	5.077561	0.181168	2.000011			
22	$7{ }^{2} \mathrm{H}$	5.077536	0.141189	2.000021			
21	$7^{2} I$	5.077551	0.144224	2.000014			

TABLE III. Orbital exponents used in the CI and Hy-CI calculations of the Be^{+}ion of Tables V and VII. The shells are doubly occupied $\alpha=\beta$ and γ is the exponent of the single occupied orbital. The virial factor has been obtained during the optimization of orbital exponents.

No.	State	$\alpha_{\mathrm{CI}}=\beta_{\mathrm{CI}}$	$\gamma_{\text {CI }}$	Virial ${ }_{\text {CI }}$	$\alpha_{\mathrm{Hy}-\mathrm{Cl}}=\beta_{\mathrm{Hy}-\mathrm{Cl}}$	$\gamma_{\text {Hy-CI }}$	Virial $_{\text {Hy-CI }}$
1	$2^{2} S$	6.345407	1.950188	2.000000	4.173235	1.406372	2.000000
3	$3^{2} S$	6.307744	1.019290	2.000017	4.838717	0.876476	2.000009
6	$4^{2} S$	6.280890	0.665840	2.000087	4.766466	0.585863	2.000153
10	$5^{2} S$	6.327154	0.479516	2.001115	5.331658	0.442445	2.001495
15	$6^{2} S$	6.304912	0.364545	2.003618	5.150658	0.401445	2.000714
21	$7{ }^{2} S$	6.341861	0.304815	2.004436	4.475332	0.287333	2.002761
28	$8^{2} S$	6.397917	0.248083	2.005359	4.201068	0.260587	2.003766
2	$2^{2} P$	6.141069	1.760345	2.000000	4.746625	1.321000	2.000002
4	$3^{2} P$	6.148030	0.964810	2.000031	4.837058	0.712777	2.000045
7	$4^{2} P$	6.158844	0.631221	2.000183	4.800125	0.516000	2.000749
11	$5^{2} P$	6.168223	0.465315	2.001420	5.069200	0.532429	2.000760
19	$6^{2} P$	6.189834	0.344862	2.006738	3.951567	0.339598	2.007193
26	$7^{2} P$	6.222913	0.290957	2.010724	4.743317	0.289533	2.008245
5	$3^{2} D$	6.132817	0.867614	2.000005	4.804284	0.670348	2.000004
9	$4^{2} D$	6.159980	0.591028	2.000005	4.750784	0.588652	2.000012
14	$5^{2} D$	6.134907	0.434209	2.000047	5.720102	0.381441	2.000363
20	$6^{2} D$	6.484197	0.337802	2.000781	5.539008	0.443304	2.000114
27	$7{ }^{2} D$	6.157877	0.286801	2.002368	4.849877	0.286801	2.001541
8	$4^{2} F$	6.440871	0.589239	1.999989			
13	$5^{2} F$	6.446382	0.372527	2.000019			
18	$6^{2} F$	6.352375	0.344411	2.000119			
25	$7{ }^{2} F$	6.419948	0.285310	2.000794			
12	$5^{2} G$	6.844762	0.442011	2.000017			
17	$6^{2} G$	6.896092	0.360327	2.000012			
24	$7{ }^{2} G$	7.030220	0.289953	2.000041			
16	$6^{2} \mathrm{H}$	6.923097	0.337191	2.000007			
23	$7{ }^{2} \mathrm{H}$	6.902410	0.283624	2.000024			
22	$7^{2} I$	6.977235	0.288487	2.000000			

using explicit 2×2 matrix elements of the Slater determinants is the same. The symmetry adaptation is computationally favorable, since the number of Slater determinants in the input is smaller and the repeated computation of equal integrals is avoided. As can be seen in Table I, this procedure may be applied to all the constructed configurations.

The Hy-CI configuration blocks were constructed by including (1) the corresponding CI block, (2) the CI block multiplied by the interelectronic coordinate r_{12}, (3) the CI block multiplied by r_{13}, and (4) the CI block multiplied by r_{23}. Here, one has to take into account possible symmetries between equivalent configurations. This can produce linear dependencies which cause the calculation to break down (due to linearly dependent equations in the eigenvalue problem). For example, $2 s 2 s 3 s \cdot r_{13}$ is equal or equivalent to $2 s 2 s 3 s \cdot r_{23}$.

In general, energetically important Hy-CI configurations must not be the same as the corresponding CI ones, but usually this is the case. Therefore, we constructed Hy-CI blocks of configurations based on the selected CI ones. The number of configurations grows very fast when adding the three $r_{i j}$ factors. Therefore, we filtered the configurations within a block one by one, calculating the total energy E_{i} every time a single configuration was added and comparing it to the total energy without this configuration E_{i-1}.

Again, if the difference of the energy was smaller than the energy criterion $\left|E_{i-1}-E_{i}\right|<1 \times 10^{-8}$ a.u, the new configuration was discarded. In this manner, all configurations were checked, leading to a relatively compact Hy-CI wave function. Since the configuration selection process was carried out for every state, the length of the final wave functions and the configurations included differ from state to state and between Li and Be^{+}. This is natural, since we need different configurations to describe different excited states.

B. Optimization of the orbital exponents

The orbital exponents were optimized for each atomic state of the Li atom and Be^{+}ion. A set of two exponents was used (one for the K shell and the other for the odd-electron in the L shell) and kept equal for all configurations. This technique accelerates the computations, while still producing sufficiently accurate results for the calculation of properties. It is clear that, for highly accurate energies beyond microhartree accuracy (1×10^{-6} a.u.), more flexibility in the exponents is needed, as shown in recent calculations on the lithium atom with extensive optimization [2,12-14] or in calculations with very large wave functions and carefully chosen exponents [2,3,6,29].

The virial factor,

$$
\begin{equation*}
\chi=-\frac{\langle V\rangle}{\langle T\rangle}, \tag{15}
\end{equation*}
$$

is used to check the quality of the wave function and guides the numerical optimization of the exponents in the trial wave functions. In general, it is observed that the accuracy obtained in the virial factor predicts approximately the number of the accurate decimal digits in the energy. For instance, the groundstate energy of the Li atom has been calculated to -7.478058 893 a.u. (six decimal digits accurate) and its corresponding virial factor is 2.000000954 (six digits are zero), whereas the higher energy state $6^{2} S$ with energy -7.295739603 a.u. (three decimal digits accurate) has a virial factor of 2.002361.

The optimization of two exponents at the same time, in the case of Li for all configurations, has the advantage that (being a global optimization) it is very fast, in contrast with the partial optimization of configurations one by one, which may take very long computational times.

The optimization of the orbital exponents was carried out via a parabolic procedure. Shortly, the orbital exponents are
varied by a step size. Three energy values are thus calculated and fitted to a parabola, and the minimum of the parabola is calculated. Subsequently, this value is kept fixed and the same is done for the next exponent. The step size is continually decreased by a given factor as the cycles of exponent optimization are repeated. At every step the virial factor is calculated. The optimization is performed until the energy no longer improves, and the best virial and energy values agree. The optimization program is completely automatic and the exponents can be optimized for every state and nuclear charge.

For the CI calculations, the orbital exponents were optimized until the same energy minimum was obtained in two successive optimizations, starting with a basis of $n=4$. These exponents were then used in a CI calculation with the basis $n=5$ and optimized again, and so on, up to the basis $n=7$. The optimized exponents of the basis $n=7$ are reported in Table II. For Be^{+}the same procedure was repeated with the nuclear charge $Z=4$. The excited states were determined by optimization of the orbital exponents for the second, third, ... eigenvalue. Note that in strictly variational methods,

TABLE IV. Convergence of Full-CI $(L S)$ calculations on the ground and excited states of the Li atom with respect to the basis set. The basis sets are constructed with Slater orbitals; see Table I. The optimized orbital exponents for the largest basis are given in Table II. No. is the ordering number of the state. N is the number of symmetry-adapted configurations (Table I). All energies are given in a.u., while Difference refers to the energy differences between the present and the reference energies in microhratrees (1×10^{-6} a.u.).

| No. | State | N | $n=6$ | N | $n=7$ | N | Reference energy | Ref. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Difference

[^1]the successive excited states are the roots of the eigenvalue problem. The exponent γ of the singly occupied orbital gets smaller as the quantum number increases. We have obtained energies that are about 1 millihartree accurate $\left(1 \times 10^{-3}\right.$ a.u. $)$ with respect to the nonrelativistic values reported in the literature.

The Hy-CI orbital exponents of the three lower states of every symmetry were optimized using a basis set $n=4$ of about 400 configurations of all types considered. Subsequently, the exponents were kept fixed for calculations with $n=5-8$ basis sets. The orbital exponents for the higher excited states were optimized using few types of configurations (the energetically most important ones) and a larger basis set $n=8$. In Tables II and III the optimized exponents of the CI and $\mathrm{Hy}-\mathrm{CI}$ wave functions are given. Note that the CI exponents are in general larger than the Hy -CI ones. This is in part because the Hy-CI wave functions employ a smaller basis set.

The described method of optimization of the exponents is very successful for the determination of ground and lowlying excited states. For higher excited states, is not possible to obtain a good virial factor with this type of optimization. A larger orbital basis and more flexibility in the number of exponents would be needed.

IV. RESULTS

We calculated S, P, D, F, G, H, and I symmetry states for the Li atom with the CI method, using the symmetryadapted configurations shown in Table I. The CI calculations were carried out using double precision arithmetic (about 15 decimal digits accuracy on our workstations). In this manner, we determined the energy of seven S states, six P states, five D states, four F states, three G states, two H states, and one I state.

The total energies of the 28 states of the Li atom considered in this study are below the total energy of the ground state of the ${ }^{\infty} \mathrm{Li}^{+}$ion, i.e., $E_{\mathrm{tr}} \approx-7.27991341266930596491875(25)$ a.u. [39]. This total energy of the ground state in the twoelectron ${ }^{\infty} \mathrm{Li}^{+}$ion is the natural threshold energy for an arbitrary bound state in the three-electron Li atom.

For the Be^{+}ion we determined the total energies of the 28 bound states, including seven S states, six P states, five D states, four F states, three G states, two H states, and one I state. The results of our calculations can be found in Tables IV and V. In all these calculations we applied the CI method. The computed energies are lower than the corresponding ionization energy of the Be^{+}ion [20]. The accuracy of the

TABLE V. Convergence of Full-CI $(L S)$ calculations on the ground and excited states of the Be^{+}ion with respect to the basis set. The basis set and symmetry-adapted configurations used are the same than for the Li atom calculations of Table IV. All energies are given in a.u., while Difference refers to the energy differences between the present and the reference energies in microhartrees (1×10^{-6} a.u.).

| No. | State | N | $n=6$ | N | $n=7$ | N | Reference energy | Ref. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Difference

TABLE VI. Calculated Hy-CI energies of the ground S state and first S, P, and D excited states of Li atom. Convergence of the calculations and comparison with energy values of the literature are shown. n is the odering number of the states. N is the number of symmetry-adapted configurations. All energies are given in a.u., while Difference refers to the energy differences between the present and the reference energies in microhartrees (1×10^{-6} a.u.).

No.	State	N	$n=4$	N	$n=5-7$	N	Reference energy	Ref.	Difference
1	$2^{2} S$	309	-7.478 053222	693	-7.478 058969	34020	-7.478 060323910146894	[3]	1.3
3	$3{ }^{2} S$	307	-7.354 078275	549	-7.354 093706	34020	-7.354 098421444364045	[3]	4.7
6	$4^{2} S$	252	-7.318481008	591	-7.318517759	34020	-7.318530 845998906901	[3]	13.
10	$5^{2} S$			718	-7.303 512964	34020	-7.303 551579226734650	[3]	38.6
15	$6^{2} S$			491	$\begin{gathered} -7.295739603 \\ n=8 \end{gathered}$	34020	-7.295 859510844131039	[3]	120.0
24	$7^{2} S$			506	-7.291085910	17072	-7.291 392273116	[2]	306.2
28	$8{ }^{2} S$			816	-7.288 391657				
2	$2^{2} P$	381	-7.410 134123	616	-7.410 149407	32200	-7.410 156532652370	[3]	7.1
4	$3^{2} P$	530	-7.337 055167	766	-7.337113796	7000	-7.33715170793	[4]	37.9
7	$4{ }^{2} P$	466	-7.311724861	752	-7.311811529	7000	-7.311889 05938	[4]	77.5
13	$5^{2} P$			750	-7.300 137068	7000	-7.300 28816488	[4]	151.1
19	$6^{2} P$			847	$\begin{gathered} -7.293967122 \\ n=8 \end{gathered}$	7000	-7.294 02005293	[4]	52.9
26	$7{ }^{2} P$			502	-7.289 814402				
5	$3^{2} D$	188	-7.335 505135	490	-7.335 512623	32760	-7.335523 543524685	[3]	10.9
8	$4^{2} D$	176	-7.311 192543	187	-7.311211047	4000	-7.311 18957843	[5]	-21.5
14	$5^{2} D$	273	-7.298186482	509	-7.299889 424	4000	-7.299 92755594	[5]	38.1
20	$6^{2} D$			271	$\begin{gathered} -7.293697654 \\ n=8 \end{gathered}$	4000	-7.293 81071364	[5]	113.1
27	$7^{2} D$			423	-7.289 806792	4000	-7.290 12285624	[5]	324.1

calculations is ≈ 1 mhartree $\left(1 \times 10^{-3}\right.$ a.u.). Note that the F, G, H, and I states calculated with the CI method are reported here.

For Hy-CI calculations, we employed the same blocks of configurations as in the CI calculations (see Table I) and added blocks of these configurations multiplied by one

TABLE VII. Calculated Hy-CI energies of the ground S state and first S, P, and D excited states of the Be^{+}ion. Convergence of the calculations and comparison with energy values of the literature are shown here. n is the ordering number of the states. N is the number of symmetry-adapted configurations. All energies are given in a.u., while Difference refers to the energy differences in microhartrees ($1 \times$ 10^{-6} a.u.).

No.	State	N	$n=4$	N	$n=5,7$	N	Reference energy	Ref.	Difference
1	$2^{2} S$	514	-14.324 757377	1028	-14.324 761678	13944	-14.324763176790 150	[6]	1.5
3	$3^{2} S$	502	-13.922 759980	1199	-13.922 784968	10000	-13.922 7892685542	[29]	4.3
6	$4^{2} S$	409	-13.798520 453	757	-13.798 706849	1888	-13.798 7166092	[44]	9.8
10	$5^{2} S$			698	-13.744 580355	1940	-13.744 63182	[45]	51.5
14	$6^{2} S$			649	-13.716 223859	2058	-13.71628624	[45]	62.4
18	$7{ }^{2} S$			810	$\begin{gathered} -13.699298491 \\ n=8 \end{gathered}$				
28	$8^{2} S$			556	-13.687 885004				
2	$2^{2} P$	373	-14.179 314875	616	-14.179 327999	10000	-14.179 3332933427	[29]	5.3
4	$3^{2} P$	499	-13.885 035680	707	-13.885 115345		-13.885 15	[46]	34.7
7	$4{ }^{2} P$	352	-13.783 432326	582	-13.783 574124	1021	-13.7835183	[47]	-56.1
11	$5^{2} P$			788	-13.736 854458		-13.73718	[46]	326
16	$6^{2} P$			1232	$\begin{gathered} -13.711935268 \\ n=8 \end{gathered}$		-13.71206	[46]	124.7
20	$7^{2} P$			503	-13.696356527				
5	$3^{2} D$	265	-13.878 005890	426	-13.878 041021	841	-13.877 8710	[48]	-170.0
9	$4^{2} D$	230	-13.779 724788	450	-13.780 663883	841	-13.780 5144	[48]	-149.4
13	$5^{2} D$	250	-13.728658182	354	-13.735 539056	841	-13.735 4554	[48]	-83.7
17	$6^{2} D$			444	$\begin{gathered} -13.710204495 \\ n=8 \end{gathered}$				
27	$7^{2} D$			1009	-13.695 586302				

TABLE VIII. The total energies of the S, P, D, F, G, H, and I states of the Li atom (in a.u.) ordered by their energy. The bound states lay below the ionization threshold of the Li^{+}ion, which in nonrelativistic values is -7.279913412669305964918 10(15) a.u. [39].

No.	State	$E(\mathrm{FCI})$	E (Hy-CI)	Reference energy	Ref.
1	$2^{2} S$	-7.477 20(1)	-7.478 060(2)	-7.478 060323910 147(1)	[3]
2	$2^{2} P$	-7.408 70(9)	-7.410 150(6)	-7.410 156532652 41(4)	[3]
3	$3^{2} S$	-7.353 25(1)	-7.354 095(2)	-7.354 098421444 37(1)	[3]
4	$3^{2} P$	-7.335 70(4)	-7.337 120(7)	-7.33715170793	[4]
5	$3^{2} D$	-7.334 20(9)	-7.335 520(8)	-7.335523543524 688(3)	[3]
6	$4^{2} S$	-7.317 70(3)	-7.318 520(3)	-7.318530 845998 91(1)	[3]
7	$4^{2} P$	-7.310 40(2)	-7.311 820(9)	-7.311889 05938	[4]
8	$4^{2} D$	-7.309 80(4)	-7.311 220(9)	-7.311 $18957843(200)$	[5]
9	$4^{2} F$	-7.309 60(9)			
10	$5^{2} S$	-7.302 70(2)	-7.303 51(3)	-7.303551579 226 77(4)	[3]
11	$5^{2} G$	-7.299 50(7)			
12	$5^{2} F$	-7.299 40(6)			
13	$5^{2} P$	-7.298 90(10)	-7.300 20(7)	-7.300 28816488	[4]
14	$5^{2} D$	-7.298 60(10)	-7.299 91(1)	-7.299 927555 94(300)	[5]
15	$6^{2} S$	-7.296 00(6)	-7.295 80(6)	-7.295 859510844 19(6)	[3]
16	$6^{2} \mathrm{H}$	-7.293 40(8)			
17	$6^{2} G$	-7.293 30(1)			
18	$6^{2} F$	-7.293 30(9)			
19	$6^{2} P$	-7.293 60(5)	-7.29400(4)	-7.294 02005293	[4]
20	$6^{2} D$	-7.292 40(1)	-7.293 70(3)	-7.293 810713 64(500)	[5]
21	$7^{2} I$	-7.289 71(7)			
22	$7^{2} \mathrm{H}$	-7.289 70(7)			
23	$7^{2} G$	-7.289 65(4)			
24	$7^{2} S$	-7.285 70(5)	-7.291 10(15)	-7.291392 276(3)	[2]
25	$7^{2} F$	-7.289 45(5)			
26	$7^{2} P$	-7.289 8(5)	-7.29000(9)		
27	$7{ }^{2} D$	-7.289 8(10)	-7.289 90(10)	-7.290 122856 24(2000)	[5]
28	$8^{2} S$	-7.286 7(10)	-7.288 50(10)		

interelectronic coordinate at a time, i.e., $\mathrm{CI} \times\left(1+r_{12}+r_{13}+\right.$ r_{23}). Details on the selection of configurations are given above. Hy-CI calculations up to the basis $n=6-8$ were performed.

It is important to note that in Hy-CI calculations it is usually not necessary to use basis sets as large as in CI calculations, since the wave function expansion converges faster to the exact solution. This is due to the explicit inclusion of the interelectronic coordinate in the wave function. In contrast, in the CI method the interelectronic coordinate is not explicitly considered, and its effect is replaced by the use of high angular momentum orbitals. In short, for Hy-CI calculations high angular momentum orbitals ($l \geqslant 3$) are not required to achieve an accuracy in the microhartree regime $\left(1 \times 10^{-6}\right.$ a.u. $)$, which is the purpose of this paper. Note that highly accurate Hy -CI calculations can be afforded if using long wave-function expansions; see the benchmark energy values for the $6^{2} S$ and $7{ }^{2} S$ states of Li atom [2].

The bound, rotationally excited F, G, H, and I states have never been calculated with the use of the Hy-CI method due to the complexity of the related problems. Some recent developments, however, make such calculations possible. For instance, in our computer program, the electronic integrals are defined for every l quantum number, but the kinetic energy integrals are currently restricted to $l \geqslant 2$, see Ref. [34]. The theoretical and computational implementation of higher
quantum numbers is somewhat cumbersome and will be reported elsewhere.

The nonrelativistic total energies of the four and/or five lowest bound states of S, P, and D symmetry are now known to high accuracy, whereas other similar states have been determined to less accuracy, since in these cases we have used shorter trial wave functions (see Tables VI and VII).

In the Hy-CI calculations of the Li atom (see Table VI) the maximum achieved accuracy is of a few microhartrees $(1 \times$ 10^{-6} a.u.) for the ground state and first S, P, and D excited states. For higher excited states the accuracy is slightly lower. For highly excited bound states it is less than 1 mhartree ($1 \times$ 10^{-3} a.u.), as far as values for these states were known. This is because the use of a set of two exponents for all configurations is not as appropriate for highly excited states as for the ground and low-excited bound states. For instance, we determined the total energy of the $8^{2} S(E=-7.288391657$ a.u.) state. By performing analogous calculations for the $4^{2} D$ state we obtained the total energy which is the best to date for this state $E=-7.311211047$ a.u.

For the Be^{+}ion, the maximal accuracy is slightly better, which is directly related with the larger nuclear charge (see Table VII) and more compact electron wave function. For the ground state and low excited states of the Li atom we obtained

TABLE IX. The total energies of the S, P, D, F, G, H, and I states of the Be^{+}ion ordered by their total energies. All these bound states are stable, since their total energies are below the ionization threshold which coincide with the nonrelativistic energy of the Be^{2+} ion $E_{\mathrm{tr}}=-13.65556623842358670207810(15)$ a.u. [39].

No.	State	$E(\mathrm{FCI})$	$E(\mathrm{Hy}-\mathrm{Cl})$	Ref. energy	Ref.
1	$2^{2} S$	-14.323 80(3)	-14.324 763(2)	-14.324763 176790 43(22)	[6]
2	$2^{2} P$	-14.177 43(2)	-14.179 330(3)	-14.179 333293 42(3)	[29]
3	$3{ }^{2} S$	-13.921 90(3)	-13.922 786(2)	-13.922 $789268570(10)$	[29]
4	$3^{2} P$	-13.883 50(7)	-13.885 120(5)	-13.885 15	[46]
5	$3^{2} D$	-13.876 50(5)	-13.878 050(5)	-13.877 8710	[48]
6	$4^{2} S$	-13.797 80(5)	-13.798 710(4)	-13.7987166092	[44]
7	$4^{2} P$	-13.78200(2)	-13.783 580(5)	-13.7835183	[47]
8	$4^{2} F$	-13.778 00(5)			
9	$4^{2} D$	-13.779 10(2)	-13.780 70(4)	-13.780 5144	[48]
10	$5^{2} S$	-13.743 70(4)	-13.744 60(2)	-13.744 63182	[45]
11	$5^{2} P$	-13.735 50(3)	-13.736 90(5)	-13.73718	[46]
12	$5^{2} G$	-13.735 10(8)			
13	$5^{2} F$	-13.73500(7)			
14	$5^{2} D$	-13.734 10(7)	-13.735 60(4)	-13.735 4554	[48]
15	$6^{2} S$	-13.715 30(8)	-13.716 25(3)	-13.71628624	[45]
16	$6^{2} \mathrm{H}$	-13.710 65(2)			
17	$6^{2} G$	-13.710 60(3)			
18	$6^{2} F$	-13.710 50(4)			
19	$6^{2} P$	-13.710 20(6)	-13.71200(7)	-13.712 06	[46]
20	$6^{2} D$	-13.709 60(6)	-13.710 25(5)		
21	$7^{2} S$	-13.697 50(8)	-13.699 30(8)		
22	$7{ }^{2} I$	-13.695 86(2)			
23	$7^{2} \mathrm{H}$	-13.695 85(2)			
24	$7^{2} G$	-13.695 83(2)			
25	$7{ }^{2} F$	-13.695 60(2)			
26	$7^{2} P$	-13.695 3(7)	-13.696 40(5)		
27	$7^{2} D$	-13.694 9(10)	-13.695 60(11)		
28	$8^{2} S$	-13.684 8(3)	-13.688 00(12)		

an accuracy of few microhartrees (1×10^{-6} a.u. $)$, using less than 1000 configurations, whereas the best calculations in the literature use up to 14000 configurations.

The benchmarks obtained for Be^{+}ion are the $4^{2} P$ state $(E=-13.783574124$ a.u. $), 3^{2} D$ state $(E=$ -13.878041021 a.u.), $4^{2} D$ state ($E=-13.780663883$ a.u.), and $5^{2} D$ state ($E=-13.735537780$ a.u.). The newly calculated states are $7{ }^{2} S\left(E=-13.699298491\right.$ a.u.), $8^{2} S(E=$ -13.687885004 a.u. $), 7{ }^{2} P(E=-13.696356527$ a.u. $), 6^{2} D$ ($E=-13.710204495$ a.u. $)$, and $7^{2} D(E=-13.695586302$ a.u.). The dissociation threshold for the three-electron ${ }^{\infty} \mathrm{Be}^{+}$ ion is $\approx-13.65556623842358670207965(25)$ a.u. [39]. This value coincides with the total energy of the ground $1{ }^{1} S$ state of a Be^{2+} ion with an infinitely heavy nucleus. The optical spectra of the Li atom and Be^{+}ions can be found in Ref. [40]. The optical spectrum of the Li atom determined in this study is in good agreement with the spectrum of the Li atom shown in that work.

We obtained this accuracy with less than 1% of the configurations used in the most highly accurate calculations reported. All calculated states are ordered by their energy and presented in Tables VIII and IX. The total energies of these states are below the corresponding threshold energy (or ionization energy) for the three-electron atomic systems considered here.

V. CONCLUSIONS AND PERSPECTIVES

We have determined the total energies of 28 bound states in the Li atom and Be^{+}ion, respectively. The variational wave functions of the S, P, D, F, G, H, and I bound states in these three-electron atomic systems were constructed with the use of the CI and Hy-CI methods. The procedure consisted in the appropriate selection of configurations and optimization of one set of orbital exponents for every state. The total energies of the low-lying states are microhartree accurate (1×10^{-6} a.u.), while for excited states the accuracy is $\approx 1 \times 10^{-4}-10^{-5}$ a.u. We have obtained several benchmarks and reported the energy of some highly excited states. These wave functions are convenient for the calculation of properties. Consequently, these wave functions have been used for the calculation of the transition probabilities during nuclear β decay, where wave functions of very good quality are necessary to describe the atomic effects during nuclear reactions [41-43]. Our future plan include this systematic method of calculations to determine ground and excited states of the following atoms and isoelectronic ions in the periodic table, such as Be, B, and C .

The results of our study are of great interest in various applications which includes different problems in astrophysics (e.g., to analyze the emission spectra of the hot Wolf-Rayet stars [49]), physics of stellar and laboratory plasmas, physics
of few-body systems, etc. Analougous calculations of various rotationally and "vibrationally" excited (bound) states in two-electron helium atom were conducted by Drake [50]. It is clear that the total energies reported by Drake [50] are more accurate, but we consider a much more complicated case of bound states in three-electron atoms and ions. Note also that the spectra of the two-electron atoms and ions include two independent series, singlet and triplet, while for three-electron atoms or ions only doublet spin states belong to the actual discrete spectrum. All quartet spin states of the three-electron atoms or ions are in the continuum; i.e., they are not truly bound states and any interaction (such as spin-spin interactions) that breaks electron permutation symmetry will force the quadruplet states to decay. Here we do not want
to discuss the quadruple states in the three-electron atomic systems, since (1) they are not truly bound states and (2) our method does not allow to analyze the properties of such states, which can be observed as quasibound states at very special experimental conditions.

ACKNOWLEDGMENTS

We are deeply indebted to Frederick King and James Sims for providing us with numerical results of Hylleraas and Hylleraas-CI calculations, respectively, for the lithium atom. These have proven useful in checking our computer program. Very interesting discussions with James Sims and Stanley Hagstrom are greatly acknowledged.
[1] Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, Phys. Rev. Lett. 100, 243002 (2008).
[2] J. S. Sims and S. A. Hagstrom, Phys. Rev. A 80, 052507 (2009).
[3] L. M. Wang, Z.-C. Yan, H. X. Qiao, and G. W. F. Drake, Phys. Rev. A 85, 052513 (2012).
[4] S. Bubin and L. Adamowicz, J. Chem. Phys. 136, 134305 (2012).
[5] K. L. Sharkey, S. Bubin, and L. Adamowicz, Phys. Rev. A 83, 012506 (2011).
[6] M. Puchalski, D. Kedziera, and K. Pachucki, Phys. Rev. A 80, 032521 (2009).
[7] S. Larsson, Phys. Rev. 169, 49 (1969).
[8] J. S. Sims and S. A. Hagstrom, Phys. Rev. A 4, 908 (1971).
[9] N. N. Kolesnikov and V. I. Tarasov, Yad. Phys. 35, 609 (1982) [Sov. J. Nucl. Phys. 35, 354 (1982)].
[10] R. D. Poshusta, J. Phys. B 18, 1887 (1985).
[11] A. Lüchow and H. Kleindienst, Int. J. Quantum Chem. 51, 211 (1994).
[12] F. W. King, Adv. At. Mol. Opt. Phys. 40, 57 (1999)
[13] A. J. Thakkar, T. Koga, T. Tanabe, and H. Teruya, Chem. Phys. Lett. 366, 95 (2002).
[14] A. M. Frolov, Eur. Phys. J. D 61, 571 (2011).
[15] F. W. King, D. Quicker, and J. Langer, J. Chem. Phys. 134, 124114 (2011).
[16] F. W. King, J. Mol. Struct.: THEOCHEM 400, 7 (1997).
[17] J. S. Sims and S. A. Hagstrom, J. Chem. Phys. 55, 4699 (1971).
[18] W. Woznicki, in Theory of Electronic Shells in Atoms and Molecules, edited by A. Jucys (Mintis, Vilnius, 1971), p. 103.
[19] J. S. Sims and S. A. Hagstrom, Int. J. Quantum Chem. 90, 1600 (2002).
[20] M. B. Ruiz, arXiv:1207.7284.
[21] G. Büsse, H. Kleindienst, and A. Lüchow, Int. J. Quantum Chem. 66, 241 (1998).
[22] J. S. Sims and S. A. Hagstrom, Phys. Rev. A 83, 032518 (2011).
[23] M. B. Ruiz, in Advances in the Theory of Quantum Systems in Chemistry and Physics, edited by P. E. Hoggan et al., Progress in Theoretical Chemistry and Physics Vol. 22 (Springer, Berlin, 2012), pp. 103-117.
[24] J. S. Sims and S. A. Hagstrom, J. Chem. Phys. 124, 094101 (2006).
[25] A. W. Weiss, Phys. Rev. 122, 1826 (1961).
[26] C. F. Bunge, Phys. Rev. 168, 92 (1968).
[27] C. F. Bunge, Theor. Chem. Acc. 126, 139 (2010).
[28] C. X. Almora-Díaz and C. F. Bunge, Int. J. Quantum Chem. 110, 2982 (2010).
[29] M. Puchalski and K. Pachucki, Phys. Rev. A 78, 052511 (2008).
[30] E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1967).
[31] R. Stevenson, Multiplet Structure of Atoms and Molecules (Saunders, Philadelphia, London, 1965).
[32] M. B. Ruiz, Int. J. Quantum Chem. 101, 246 (2005).
[33] R. Barrois, A. Lüchow, and H. Kleindienst, Int. J. Quantum Chem. 62, 77 (1997).
[34] M. B. Ruiz, arXiv:1207.7294.
[35] M. B. Ruiz, J. Math. Chem. 49, 2457 (2011).
[36] M. B. Ruiz, J. Math. Chem. 46, 24 (2009).
[37] J. S. Sims and S. A. Hagstrom, J. Phys. B: At. Mol. Opt. Phys. 37, 1519 (2004).
[38] A. M. Frolov and V. H. Smith, Int. J. Quantum Chem. 63, 269 (1996).
[39] A. M. Frolov, arXiv:1212.6768.
[40] A. P. Striganov and N. S. Svetniskii, Tables of Spectral Lines of Neutral and Ionized Atoms (Atomizdat, Moscow, 1966) [in Russian] [Tables of Spectral Lines of Neutral and Ionized Atoms (IFI Plenum Press, New York, 1968), English translation].
[41] A. M. Frolov and M. B. Ruiz, Phys. Rev. A 82, 042511 (2010).
[42] M. B. Ruiz and A. M. Frolov, Adv. Quantum Chem. 67 (to be published).
[43] M. B. Ruiz, arXiv:1305.5696.
[44] M. Stanke, J. Komasa, D. Kedziera, S. Bubin, and L. Adamowicz, Phys. Rev. A 77, 062509 (2008).
[45] F. W. King, J. Phys. Chem. A 113, 4110 (2009).
[46] W. Wóznicki, M. Bylicki, B. Jaskólska, and J. Pipin, Chem. Phys. Lett. 95, 609 (1983).
[47] Z.-W. Wang, X.-W. Zhu, and K. T. Chung, Phys. Scr. 47, 65 (1993).
[48] Z.-W. Wang, X.-W. Zhu, and K. T. Chung, J. Phys. B: At. Mol. Opt. Phys. 25, 3915 (1992).
[49] C. W. Allen, Astrophysical Quantaties, 4th ed., edited by A. N. Cox (Spinger-Verlag, Berlin-Heidelberg, 2000).
[50] G. W. F. Drake, in Atomic, Molecular and Optical Physics Handbook, edited by G. W. F. Drake (Springer Verlag, Berlin, 2006), Tables 11.2 and 11.3.

[^0]: *maria.belen.ruiz@fau.de
 \dagger johannes.margraf@fau.de
 †afrolov@uwo.ca

[^1]: ${ }^{\text {a }}$ For the calculation of the $8^{2} S, 7^{2} G, 7^{2} H$, and $7^{2} I$ states larger basis sets including $n=8$ orbitals are needed.

