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The intramolecular energy transfer, dynamical entanglement of vibrations, and decoherence process in triatomic
molecular systems are studied. The benchmark molecules of H2S, NO2, and O3 are sampled to investigate
the intramolecular energy transfer and dynamical entanglement of stretching-stretching vibrational modes in
triatomic molecular systems by restricting the bending vibration to its ground state. The comparative study is
applied to explore the dynamical differences of initial local-mode and normal-mode characteristic states. Also,
the decoherence process of the stretching-stretching qubits system caused by the bending vibration is discussed.
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I. INTRODUCTION

The advent of quantum computation and quantum infor-
mation has led to the study of quantum computation based on
molecular vibrations [1]. The concept of quantum computation
based on molecular vibrations employs vibrational states of
molecules to represent the qubit. The shaped femtosecond
laser pulse in the IR regime can be adopted to implement
quantum logic operation [1–3]. One of the challenges of
realizing quantum computation is how to utilize entanglement.
Considering the achievements in quantum computation based
on molecular vibrations, studies of dynamical entanglement
in realistic molecular systems are becoming more and more
interesting [2–7]. Undoubtedly, the intramolecular vibrational
energy redistribution (IVR) has great influence on the entan-
glement between different vibrational modes [8]. Since IVR
has been demonstrated to be controllable [9], the relationship
between dynamical entanglement and energy transfer is thus
interesting in studies of intramolecular dynamics.

One of the basic requirements of quantum computation is
to utilize coherence, the decoherence of qubits is an important
issue in the practical realization of quantum computation.
Decoherence is often caused by unavoidable coupling with the
environment. For a multipartite quantum system, decoherence
leads to degradation of entanglement and, in certain cases, en-
tanglement sudden death [10,11]. For the molecular vibrational
qubits, the decoherence resources may come from collisions
with other molecules and the intramolecular anharmonic
resonances with the remaining vibrational modes, rotational
freedom, and electronic freedom [12]. Regarding molecules
in the gas phase, the number of collisions can be kept low.
The studies on the intramolecular decoherence and robust-
ness of entanglement against the remaining modes are thus
important in selecting suitable molecules to apply quantum
computation [8].

The Lie algebraic model of molecules has been proven to
be an effective model in describing vibrations in polyatomic
molecules [13,14]. The Lie algebraic model has a simple form
in description, and the anharmonicity of each mode and reso-
nances between different modes can be introduced automati-
cally by the matrix elements of operators [15]. Because of these
advantages, the algebraic method has extensive applications,
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including the vibrational spectra, potential energy surface, and
dynamical entanglement [5,6,13–19]. In the present work,
the U(4) algebraic model of triatomic molecule is adopted.
Based on this model, the stretching and bending vibrations
are well described. With bending vibration restricted to its
ground state, we investigate intramolecular energy transfer
and bipartite entanglement between two stretching vibrational
modes and the entanglement dynamics in different types of
molecules (that is, the normal or local-mode molecules).
We study the decoherence process caused by the bending
vibration and the robustness of entanglement against the
bending vibration under the assumption of the stretching-
stretching vibration as a bipartite qubits system. This study
will help us to control the entanglement and decoherence,
since the success of quantum computation will depend on
one’s theoretical understanding and experimental control of
quantum entanglement and decoherence.

The organization of this paper is as follows. In Sec. II, the
U(4) algebraic Hamiltonian for symmetrical bent triatomic
molecules is reviewed. In Sec. III, the dynamical properties
of stretching-stretching entanglement are studied by employ-
ing linear entropy, and the relationship between dynamical
entanglement and energy transfer is also studied in this
section. Decoherence of the stretching-stretching qubits and
robustness of stretching-stretching entanglement against the
bending vibration are considered in Sec. IV. A brief summary
is presented in Sec. V.

II. THEORETICAL FRAMEWORK

In this section we show the theoretical framework of the
U(4) algebraic model of molecules. The dynamical group of
triatomic molecules is U1(4) ⊗ U2(4) (we denote the left bond
of triatomic molecules as bond 1, and the right bond as bond 2),
and the dynamical symmetric chains are written as [14]

U1(4) ⊗ U2(4) ⊃ U12(4) ⊃ O12(4),
(1)

U1(4) ⊗ U2(4) ⊃ O1(4) ⊗ O2(4) ⊃ O12(4).

The local basis is characterized by

|[N1][N2](ω1,0)(ω2,0)(τ1,τ2)〉, (2)

where [Ni] labels the total symmetric representation of
Ui(4) (i = 1,2), (ωi,0) labels the symmetric representa-
tion of Oi(4) (i = 1,2), and (τ1,τ2) denotes the irreducible
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representation of O12(4). From the theory of Lie group [14,20],
[Ni] corresponds to the Young tableau since it denotes the
representations of Ui(4). Physically, Ni characterizes the total
number of bosons in bond i. This means that the dimension
of bond i, for the Fock state in Hilbert space, is Ni + 1.
Correspondingly, the values of ωi are taken as

ωi =
{
Ni,Ni − 2, . . . ,1, if Ni is odd;
Ni,Ni − 2, . . . ,0, if Ni is even.

(3)

The quantum Hamiltonian is expressed as [14]

H = A1C1 + A2C2 + A12C
(1)
12 + A′

12C
(2)
12 + λM12, (4)

where A1, A2, A12, A′
12, and λ are the expansion coeffi-

cients which can be determined by fitting spectroscopic data
(A1 = A2 for symmetric triatomic molecule). The magnitude
of Ai determines the anharmonicity of each mode, and
λ denotes the coupling strength between vibrational modes.
C1 and C2 are Casimir operators of groups O1(4) and O2(4),
respectively; C(1)

12 and C
(2)
12 are two Casimir operators of O12(4)

representing the bending vibrations; M12 is the Majorana
operator representing the coupling between two bonds.

By denoting the quantum numbers of stretching vibration
in the two bonds as v1 and v2, and the quantum numbers
of bending and rotation as vb and κ , the relations between
(ω1,ω2,τ1,τ2) and (v1,vb,v2,κ) are as follows [14]:

v1 = 1
2 (N1 − ω1), v2 = 1

2 (N2 − ω2),
(5)

vb = 1
2 (ω1 + ω2 − τ1 − τ2), κ = τ2.

The matrix elements of invariants in the local basis, after
considering Eq. (5), are given by [14,20]

〈C1〉 = (N1 − 2v1)(N1 − 2v1 + 2),

〈C2〉 = (N2 − 2v2)(N2 − 2v2 + 2),
(6)〈

C
(1)
12

〉 = (N12 − 2v − κ)(N12 − 2v − κ + 2) + κ2,〈
C

(2)
12

〉 = (N12 − 2v − κ)κ,

where v = v1 + vb + v2, N12 = N1 + N2. The Majorana op-
erator is not diagonal in the basis (2), and its matrix elements in
the basis (2) can be calculated by employing the Wigner-Eckart
theorem [14,20]. The diagonal and the nondiagonal elements
of M12 are given via

〈N1N2ω1ω2(τ1,τ2)|M12|N1N2ω1ω2(τ1,τ2)〉
= 3

4
N1N2 − 1

4
{τ1(τ1 + τ2 + 2) − ω1(ω1 + 2)

−ω2(ω2 + 2)} − (N1 + 2)(N2 + 2)

16ω1(ω1 + 2)ω2(ω2 + 2)
× [ω1(ω1 + 2) + ω2(ω2 + 2) − (τ1 + τ2)(τ1 + τ2 + 2)]

× [ω1(ω1 + 2) + ω2(ω2 + 2) − (τ1 − τ2)(τ1 − τ2 + 2)],

(7)

and

〈N1N2ω
′
1ω

′
2(τ1,τ2)|M12|N1N2ω1ω2(τ1,τ2)〉

= (−1)τ1+1(ω′
1 + 1)(ω′

2 + 1)

{
ω1
2

ω2
2

τ1−τ2
2

ω′
1

2
ω′

2
2 1

}

×
{

ω1
2

ω2
2

τ1+τ2
2

ω′
1

2
ω′

2
2 1

}
〈N1ω

′
1||D̂1||N1ω1〉

× 〈N2ω
′
2||D̂2||N2ω2〉δω′

1,ω1±2δω′
1,ω1±2, (8)

where {· · · } is the Wigner 6 − j symbol. The matrix elements
of 〈Nω′||D̂||Nω〉 are given as

〈Nω′||D̂||Nω〉 =

⎧⎪⎪⎨
⎪⎪⎩

N+2
2 ω′ = ω,

1
2

√
(N−ω+2)(N+ω+2)(ω+1)

ω−1 ω′ = ω − 2,

1
2

√
(N−ω)(N+ω+4)(ω+1)

ω+3 ω′ = ω + 2.

(9)

The transition from the local limit to the normal limit is
well described by the locality parameter [14]. Based on the
U(4) algebraic model, the locality parameter ξ is defined as

ξ = 2

π

∣∣∣∣ arctan

(
8λ12

Ai + A12

)∣∣∣∣. (10)

For the local-mode molecules, the locality parameter ξ is near
to 0; for normal-mode molecules, the locality parameter ξ → 1.

The evolution of the system is given by

|ψ(t)〉 = e− i
h̄
Ht |ψ(0)〉, (11)

where |ψ(0)〉 is the initial state of the system. All the dynamical
information of the system can be obtained from the time-
dependent quantum state |ψ(t)〉. We define the density matrix
of molecular system ρ(t) as

ρ(t) = |ψ(t)〉〈ψ(t)|. (12)

In the previous study, the Hamiltonian (4) was employed
to describe the (ro-)vibrational spectra and dynamics of
triatomic molecules [21,22]. We here consider three triatomic
molecules: H2S (local-mode molecule), NO2 (normal-mode
molecule), and O3 (normal-mode molecule). The expansion
coefficients A1, A2, A12, A′

12, and λ of these molecules in
the Hamiltonian of Eq. (4) have been obtained by fitting their
vibrational spectra. The coefficients, taken from Refs. [16–18],
and the locality parameters are listed in Table I.

The quantum number of κ denotes the rotation of triatomic
molecules. Physically, if the rotational motion of molecules
can be separated from the molecular vibrational motion,
the quantum number of κ would have no influence on the
dynamics of entanglement. However, this motion is usually
not separated from the vibrational motion. If this happens, the
rotational motion will lead to the decoherence of vibrations.
Also, molecular rotational transitions in excited vibrational
states are generally very weak, and the molecular rotational
constants are slightly vibrationally dependent [23]; in the

TABLE I. The parameters of molecules: H2S, NO2, and O3.
i = 1 and 2 are the two bonds in molecules. Ai , A12, λ are in
cm−1.

Molecule Ni Ai A12 λ ξ

H2S 40 −13.57 −2.14 0.458 0.14
NO2 115 −1.9052 0.0055 −0.6369 0.7728
O3 70 −11.6522 2.9914 −3.0782 0.7847
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following numerical simulations, the rotational motion of
triatomic molecules is neglected.

III. STRETCHING-STRETCHING ENTANGLEMENT AND
ENERGY TRANSFER: THE CASE OF THE GROUND

STATE OF BENDING VIBRATION

In this section, the dynamics of entanglement and energy
transfer between two stretching modes are considered, and
the bending vibration is restricted to its ground state. Several
measures of quantum bipartite entanglement are introduced,
such as entanglement of formation, entanglement of distil-
lation, von Neumann entropy, concurrence, and negativity
[24–30]. These different definitions of entanglement are used
to characterize entanglement in different manners. Here, linear
entropy is employed to measure the entanglement of vibrations
in triatomic molecules.

The linear entropy Sl is defined as follows [30]:

Sl = 1 − Tr[ρs1(t)]2, (13)

where ρs1(t) denotes the reduced-density matrix of stretching
vibrational mode in bond 1, and Tr means the trace over the
square of ρs1(t). ρs1(t) is obtained by tracing over the stretching
vibrational mode in bond 2

ρs1(t) = Tr2ρss(t), (14)

where ρss(t) = |ψss(t)〉〈ψss(t)| is density matrix of two
stretching vibrational modes, and |ψss(t)〉 is the stretching
vibrational states of the molecules. For the case of the bending
vibration restricted to its ground state, ρss(t) will keep its purity
during the vibration if ρss(t) is prepared in a pure state.

Physically, the entropy can be interpreted as a measurement
of the disorder of the subsystem. Linear entropy is usually used
to measure the deviations of the states of the system from the
pure state, and it is also the measurement of the decoherence
process of the subsystem [31].

We here define the stretching Hamiltonian of bond i as

Hi = AiCi, (15)

where Ci (i = 1,2) is the Casimir operator of bond i. The
stretching energy of bond i is therefore written as

Ei(t) = Tr[ρ(t)Hi]. (16)

We consider Sl and energy transfer for the initial states of
the product of Fock states. This initial state can be written
as [32]

|ψss(0)〉 = |N1,v1〉 ⊗ |N2,Ns − v1〉 ≡ |v1,Ns − v1〉, (17)

where Ns is the total quantum number of two stretching bonds,
namely, Ns = v1 + v2. Since the product Fock state has a clear
meaning in the quantum computation, dynamical behaviors of
Sl are important for quantum computation.

Sl and E1(2) for H2S with initial states |0,1〉 and |1,1〉 are
plotted in Fig. 1. The evolutions of Sl and E1(2) for both states
of |0,1〉 and |1,1〉 display periodicity nicely. For the state |0,1〉,
the period of E1 or E2 is twice of Sl , and the maximum value of
entanglement appears when the energies of the bonds are close
to each other. For |1,1〉, the period of Sl is the same with the
period of E1(2) (E1 is identical with E2), and Sl is anticorrelated
with E1(2). For the normal-mode molecules, similar behaviors
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FIG. 1. Sl [panels (a) and (c)], E1 [solid lines in (b) and (d)], and
E2 [dashed lines in (b)] as a function of time t for H2S for two product
Fock states: |0,1〉 [(a) and (b)] and |1,1〉 [(c) and (d)]. In (d), E1 and
E2 are the same. t is in ps, and E1(2) is in cm−1.

of E1(2) and Sl for these two states are also found. Sl of NO2

and O3 for the initial states |0,1〉 and |1,1〉 are plotted in Fig. 2.
It shows that the period of Sl of the normal-mode molecules

is much shorter than that of local-mode molecules. If we
take the ground vibrational state |0〉 and first excited state
|1〉 of one stretching vibrational mode to represent a qubit,
the other stretching vibrational modes can be thought of
as the environment, which causes the decoherence. Since
Sl is also the measurement of the decoherence, the long
period of the local-mode molecules indicates that the states
of the local-mode molecules are more stable than the states
of the normal-mode molecules. The stability of states is
particularly important in quantum computation [33], since
it can strongly influence the quantum computation fidelity.
In this sense, the local-mode molecules are more suitable to
accomplishing quantum computation. For both of the initial
low-level states, entanglement is closely related to the energies
of two bonds, which demonstrates that entanglement is con-
trollable by controlling the energy transfer between vibrational
modes.

A local-mode characteristic state corresponds to the state
of high excitation in one bond but low excitation in the
other one. Because of the energy gap of local-mode doublets,
the energy transfer of the local-mode characteristic states in
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FIG. 2. Sl for the initial state |0,1〉 and |1,1〉 of NO2 (solid lines)
and O3 (dashed lines). t is in ps.
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FIG. 3. Sl (a), E2 (b), and E1 (c) in early times for the initial state
|0,4〉 of H2S. The long-time evolutions of Sl , E1, and E2 are plotted
in the insets of each panel. t is in ps and E1(2) is in cm−1.

the local-mode molecules is slower than that of the normal-
mode characteristic states [34]. To illustrate the dynamical
properties, we sample the Fock state |0,4〉 of H2S as the
initial state. In Fig. 3, Sl and E1(2) are plotted. We can find
that the period of Sl is synchronic with E1 or E2 in early
time evolution. E2 is much higher than E1, and both of them
fluctuate with small amplitude around their equilibrium values.
Correspondingly, Sl vibrates in “packets” periodically with
low level of entanglement. However, for the long time scale,
Sl is shown as the sine wave with a long-time period. The
long beat of Sl means the entanglement of the local-mode
characteristic states can live for a long time, and it could
be the carrier of quantum information. Additionally, the
correspondence between Sl and E1(2) is similar to that of
|0,1〉, and the clear correspondence means the entanglement
of the local-mode characteristic states of H2S is controllable
by controlling energy transfer [35,36].

As shown in Fig. 3, the linear entropy Sl of the local-mode
molecule H2S has periodical properties for the local initial
state. We attribute these properties to the periodical properties
of the Fock states in Fock space [5]. For the case of initial Fock
states, the probabilities P (v)(t) of Fock states |v,Ns − v〉 (v =
0,1, . . . ,Ns) have periodicity with the time evolution. This
leads to the periodicity of linear entropy and energy transfer
in molecular bonds. This periodicity of distribution, however,
becomes complicated when the locality parameters ξ of the
molecules increase.

However, for the normal-mode characteristic initial state,
the probabilities P (v)(t) of Fock states |v,Ns − v〉 have no
periodicity in the evolution. This means that the linear entropy
Sl and energy transfer vary irregularly for the normal-mode
characteristic initial state |v,Ns − v〉 (v 	 Ns − v). To com-
paratively study the properties of entanglement and energy
transfer between the bonds of the initial local-mode and
normal-mode characteristic states, we show the relation of
linear entropy Sl and energy transfer �E = (E1 − E2)/E0

[E0 is the bending vibrational energy of the ground bending vi-
brational state |0,10,0〉. The expression �E = (E1 − E2)/E0

means that we scale �E using E0 of the corresponding
molecule] in the space of Sl ∼ �E (hereafter we note it as
the “Sl ∼ �E section”). The Sl ∼ �E section represents the
periodicity of linear entropy Sl and energy transfer �E with
vividly picture.

Practically, we expect to find dynamical entanglement of
normal-mode characteristic state by building an initial state
with (around) equal initial excitation in both bonds [namely,
v1 	 Ns − v1 in Eq. (17)]. As an example, the two types of
Fock states: the normal-mode characteristic state |2,3〉 and the
local-mode characteristic state of |0,5〉 with the same Ns of
the sampled molecules are selected.

For the local-mode molecule H2S, the Sl ∼ �E section,
under the local-mode characteristic initial Fock state |0,5〉,
presents the shape of an inverse V since linear entropy Sl and
energy transfer �E are periodical with the time evolution.
However, for the molecules of NO2 and O3, whose locality
parameter ξ becomes bigger, the periodical properties of
linear entropies Sl and energy transfer �E (and E1(2)) become
complicated. This leads to the area of the Sl ∼ �E section
becoming bigger, and the inverse-V shape of the Sl ∼ �E

section becoming wider. This is shown in the left column
of Fig. 4.

As noted above, the linear entropy Sl and energy transfer
vary irregularly for the initial Fock state |2,3〉, therefore, their
corresponding Sl ∼ �E sections show different behaviors
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FIG. 4. Sl ∼ �E section. The initial states are |0,5〉 (left column)
and |2,3〉 (right column) for H2S (top), NO2 (middle), and O3

(bottom). �E = (E1 − E2)/E0.
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with local-mode characteristic states as shown in the right
column of Fig. 4. Although the Sl ∼ �E sections show the ir-
regularity in this case, the sections of the local-mode molecules
and normal-mode molecules have different behaviors: for the
local-mode molecule, such as the H2S molecule, the Sl ∼ �E

section shows a round symmetry about �E = 0. This round
symmetry goes away as the locality parameter ξ increases
as shown in the right column of Fig. 4. Also, the Sl ∼ �E

section spreads over a wider area with the increase of the
locality parameter ξ (namely, from local-mode molecule to
normal-mode molecule, as shown from top to bottom in the
right column of Fig. 4).

IV. INFLUENCE OF BENDING VIBRATION ON
THE STRETCHING-STRETCHING QUBITS

In this section, we consider the influence of bending
vibrations on the stretching-stretching qubits. We study the
decoherence process and the robustness of the entanglement of
the stretching-stretching qubits. In our numerical simulations,
the stretching vibrations in two bonds are assumed as a bipartite
qubit system: the ground state and first excited state of each
mode are selected to represent the qubits. For this case, the
bending vibration of the triatomic molecules is considered as
the resource of decoherence.

The initial state is taken as

|ψ(0)〉 = |ψss(0)〉 ⊗ ∣∣vκ
b

〉
, (18)

where ψss(0)〉 is the initial vibrational state of two bonds, and
|vκ

b 〉 is the initial state of bending motion of the molecule with
rotation. As noted above, we assume κ = 0 in the following
numerical simulations since we neglect the molecular rotation
motion.

A. Decoherence of the stretching-stretching qubits

When the whole system is prepared in the pure state, it
will maintain this pure state during evolution, but not for the
subsystem. We measure the decoherence of the stretching-
stretching system by its loss of purity. Purity is defined as [37]

p = Tr[ρss(t)
2], (19)

where ρss(t) is the density matrix of two stretching vibrational
modes. Purity varies from 1 for pure state to 1/Ds for the
completely mixed state (Ds is the Hilbert space dimension of
the subsystem). Also, p has a relation with the entanglement
between the stretching-stretching and bending vibrations.

For these three molecules, the decoherence processes
are considered for the initial states |ψss(0)〉 = |0,1〉, |1,1〉,
|0,0〉 + |1,1〉, and |0,1〉 + |1,0〉 (the normalization constant is
neglected) for different bending states. The results of the loss
of purity p are plotted in Fig. 5.

Except for the initial entangled state |0,0〉 + |1,1〉, the pu-
rity for the other three states fluctuate regularly with high value
of purity, which indicates that the influence of the bending
vibration on the decoherence of stretching-stretching qubits
is not obvious. By comparing the behaviors of purity of the
three molecules, it is shown that the generation of decoherence
of the normal-mode molecules is much faster than that of the
local-mode molecules. We find that the state of stretching-
stretching qubits can recover to pure (purification) with stable
periods for the states of |0,1〉, |1,1〉, and |0,1〉 + |1,0〉.

Also, our more numerical calculation shows that the higher
the excitation of bending vibrations, the more obvious the
decoherence of molecular stretching-stretching (the details
of our calculations is not shown here). The purification
time, however, is not changed. Based on this property, the
purification time could be thought of as one character quantity,

0 0.02 0.04

0.998

0.999

1

p

H
2
S |0,1〉

0 0.02 0.04
0.996

0.998

1

H
2
S |1,1〉

0 0.040.02
0.996

0.998

1

H
2
S |0,1〉+|1,0〉

0 0.04 0.08

0.85

0.9

0.95

1

p

NO
2
 |0,1〉

0 0.04 0.08

0.8

0.9

1

NO
2
 |1,1〉

0 0.04 0.08

0.8

0.9

1

NO
2
 |0,1〉+|1,0〉

0 0.04 0.08
0.4

0.6

0.8

1

NO
2
 |0,0〉+|1,1〉

0 0.005 0.01

0.99

0.995

1

t

p

O
3
 |0,1〉

0 0.005 0.01
0.98

0.99

1

t

O
3
 |1,1〉

0 0.005 0.01

0.996

0.998

1

t

O
3
 |0,1〉+|1,0〉

0 0.005 0.01
0.7

0.8

0.9

1

t

O
3
 |0,0〉+|1,1〉

0 0.02 0.04
0.99

0.995

1

H
2
S |0,0〉+|1,1〉

FIG. 5. (Color online) Purity of the stretching-stretching qubits system for three molecules: H2S, NO2, and O3. Different initial excitation
in bending vibration is labeled using blue solid lines (vb = 0), red dashed lines (vb = 1), and green dash-dotted lines (vb = 2). t is in ps.
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FIG. 6. (Color online) Negativity of the stretching-stretching qubit system for three molecules. Negativity with bending restricted to its
ground state is labeled using black lines. Different initial excitation in bending vibration is labeled using dashed blue lines (vb = 0), dotted red
lines (vb = 1), and dash-dotted green lines (vb = 2). t is in ps.

and it may have important implications in quantum computing,
such as the design of quantum logic operation.

However, for the state |0,0〉 + |1,1〉, the evolution of purity
is not periodic and exhibits more obvious decoherence than the
other states. We have examined this for long-time evolution of
this state. The results represent that purity shows the periodical
behavior on long-time scale, but the purification time goes to
infinity.

B. Robustness of entanglement of stretching-stretching
qubits against bending vibration

In this section, we investigate the entanglement between
two stretching vibrational modes when the initial states of
the stretching-stretching qubits are the entangled states. As
examples, we consider the initial states: |0,1〉 + |1,0〉 and
|0,0〉 + |1,1〉. Since the stretching-stretching density is in a
mixed state, we use negativity to represent the entanglement
between two stretching vibrational modes. The negativity of
ρss(t) is defined by [29]

Ne(t) = 2 max(0, − μmin), (20)

where μmin is the minimum value of the eigenvalues of the
partial transpose of ρss, and the partial transpose is given by

ρss
T2
iα,jβ (t) = ρssiβ,jα(t), (21)

where T2 is representing the partial transpose for the second
subsystem.

In Fig. 6, the negativities for these three molecules are
plotted. The bending vibration is initially prepared in ground
and two excited states.

For the initial state |0,1〉 + |1,0〉, when bending vibration
is restricted to its ground state, energy will not exchange

between bonds, and the negativity keeps its maximum value
during vibration. But when the bending vibration is released,
energy can transfer between bonds with the help of bending
vibration. Correspondingly, the entanglement will change with
energy. As shown in Fig. 6, the negativity shows the periodic
behavior, similar with purity in Fig. 5. A stable period of
entanglement recovering back to its maximum value is found,
and the period is not affected by the different excitation of the
bending vibration. It should be noted that for O3, the negativity
also maintains the maximum value when vb = 0. The decay
time of entanglement of the local-mode molecule is much
longer than the normal-mode molecules, which indicates the
robustness of the stretching-stretching entanglement of the
local-mode molecule is better than that of the normal-mode
molecule.

For the initial state |0,0〉 + |1,1〉, energy can exchange
between bonds when bending vibration is restricted and the
evolution of negativity shows nice periodicity. But when the
bending is released, as shown in Fig. 6, the dynamical behavior
of the negativity becomes irregular. For the normal-mode
molecules, entanglement decreases at a faster rate.

V. CONCLUSION

In this paper, we discuss the intramolecular energy transfer,
entanglement between two stretching vibrational modes, and
the decoherence process of the stretching-stretching qubit sys-
tem caused by the bending vibration in the triatomic molecules.
We here select the local-mode molecule H2S and normal-mode
molecules NO2 and O3 as the models to investigate the
dynamical difference between different types of molecules.

When the bending vibration is restricted, we studied the
dynamical properties of entanglement between two stretching
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vibrational modes and the correlations with the intramolecular
energy transfer. The results show that the generation of
entanglement is closely related to the energy transfer of the
low excited states. Some issues of entanglement generation
are considered in Refs. [38,39]. Because IVR has a role
in the molecular process, many experimental techniques to
examine IVR have developed, such as dispersed fluorescence,
molecular beam techniques, and the transient absorption
spectroscopy [40–42]. Also, the experimental realization of
a common paradigm for quantum entanglement has already
been established [43]. As a result, the relationship between
dynamical entanglement and intramolecular energy transfer
can be tested using modern experimental methods. It should
be noted that there exists difficulty in creating the entangled
states in molecular quantum computing; for example, in some
cases unexpected states could be introduced [44]. The close
relation between dynamical entanglement and energy transfer
could be helpful in generating entangled states. The maximum
entangled states can be obtained by controlling the energy
distribution. Moreover, we have also found that entanglement
of local-mode characteristic states of the local-mode molecule
can survive for a long time. Since the preparation of local-mode
characteristic states has been studied theoretically, it will be
possible to prepare the long-lived entangled states in molecular
systems using the methods of direct vibrational excitation,
such as Franck-Condon pumping via an electronic excitation,
and two-step pumping [42,45].

For the bipartite qubit system of two stretching modes, we
find that when the system is in the initial states of |0,1〉, |1,1〉,

and |0,1〉 + |1,0〉, the influence from bending is not obvious,
which indicates that the two stretching vibrations would be
suitable to construct the qubits. But, for some special initial
states, the decoherence process and decay of entanglement are
significant. In practice, to minimize the effects of decoherence
in the molecular systems, the method of dynamical control
of the coupling between vibrational modes of interest and
remaining vibrational modes has been proposed [46]. And
recently it has been suggested that the quantum logic operation
can be tailored by considering the influence from the remaining
rovibrational modes [47]. Therefore, the dynamical features of
purity and entanglement of the interested vibrations, such as
the stable time of entanglement recovering to its maximum
value and purification time, can be used in the process of
designing quantum logic operations and dynamical control of
entanglement.

The comparison of the decoherence process and the
robustness of entanglement against the bending vibration
shows that the purity and entanglement of stretching-stretching
vibrations are more stable for local-mode molecules than
normal-mode molecules. In this sense, as a candidate system
with potential applications in quantum computations, the local-
mode molecules with low-value locality parameters could be
a wise choice.
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