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Ground-state OH molecule in combined electric and magnetic fields:
Analytic solution of the effective Hamiltonian
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The OH molecule is currently of great interest from the perspective of ultracold chemistry, quantum fluids,
precision measurement, and quantum computation. Crucial to these applications are the slowing, guiding,
confinement, and state control of OH, using electric and magnetic fields. In this article, we show that
the corresponding eight-dimensional effective ground-state Stark-Zeeman Hamiltonian is exactly solvable
and explicitly identify the underlying chiral symmetry. Our analytical solution opens the way to insightful
characterization of the magnetoelectrostatic manipulation of ground-state OH. Based on our results, we also
discuss a possible application to the quantum simulation of an imbalanced Ising magnet.
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The OH molecule in its ground X2�3/2 state is presently
widely employed in investigations of ultracold chemistry
[1–4], precision measurements [5,6], and quantum compu-
tation [7]. Particularly interesting is the recently implemented
evaporative cooling of OH close to Bose-Einstein condensa-
tion [8]. With such experiments under way, the exploration of
quantum degeneracy and molecular optics [9] with OH should
shortly become reality.

A substantial reason behind the suitability of OH as a
workhorse for these experiments is the fact that it is a
polar paramagnetic molecule; i.e., it carries both electric
and magnetic dipole moments. Electric and magnetic fields
can therefore be used to slow, guide, confine, and generally
manipulate OH [10–14]. It follows that a quantitative as well as
qualitative understanding of the corresponding Stark-Zeeman
spectrum is of great relevance.

In this article we present the exact solution of the eight-
dimensional Stark-Zeeman Hamiltonian of OH in its X2�3/2

ground state [13] and identify the intriguing underlying
symmetry. This molecular Hamiltonian is an effective one,
neglects hyperfine structure, and has been used to numerically
model experimental data accurately [8,12,13]. However, there
is interest in analytic solutions also: during the preparation
of this article, the field-dependent part of the Hamiltonian
was diagonalized exactly in an insightful article by Bohn and
Quemener [15].

Based on our analysis, we suggest that the OH molecule
may be used to simulate a mixed spin Ising magnet, which is
of interest in condensed matter physics [16]. Another use for
our results is a realistic theory of nonadiabatic processes in

traps, which so far has relied on a simplified four-dimensional
model of the OH ground state [17]. Our work may also
be of relevance to atmospheric [18], interstellar [19], and
combustion physics [20], where OH plays an important role.
Lastly, we hope that our results will usefully add to the handful
of exact solutions available for molecules, especially in strong
fields [21].

We begin with the Stark-Zeeman Hamiltonian for OH in
the X2�3/2 state, as presented earlier [13],

H = Ho − �μe · �E − �μb · �B, (1)

where Ho is the field-free Hamiltonian, �μe and �μb are
the electric and magnetic dipole moments of the molecule,
respectively, and �E [ �B] is the electric [magnetic] field imposed
on the molecule. This model is valid when hyperfine structure
is negligible, such as for electric fields stronger than 1 kV/cm
and magnetic fields above 100 G [1] or for OH vapor
temperatures higher than 5 mK. A number of experiments
lie in these regimes [3,8,11,13].

The matrix representation of the Hamiltonian in Eq. (1) can
be obtained using the Hund’s case (a) parity basis |J,M,�̄,ε〉
suggested by Lara et al., where J = 3/2 is the total angular
momentum, M is its projection in the laboratory frame, �̄

is its projection on the internuclear axis, and ε = {e,f } is
the e-f symmetry [17]. Following Ref. [17], both the electric
and magnetic moments are assumed to lie along the axis of the
molecule, and the magnetic field is chosen along the laboratory
z axis, with which the electric field makes an angle θ . With
these assumptions, the Hamiltonian matrix has been found
to be [13]

HM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− h̄�
2 − 6

5 μBB 0 0 0 3
5 μeE cos θ −

√
3

5 μeE sin θ 0 0

0 − h̄�
2 − 2

5 μBB 0 0 −
√

3
5 μeE sin θ 1

5 μeE cos θ − 2
5 μeE sin θ 0

0 0 − h̄�
2 + 2

5 μBB 0 0 − 2
5 μeE sin θ − 1

5 μeE cos θ −
√

3
5 μeE sin θ

0 0 0 − h̄�
2 + 6

5 μBB 0 0 −
√

3
5 μeE sin θ − 3

5 μeE cos θ
3
5 μeE cos θ −

√
3

5 μeE sin θ 0 0 h̄�
2 − 6

5 μBB 0 0 0

−
√

3
5 μeE sin θ 1

5 μeE cos θ − 2
5 μeE sin θ 0 0 h̄�

2 − 2
5 μBB 0 0

0 − 2
5 μeE sin θ − 1

5 μeE cos θ −
√

3
5 μeE sin θ 0 0 h̄�

2 + 2
5 μBB 0

0 0 −
√

3
5 μeE sin θ − 3

5 μeE cos θ 0 0 0 h̄�
2 + 6

5 μBB

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)
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FIG. 1. (Color online) Numerical plot of the eigenvalues of
Eq. (2) with � = 2π × 1.667 GHz, μe = 1.66 D, E = 2 kV/cm,
and θ = π/2 [13]. The horizontal axis denotes the magnetic field in
tesla and the vertical axis corresponds to energy in kelvin.

where � is the λ-doubling parameter, μB is the Bohr
magneton, μe the molecular electric dipole moment, and E

and B are the magnitudes of the electric and magnetic fields,
respectively.

To the best of our knowledge, the matrix HM of Eq. (2) has
only been diagonalized numerically so far [8,12,13,15]. This is
not surprising, as in general one may not expect an 8 × 8 matrix
to yield analytic eigenvalues. However, a numerical plot of the
spectrum, shown in Fig. 1, presents a tantalizing symmetry
about the zero energy (horizontal) axis: if λ is an eigenvalue,
so is −λ. This suggests that the characteristic polynomial P (λ)
of HM ,

P (λ) = |HM − λI | =
8∑

n=0

pnλ
n, (3)

might be even in λ. Indeed, a straightforward calculation shows
that the coefficients of all the odd powers of λ vanish:

p1 = p3 = p5 = p7 = 0. (4)

Therefore, P (λ), which is an octic in λ, can be written as a
quartic in λ2,

P (λ) = p0 + p2λ
2 + p4(λ2)2 + p6(λ2)3 + (λ2)4, (5)

and thus its roots can be found analytically [22]. The even
coefficients are

p0 = 1

108
{81B̃8 + 324B̃4Ẽ4 + 81Ẽ8 − 180B̃6�̃2

+ 756B̃4Ẽ2�̃2 − 756B̃2Ẽ4�̃2 + 180Ẽ6�̃2

+ 118B̃4�̃4 − 264B̃2Ẽ2�̃4 + 118Ẽ4�̃4

− 20B̃2�̃6 + 20Ẽ2�̃6 + �̃8 − 4B̃2Ẽ2(81B̃4

+ 81Ẽ4 + 54B̃2�̃2 − 54Ẽ2�̃2 − 7�̃4) cos 2θ

+ 162B̃4Ẽ4 cos 4θ},
p2 = 1

50000

{
−9B̃6 − 9Ẽ6 − 1

5
�̃6 − 59

5
Ẽ4�̃2

− 3Ẽ2�̃4 − 9B̃4Ẽ2 − 23

5
B̃4�̃2 − 9B̃2Ẽ4

+ B̃2�̃4 + 48

5
B̃2Ẽ2�̃2

+ 2B̃2Ẽ2

(
9B̃2 + 9Ẽ2 + 17

5
�̃2

)
cos 2θ

}
, (6)

p4 = 1

5000

{
59B̃4 + 36B̃2Ẽ2 + 10B̃2�̃2

− 82B̃2Ẽ2 cos 2θ + 59Ẽ4 + 30Ẽ2�̃2 + 3�̃4} ,

p6 = −1

5

{
B̃2 + Ẽ2 + 1

5
�̃2

}
, (7)

where B̃ = 4μBB, Ẽ = 2μeE, and �̃ = 5h̄�. The eigenval-
ues are

E3/2,f =
√

−p6

4
+

√
g1

2
+

√
g2 + g3

2
= −E−3/2,e, (8)

E3/2,e =
√

−p6

4
+

√
g1

2
−

√
g2 + g3

2
= −E−3/2,f , (9)

E1/2,f =
√

−p6

4
−

√
g1

2
+

√
g2 − g3

2
= −E−1/2,e, (10)

E1/2,e =
√

−p6

4
−

√
g1

2
−

√
g2 − g3

2
= E−1/2,f , (11)

g1 = −2p4

3
+ p2

6

4
+ 21/3h2

3h3
+ h3

21/33
,

g2 = −4p4

3
+ p2

6

2
− 21/3h2

3h3
− h3

21/33
,

g3 = −8p2 + 4p4p6 − p3
6

4
√

g1
, (12)

h1 = 27p2
2 − 72p0p4 + 2p3

4 − 9p2p4p6 + 27p0p
2
6,

h2 = 12p0 + p2
4 − 3p2p6,

h3 = (
h1 +

√
h2

1 − 4h3
2

)1/3
.

We have verified that the analytical eigenvalues reproduce
exactly the numerical spectrum of Fig. 1 and of other
references [8,13].

We now proceed to formally investigate the source of the
reflection symmetry of the spectrum, which is responsible
for making the problem exactly solvable. In order to do this
it is crucial to note that the Hamiltonian of Eq. (2) can be
written as

HM = h̄�

2

(−I4 0
0 I4

)
+ 4μBB

5h̄

(−Jz 0
0 −Jz

)

+ 2μeE

5h̄

(
0 cos θJz − sin θJx

cos θJz − sin θJx 0

)
,

(13)

where I4 is a 4 × 4 diagonal unit matrix and Jx , Jy , and Jz are
the angular momentum matrices for a spin-3/2 particle in the
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representation where Jz is diagonal, i.e.,

I4 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, Jx = h̄

2

⎛
⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎞
⎟⎟⎠,

Jy = ih̄

2

⎛
⎜⎜⎝

0 −√
3 0 0√

3 0 −2 0
0 2 0 −√

3
0 0

√
3 0

⎞
⎟⎟⎠, (14)

Jz = h̄

2

⎛
⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎠.

Finally, using the Pauli spin matrices,

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
, (15)

and the unit matrix in two dimensions, I2, we write
Eq. (13) as

HM = −
(

h̄�

2

)
σz ⊗ I4 −

(
4μBB

5h̄

)
I2 ⊗ Jz

+
(

2μeE

5h̄

)
σx ⊗ (Jz cos θ − Jx sin θ ). (16)

We note that every term in HM is a Kronecker product
of two operators, denoted by ⊗. The first operator in each
product (σz, I2, or σx) acts on a two-level system, while the
second operator (I4, Jz, or Jx) acts on a four-level system. This
form of the Hamiltonian reveals the effective physics of the
system.

The first term in the Hamiltonian simply corresponds to
the λ doublet of transition frequency �. In the absence of any
external fields, this doublet forms the two-level system.

The second term appears in the presence of a magnetic
field, B. Since parity is preserved by magnetic interactions,
B does not mix the two λ-doublet terms, leading to the
presence of I2. Within each λ-doublet manifold, however,
the magnetic field removes the fourfold Zeeman degeneracy
as indicated by the Jz. The two doublet manifolds now
constitute the two-level system. This two-level system no
longer has a unique transition frequency, since each λ-doublet
manifold contains four Zeeman states; however, it can still be
manipulated coherently just like a standard two-level system,
by using radiation at multiple frequencies. In this way, for
example, exchanging the population between the negative
and positive energy doublet manifolds would implement the
transformation σz → −σz, implying a π rotation about the x

axis in pseudospin space, as discussed below. If the relative
populations and coherences within each λ-doublet manifold
are not disturbed in the process, this transformation will not
affect the dynamics of the angular momentum J .

The third term in Eq. (16) is due to a nonzero electric
field. Since the electric interaction does not conserve parity, it
mixes the λ-doublet manifolds, via the σx . Also, the angular
momentum along the z axis is no longer generally conserved,
as indicated by the presence of the Jx. However, when the
electric and magnetic fields are collinear (θ = 0 or π ), the

angular momentum along z is conserved, as only Jz survives
in the Hamiltonian.

As explained above, a π rotation about the x axis changes
the sign of σz and can be written as e−iπσx/2σze

iπσx/2 = −σz

[23]. Thus, we can find the anticommutation {e−iπσx/2, σz} =
0. In a similar manner, for the spin-3/2, a physical rotation
by π about the y axis anticommutes with Jz as well as Jx :
{e−iπJy/h̄,Jz} = {e−iπJy/h̄,Jx} = 0. Using these relations and
the rule for anticommutation between two Kronecker products,
M1 ⊗ M2 and M3 ⊗ M4 [24],

{M1 ⊗ M2,M3 ⊗ M4}
= 1

2 ([M1,M3] ⊗ [M2,M4] + {M1,M3} ⊗ {M2,M4}), (17)

it is straightforward to see that the rotation operator

C = e−iπσx/2 ⊗ e−iπJy/h̄ (18)

anticommutes with HM of Eq. (16), i.e.,

HMC + CHM = 0. (19)

If we now consider an eigenvector ψ+ of HM with an
eigenvalue λ, we can write

HMψ+ = λψ+. (20)

Multiplying from the left by C and using the anticommu-
tation of Eq. (19), we find the left-hand side of Eq. (20)
reads CHMψ+ = −HMCψ+, while the right-hand side reads
C(λψ+) = λ(Cψ+). Equating the two sides, we arrive at

HM (Cψ+) = −λ(Cψ+). (21)

This implies that ψ− = Cψ+ is an eigenfunction of HM with an
eigenvalue of −λ. We have thus established that the existence
of the unitary operator C leads to the ±λ pairing of eigenvalues
in the OH energy spectrum. The matrix representations of the
operators e−iπσx/2 and e−iπJy/h̄ can be easily obtained; this
leads to the following matrix for the operator C:

C = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

That C anticommutes with HM can therefore also be verified
using simple matrix multiplication and Eqs. (2) and (22).
Clearly, the determinant |C| = 1 �= 0, and therefore C−1

exists. Thus, the anticommutation relation of Eq. (19) may
be written as C−1HMC = −HM, implying that the result of
the rotation C is to simply invert the sign of the Hamiltonian
HM . Such symmetries are often called chiral and seem to
have been noticed in only a handful of physical systems [25].
Perhaps the best-known example is that of a free Dirac particle,
where the reflection symmetry of the spectrum follows from
the anticommutation of the charge conjugation operator with
the corresponding Hamiltonian [23].

Interestingly, the structure of Eq. (16) is that of a spin-1/2
interacting with a spin-3/2 system. Ising systems with such
spin combinations are of interest in condensed-matter physics
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as suitable models of ferrimagnetism [16,26]. In principle,
in such systems, an investigation of phenomena such as phase
transitions requires a large number of interacting spins in order
to approximate well the thermodynamic limit. In practice,
valuable information can be gained from even two-spin “Ising
magnets” as demonstrated by the simulation of such a system
by two trapped ions [27]. Our formulation of the Hamiltonian
[see Eq.(16)] suggests that the OH molecule could be used
to simulate an imbalanced (i.e., unequal spin) Ising magnet.
By changing the angle θ between the magnetic and electric
fields, the interactions may be continuously varied from purely
transverse (∼σxJx) to transverse longitudinal (∼σxJz) [16].
Full quantum tomography of similar ground-state manifolds
has already been experimentally demonstrated in atomic
systems [28]. A similar experiment with OH could provide
complete knowledge of the X2�3/2 density matrix, including
information about either subsystem (doublet or rotor, obtained

by tracing over the appropriate state space), as well as
correlations between the two.

In conclusion, we have solved exactly the effective Hamil-
tonian of the OH X2�3/2 state molecule in combined electric
and magnetic fields, neglecting hyperfine structure. We have
identified explicitly the source of the reflection symmetry in the
spectrum that makes the problem exactly soluble. Our analysis
opens the way to a more precise and insightful characterization
of the magnetoelectrostatic manipulation of OH and to its use
for quantum simulation.
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