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Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust
to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing.
Unfortunately, it is known that braiding of Majorana fermions is not sufficient for the implementation of universal
quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set
of operations required to generate random numbers by way of quantum mechanics and to certify its genuine
randomness through violation of a multipartite Bell inequality. The result opens a perspective to apply Majorana
fermions for the robust generation of certified random numbers, which has important applications in cryptography
and other related areas.
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I. INTRODUCTION

The complex-valued solutions to the Dirac equation pre-
dict that every elementary particle should have a complex-
conjugate counterpart, namely, an antiparticle. For example,
an electron has a positron as its antiparticle. However, in
1937, Majorana [1] showed that the complex Dirac equation
can be modified to permit real wave functions, leading to
the possible existence of so-called Majorana fermions, which
are their own antiparticles [2]. In condensed-matter physics,
Majorana fermions may appear as elementary quasiparti-
cle excitations. To search for Majorana fermions, several
proposals have been made in recent years, including the
ν = 5/2 fractional quantum Hall system [3,4], topological
insulator (TI)–superconductor (SC) interface [5], interacting
quantum spins [6], chiral p-wave superconductors [7], and
spin-orbit coupled semiconductor thin films [8] or quantum
nanowires [9,10] in the proximity of an external s-wave
superconductor. Based on these proposals, experimentalists
have made great progress recently. For instance, Ref. [11]
reported an experimental observation of the coexistence of the
superconducting gap and the topological surface state in the
Bi2Se3 thin film as a step towards the realization of Majorana
fermions. More recently, a signature of Majorana fermions in
a hybrid superconductor-semiconductor nanowire device has
been reported [12], which has raised strong interest in the
community.

Majorana fermions are exotic particles classified as non-
Abelian anyons with fractional statistics, and braiding between
them gives nontrivial quantum operations that are topological
in nature. These topological quantum operations are intrinsi-
cally robust to noise and experimental imperfection, so they
provide a natural solution to the realization of fault-tolerant
quantum gates. The application of Majorana fermions in
the implementation of fault-tolerant quantum computation
has raised great interest [4,6]. Unfortunately, braiding of
Majorana fermions is not sufficient yet for the realization of
universal quantum computation [4], and we need assistance
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from additional nontopological quantum gates which are prone
to the influence of noise.

In this paper, we show that the topological manipulation of
Majorana fermions alone can be used to realize a quantum
random-number generator in a fault-tolerant fashion and
to certify its genuine randomness through the violation of
the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality
[13–15]. Random numbers have tremendous applications in
science and engineering [16–18]. However, the generation
of genuine random numbers is a challenging task [19]. Any
classical device does not generate genuine randomness as
it allows a deterministic description in principle. Quantum
mechanics is intrinsically random, and one can explore this
feature to generate random numbers [20–23]. However, in real
experiments, the intrinsic randomness of quantum mechanics
is always mixed up with an apparent randomness due to noise
or imperfect control of the experiment [19]. The latter can
be exploited by an adversary opponent and leads to security
loopholes in various applications of randomness. Recently,
an interesting idea has been put forward to certify genuine
randomness generated by a quantum device through a test of
the violation of the Bell-CHSH (Clauser-Horn-Shimony-Holt
[24]) inequality [19,25], and the idea has been demonstrated in
a proof-of-principle experiment using remote entangled ions
[19] . This implementation is not yet fault tolerant as the remote
entanglement is sensitive to noise and the quantum gates have
a limited precision, which can all lead to security loopholes.
We show here that all the operations for the generation and
certification of genuine randomness can be realized through
the topological manipulation of Majorana fermions. This
implementation is inherently fault tolerant and automatically
closes security loopholes caused by the influence of noise.

II. CERTIFIED RANDOMNESS VIA MABK INEQUALITY

The implementation of certification of a quantum random-
number generator with Majorana fermions is complicated.
First of all, one cannot use the Bell-CHSH inequality anymore
as proposed in Ref. [19], since it is impossible to violate this
inequality through the topological manipulation of Majorana
fermions alone [26]. In fact, to observe violations of the
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CHSH inequality, measurements in the non-Clifford bases
are required. However, topological operations on Majorana
fermions can only give gates in the Clifford group, and
thus are not able to achieve the measurements required for
the CHSH inequality violation for randomness certification.
Consequently, we have to consider certification of randomness
based on the extension of the Bell inequalities in the multiqubit
case. For simplicity, here we use the MABK inequality for
three logical qubits [13–15]. We show that first, this inequality
can be used to certify randomness, and second, the inequality
can be tested with topological manipulation of Majorana
fermions alone. For the MABK inequality, we consider three
qubits, each with two measurement settings. We denote the
measurement settings for each qubit by the binary variables
x, y, z, and the corresponding measurement outcomes by a,
b, c, where x,y,z,a,b,c = 0,1. The MABK inequality can be
rewritten as [13–15]

L ≡
∑

(x,y,z)∈S
τ (x,y,z)[P (even|xyz) − P (odd|xyz)] � 2,

(1)

where S = {(0,0,0),(0,1,1),(1,0,1),(1,1,0)} and τ (x,y,z)
is a sign function defined by τ (x,y,z) = (−1)(x+y+z)/2;
P (even|xyz) [P (even|xyz)] is the probability that a + b + c is
an even (odd) number when settings (x,y,z) are chosen. The
inequality (1) is satisfied by all local hidden variable mod-
els. However, in quantum mechanics certain measurements
performed on entangled states can violate this inequality.
Experimentally, we can repeat the experiment k times in
succession to estimate the violation. For each trial, the
measurement choices (x,y,z) are generated by an independent
identical probability distribution P (xyz). Denote the input
string as I = (x1,y1,z1; . . . ; xk,yk,zk) and the corresponding
output string as O = (a1,b1,c1; . . . ; ak,bk,ck). The estimated
violation of the MABK inequality can be obtained from the
observed data as

L̂ = 1

k

∑
(x,y,z)∈S

τ (x,y,z)

P (xyz)
[N (even|xyz) − N (odd|xyz)], (2)

where N (even|xyz) [N (odd|xyz)] denotes the number of trials
that we get an even (odd) outcome a + b + c after k times of
measurements with the measurement setting (x,y,z).

We need to show that the output string O from the mea-
surement outcomes contains genuine randomness by proving
that it has a nonzero entropy. Let {Lm : 0 � m � mmax} be
a series of violation thresholds with L0 = 2 and Lmmax =
4, corresponding respectively to the classical and quantum
bound. Denote by D(m) the probability that the observed
violation L̂ lies in the interval [Lm,Lm+1). We can use the
minimum entropy (min-entropy) to quantify the randomness
of the output string O [19,27,28]:

E∞(O|I,E,m)D ≡ −log2

∑
I,E

[
max
O

D(O,I,E |m)
]
, (3)

where E represents the knowledge that a possible adversary
has on the state of the device and the maximum is taken over
all possible values of the output string O. The probability
distribution D(O,I,E |m) is defined in Appendix A. Based
on a similar procedure as in Ref. [19], we can prove that if

D(m) > δ, the min-entropy of the output string is conditional
on the input string and the adversary’s information has a lower
bound (see the derivation in Appendix A), given by

E∞(O|I,E,m)D � kf (Lm − ε) − log2 (1/δ) , (4)

where the parameter ε ≡
√

−2(1 + 4r)2(ln ε′2) with r =
min P (xyz), the smallest probability of the input pairs, and ε′
is a given parameter that characterizes the closeness between
the target distribution D(O,I,E) and the real distribution
after k successive measurements (see Appendix A for an
explicit definition). The function f (L̂) can be obtained through
numerical calculation based on semidefinite programming
(SDP) [29] and is shown in Fig. 1. The minimum-entropy
bound kf (Lm − ε) − log2

1
δ

and the net entropy versus the
number of trials k are plotted in insets (a) and (b) of Fig. 1.
Any observed quantum violation with L̂ > 2 leads to a positive
lower bound of the min-entropy, and a positive min-entropy
guarantees that genuine random numbers can be extracted
from the string O of the measurement outcomes through the
standard protocol of random-number extractors [30]. As some
amount of randomness needs to be consumed to prepare the
input string according to the probability distribution P (xyz),
the scheme here actually realizes a randomness expansion

FIG. 1. (Color online) Plot of the function f (L̂) vs violation
L̂ of the MABK inequality. The function is calculated through
optimization based on the semidefinite programming, with the details
shown in Appendix A. Inset (a) shows the lower bound of the
min-entropy kf (Lm − ε) − log2

1
δ

vs the number of trials k. Here
we assume an observed MABK violation lies within the interval
3.9 = Lm � L̂ < Lmax = 4 with probability δ. The parameters are
chosen as δ = 0.001 and ε ′ = 0.01. The bound kf (Lm − ε) depends
on the input probability distribution P (xyz) through the parameter
r = minxyz P (xyz). The blue square line represents the bound under
a uniform distribution [P (xyz) = 1/4 for all (x,y,z) ∈ S], while
the red dotted line shows the bound under a biased probability dis-
tribution with P (011) = P (101) = P (110) = αk−1/2 and P (000) =
1 − 3αk−1/2 with α = 10. It consumes less randomness to generate a
biased distribution for the input bits, so the net amount of randomness,
defined as the number of output random bits minus that of the input,
becomes positive when k is large (typically k needs to be of the order
105). Inset (b) plots the net amount of randomness generated after k

trails under a biased distribution of the inputs. The parameters are the
same as those in inset (a).
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device [19,25]. Similar to Ref. [19], we can show that
under a biased distribution P (xyz) as shown in Fig. 1 we
generate a much longer random output string of length O(k)
from a relatively small amount of random seeds of length
O(

√
k log2

√
k) when k is large.

III. MAJORANA FERMION IMPLEMENTATION

We now show how to generate and certify random numbers
using Majorana fermions. The key step is to generate a
three-qubit entangled state and find suitable measurements
that lead to violation of the MABK inequality. Majorana
fermions are non-Abelian anyons, and their braiding gives
nontrivial quantum operations. However, this set of operations
is very restricted. First, all the gates generated by topological
manipulation of Majorana fermions belong to the Clifford
group, and it is impossible to use such operations alone to
violate the CHSH inequality [26]. We have to consider instead
the multiqubit MABK inequality. Second, it is not obvious
that one can violate the MABK inequality as well by using
only topological operations. There are two ways to encode a
qubit using Majorana fermions, using either two quasiparticles
(Majorana fermions) or four quasiparticles (see the details
in Appendix A). In the two-quasiparticle encoding scheme,
although the braiding gates exhaust the entire two-qubit
Clifford group, they cannot span the whole Clifford group for
more than two qubits [31]. Furthermore, braiding Majorana
fermions within each qubit cannot change the topological
charge of this qubit which fixes the measurement basis. Thus,
no violation of the MABK inequality can be achieved by
using the topological operations alone in the two-quasiparticle
encoding scheme. In the four-quasiparticle encoding scheme,
it is not straightforward either as braidings in this scheme only
allow certain single-qubit rotations and no entanglement can
be obtained due to the no-entanglement rule proved already
for this encoding scheme [32].

Fortunately, we can overcome this difficulty by taking
advantage of the nondestructive measurement of the anyon
fusion, which can induce qubit entanglement [33]. In a real
physical device, the anyon fusion can be read out nonde-
structively through the anyon interferometry [34]. In the four-
quasiparticle encoding scheme, each qubit is encoded by four
Majorana fermions, with a total topological charge 0. The qubit
basis states are represented by |0〉 ≡ |[(•,•)I,(•,•)I]I〉 and
|1〉 ≡ |[(•,•)ψ,(•,•)ψ ]I〉. Here, each • represents a Majorana
fermion; I and ψ represent the two possible fusion channels of
a pair of Majorana fermions, with I standing for the vacuum
state and ψ denoting a normal fermion. As explained in
Appendix B, a topologically protected two-qubit controlled-
NOT (CNOT) gate can be implemented using braidings together
with nondestructive measurements of the anyon fusion [33].
To certify randomness through the MABK inequality, we need
to prepare a three-qubit entangled state. For this purpose, we
need in total 14 Majorana fermions, where 12 of them are used
to encode three qubits and another ancillary pair is required
for implementation of the effective CNOT gates through the
measurement of the anyon fusion. Initially, the logical state
is |�〉i = |000〉. We apply first a Hadamard gate on qubit 1,
which can be implemented through a series of anyon braidings
as shown in Fig. 2(b), and then two effective CNOT gates on

FIG. 2. (Color online) Illustration of the encoding scheme for a
logic qubit using Majorana fermions and two single-qubit operations
that can be implemented through anyon braiding. Each qubit is
encoded by four Majorana fermions. (a) A counterclockwise braiding
of Majorana fermions 2 and 3 implements a unitary gate B23 on
the corresponding qubit. (b) Implementation of the Hadamard gate
through composition of anyon braiding. In both (a) and (b), time flows
from left to right and � means equal up to an irrelevant overall phase.

the logical qubits 1, 2, and 2, 3. The final state is the standard
three-qubit maximally entangled state |	〉f = (|000〉 +
|111〉)/√2. After |	〉f is generated, the three qubits can be
separated and we need only local braiding and fusion of the
anyons within each qubit to perform the measurements in the
appropriate bases to generate random numbers and certify
them through a test of the MABK inequality.

To perform the measurements, we read out each qubit ac-
cording to the input string I through nondestructive detection
of the anyon fusion. If the input is 0, we first braid the Majorana
fermions to implement a Hadamard gate H on this qubit [as
shown in Fig. 2(b)], and then measure the fusion of the first
two Majorana fermions within each qubit. The measurement
outcome is 0 (1) if the fusion result is I (ψ). If the input is
1, we first braid the Majorana fermions to implement a B23

gate [see Fig. 2(a)] on this qubit before the same readout
measurement. For instance, with the input (x,y,z) = (0,1,1),
we apply a Hadamard gate to the first qubit and B23 gates to
the second and the third qubits, followed by the nondestructive
measurement of fusion of the first two Majorana fermions in
each qubit. Under the state |	〉f , the conditional probability
of the measurement outcomes (a,b,c) under the measurement
setting (x,y,z) for these three qubits is give by

P (abc|xyz) = |〈abc|(UxUyUz)|	〉f |2, (5)

where U0 = H and U1 = B23. With this conditional probabil-
ity, we find the expected value of L̂ defined in Eqs. (1) and (2)
is L̂ = 4, achieving the maximum quantum violation of the
MABK inequality. All the steps for measurements and state
preparation are based on the topologically protected operations
such as anyon braiding or nondestructive detection of the
anyon fusion, so the scheme here is intrinsically fault tolerant
and we should get the ideal value of L̂ = 4 if the Majorana
fermions can be manipulated at will in experiments. Such a
large violation perfectly certifies genuine randomness of the
measurement outcomes.

IV. CONCLUSION

In summary, we have shown that genuine random numbers
can be generated and certified through topologically manip-
ulation of Majorana fermions, a kind of anyonic excitation
in engineered materials. Such a protocol is intrinsically fault

012323-3



DONG-LING DENG AND LU-MING DUAN PHYSICAL REVIEW A 88, 012323 (2013)

tolerant. Given the rapid experimental progress on the real-
ization of Majorana fermions in real materials [11,12], this
protocol offers a promising prospective for the application of
these topological particles in an important direction of cryp-
tography with broad implications in science and engineering.
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APPENDIX A: CERTIFIED RANDOMNESS CERTIFIED
VIA VIOLATIONS OF THE MABK INEQUALITY

In this Appendix, we establish a link between the ran-
domness of the measurement outputs of a quantum system
and violation of the MABK inequality. A link between
randomness and violation of the Bell-CHSH inequality has
been established in Refs. [19,35]. Here, we generalize the
result from the two-qubit CHSH inequality to the three-qubit
MABK inequality. Consider a quantum nonlocality test on
three qubits. Each qubit has two settings of two-outcome
measurements, denoted by {x,y,z}, respectively, for the three
qubits. The measurement outputs {a,b,c} of this quantum
system are characterized by the joint probability distribution
P = {P (abc|xyz)}. Randomness of the outputs {a,b,c} is
quantified by the min-entropy, defined as E∞(ABC|XYZ) =
−log2[maxabc P (abc|xyz)]. With an experimental observation
of violation L̂ of the MABK inequality, our aim is to find a
lower bound on the min-entropy

E∞(ABC|XYZ) � f (L̂). (A1)

This is equivalent to solving of the following optimization
problem [19]:

P ∗(abc|xyz) = max P (abc|xyz)

subject to L = L̂, (A2)

P (abc|xyz) = Tr
(
ρMa

x ⊗ Mb
y ⊗ Mc

z

)
,

where L is defined in Eq. (2) of the main text and
(ρ,Ma

x ,Mb
y ,Mc

z ) constitutes a quantum realization of the Bell
scenario [36]. Thus, the minimal value of E∞(ABC|XYZ)
compatible with the MABK violation L̂ and quantum theory
is given by E∞(ABC|XYZ) = −log2[maxabc P ∗(abc|xyz)].
Consequently, to obtain f (L̂) we only need to solve (A2)
for all possible input and output triplets (x,y,z) and (a,b,c).
This can be effectively done by casting it to a semidefinite
program (SDP) [29]. An infinite hierarchy of conditions that
needs to be satisfied by all quantum correlations is introduced
in Refs. [37–39]. All these conditions can be transformed to a
SDP problem and the hierarchy is complete in the asymptotic
limit, i.e., it guarantees the existence of a quantum realization
if all the conditions in the hierarchy are satisfied. Generally,
conditions higher in the hierarchy are more constraining and
thus better reflect the constraints in (A2) and give a tighter
lower bound. To obtain a lower bound of the min-entropy for a
given MABK violation L̂, we use the MATLAB toolbox SeDuMi
[40] and solve the SDP corresponding to the certificates
between order 1 and order 2 [37]. The result is plotted in

Fig. 1 in the main text. From the figure, f (L̂) equals zero
at the classical point L̂ = 2 and increases monotonously as
the MABK violation L̂ increases. For the maximal violation
L̂ = 4, P ∗ ≈ 0.5003, corresponding to f (L̂) � 0.9991 bits.

Equation (4) in the main text can be derived using arguments
similar to those in Refs. [19,28]. The difference is that the
Bell scenario in Ref. [19] is based on the two-qubit CHSH
inequality, which needs to be extended in our scheme with
the three-qubit MABK inequality. Suppose we run the exper-
iments k times and denote the input and output string as I =
(x1,y1,z1; . . . ; xk,yk,zk) and O = (a1,b1,c1; . . . ; ak,bk,ck), re-
spectively. As in the main text, let {Lm : 0 � m � mmax} be
a series of MABK violation thresholds, and denote D(m)
the probability that the observed Klyachko-Can-Binicioglu-
Shumovsky (KCBS) violation L̂ lies in the interval [Lm,Lm+1).
Denote by E the possible classical side information an
adversary may have. To derive Eq. (4) in the main text, let
us first introduce the following theorem:

Theorem 1. Suppose the experiments are carried out k times
and each triplet of inputs (xi,yi,zi) is generated independently
with probability P (xyz). Let δ, ε′ > 0 be two arbitrary pa-
rameters and r = min{P (xyz)}, then the distribution P (OIE)
characterizing k successive use of the devices is ε′ close to a
distribution D such that either D(m) � δ or

E∞(O|I,E,m)D � kf (Lm − ε) + log2 δ, (A3)

where ε = (4 + 1/r)
√−2 ln ε′/k.

Equation (A3) is equivalent to Eq. (4) in the main text.
Theorem 1 tells us that the distribution P , which characterizes
the output O of the device and its correlation with the input I
and the adversary’s classical side information E , is basically
indistinguishable from a distribution D that will be defined
below [28]. If we find that the observed MABK violation
L̂ lies in [Lm,Lm+1) with a non-negligible probability, i.e.,
D(m) > δ, the entropy of the outputs O is guaranteed to
have a positive lower bound kf (Lm − ε) − log2

1
δ
, that is, the

randomness of the outputs is guaranteed to be larger than
kf (Lm) up to epsilonic correction. Theorem 1 can be proved
using a similar procedure as in Ref. [28]. Here we omit this
proof for conciseness.

It is worthwhile to clarify that in deriving Eq. (A3) we
have made the following four assumptions [19,28]: (i) The
system can be described by quantum theory; (ii) the inputs
at the j th trial (xj ,yj ,zj ) are chosen randomly and their
values are revealed to the systems only at step j ; (iii) the
three qubits are separated and noninteracting during each
measurement step; and (iv) the possible adversary has only
classical side information. There are no constraints on the
states, measurements, or the Hilbert space. Moreover, there is
even no requirement that the system behaves identically and
independently for each trial. In particular, the system could
have an internal memory (classical or quantum) so that the
results of the j th trial depend on the previous j − 1 trials.

We also note that there is a significant difference between
the two-qubit scenario in Ref. [19] and our three-qubit
scenario here. In the two-qubit case, the randomness can be
certified by the no-signaling conditions as well without the
assumption of quantum mechanics. However, in our three-
qubit scenario, the no-signaling conditions are not sufficient
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to certify randomness. Actually, we have numerically checked
that even for the maximal possible MABK violation L̂max = 4,
P ∗(abc|xyz) can be equal to the unity for certain (a,b,c) and
(x,y,z) if only the no-signaling conditions are imposed, which
cannot certify any randomness. A possible reason for this
difference is that the MABK inequality only contains four out
of eight possible correlations. In other words, the input choice
S is only a subset of {(x,y,z)|x,y,z = 0,1}. As a result, the
no-signaling constraints become less effective.

APPENDIX B: ENCODING AND OPERATION OF QUBITS
BY TOPOLOGICAL MANIPULATION OF MAJORANA

FERMIONS

In this Appendix, we discuss in detail how to control the
logical qubits encoded with Majorana fermions. The fusion
rule of Majorana fermions is of the Ising type, τ × τ ∼ I + ψ ,
where τ , I, and ψ stand for a Majorana fermion, the vacuum
state, and a normal fermion, respectively. Generally, there are
two encoding schemes. The first scheme encodes each logical
qubit into a pair of Majorana fermions (two-quasiparticle
encoding). When the pair fuse to a vacuum state I, we say
that the qubit is in state |0〉, and when they fuse to ψ , the state
is |1〉. There is also an ancillary pair, which soaks up the extra ψ

if necessary to maintain the constraint that the total topological
charge must be 0 for the entire system [31,41]. In this encoding
scheme, braiding operations of Majorana fermions exhaust
the entire two-qubit Clifford group. However, for three or
more qubits, not all Clifford gates could be implemented by
braiding. The embedding of the two-qubit SWAP gate into
a n-qubit system cannot be implemented by braiding [31].
In the two-quasiparticle encoding scheme, no violation of
the MABK inequality can be obtained as we cannot change
the measurement basis through local braiding of Majorana
fermions within each logic qubit.

As we mentioned in the main text, we use the
four-quasiparticle encoding scheme where the qubit basis
states are represented by |0〉 = |[(•,•)I,(•,•)I]I〉 and |1〉 =
|[(•,•)ψ,(•,•)ψ ]I〉. Let us first consider braiding operations
of Majorana fermions within each logic qubit. Consider four
Majorana operators ci (i = 1,2,3,4) in one logic qubit, which
satisfy c

†
i = ci , c2

i = 1, and the anticommutation relation
{ci,cj } = 2δij . The Pauli operators in the computational basis
can be expressed as [34]

σx = −ic2c3, σ y = −ic1c3, σ z = −ic1c2. (B1)

Unitary operations can be implemented by a counterclockwise
exchange of two Majorana fermions j < j ′:

Bjj ′ = e(iπ/4)(icj cj ′ ). (B2)

Specifically, we can write down the three basic braiding
operators in the computational basis:

B12 = B34 �
(

1 0
0 i

)
, B23 � 1√

2

(
1 −i

−i 1

)
, (B3)

where � means that we ignore an unimportant overall
phase. Using these basic braiding operators, a single-qubit

Hadamard gate can be implemented as H = 1√
2
( 1 1

1 −1 ) �
B2

23B
−1
12 B23B

−1
12 B2

23. The corresponding braidings are shown
in Fig. 2 of the main text. Note that the set of operations
implemented through composition of B12 and B23 are still
very limited, however, it is fortunate that B23 and H give all
the gates that we need for a change of the measurement bases
in the test of the MABK inequality. As shown in the main text,
we actually get maximum quantum violation of the MABK
inequality by randomly choosing either a B23 or an H gate on
each logic qubit before measurement of the anyon fusion.

With only braiding operations of Majorana fermions, no
entangling gate can be achieved for logic qubits in the four-
quasiparticle encoding scheme due to the no-entanglement
rule proved in Ref. [32]. In order to overcome this problem, we
need assistance from another kind of topological manipulation:
nondestructive measurement of the anyon fusion, which can
be implemented through the anyon interferometry as proposed
in Ref. [34]. Suppose that we have eight Majorana modes
c1,c2, . . . ,c8, where the first (last) four modes encode the
control (target) qubit, respectively. As shown in Refs. [33,42], a
two-qubit controlled phase flip gate (σ z) can be implemented
through the following identity:

(σ z) = e−(π/4)c3c4e−(π/4)c5c6e(iπ/4)c4c3c5c6eiπ/4. (B4)

Note that the first two operations in Eq. (B4) can be directly
implemented by braiding operations. The key step is to
implement the operation e(iπ/4)c4c3c5c6 . To this end, we use
another ancillary pair of Majorana fermions c9 and c10. We
measure fusion of the four Majorana modes c4c3c6c9. The
outcome is ±1, corresponding to either a vacuum state (+1)
or a normal fermion (−1). The corresponding projector is
given by �

(4)
± = 1

2 (1 ± c4c3c6c9). Then, we similarly measure
fusion of the Majorana modes (operator) −ic5c9, with the
project denoted by �

(2)
± = 1

2 (1 ∓ ic5c9) corresponding to the
measurement outcomes ±1. We have the following relation
[33,42]:

e(iπ/4)c4c3c5c6 = 2
∑

η,ζ=±
Uηζ �

(2)
η �

(4)
ζ , (B5)

where U++ = e(π/4)c5c10 , U+− = ie(π/2)c4c3e(π/2)c5c6e(π/4)c5c10 ,
U−+ = ie(π/2)c4c3e(π/2)c5c6e−(π/4)c5c10 , and U−− = e−(π/4)c5c10 .
All the gates Uηζ can be implemented through one or several
braiding operations of Majorana fermions. So this identity
shows that an effective controlled phase flip gate can be
implemented on logic qubits through a combination of anyon
braiding and measurement of anyon fusion. Depending on
the measurement outcomes (ζ,η) of c4c3c6c9 and −ic5c9, one
can always apply a suitable correction operator Uηζ to obtain
the desired operation e(iπ/4)c4c3c5c6 . With controlled phase flip
gates, one can easily realize quantum controlled-NOT (CNOT)
gate with assistance from the Hadamard operations that can
be implemented through the anyon braiding. With CNOT and
Hadamard gates, we can then prepare the maximally entangled
three-qubit state as required for a test of quantum violation of
the MABK inequality.
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