
PHYSICAL REVIEW A 88, 012321 (2013)

Tree-size complexity of multiqubit states
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Complexity is often invoked alongside size and mass as a characteristic of macroscopic quantum objects.
In 2004, Aaronson introduced the tree size (TS) as a computable measure of complexity and studied its
basic properties. In this paper, we improve and expand on those initial results. In particular, we give explicit
characterizations of a family of states with superpolynomial complexity n�(log n) = TS = O(

√
n!) in the number

of qubits n, and we show that any matrix-product state whose tensors are of dimension D × D has polynomial
complexity TS = O(nlog2 2D).
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I. INTRODUCTION

Quantum mechanics is one of the most tested theories, and
it has been verified on different kinds of physical systems.
However, when quantum formalism is applied to objects
observed in our daily life, something seemingly absurd occurs.
The Schrödinger’s cat presents such a paradox, where an
object is placed in a superposition of two macroscopically
distinct states, “dead” and “alive.” Various coherent super-
positions claimed to be the “cat state” were implemented in
many physical systems such as mechanical resonators [1,2],
superconducting qubit [3], and heavy molecules [4,5]. A
number of different measures of effective size are proposed to
quantify the macroscopicity of these quantum superpositions
[6–11]. However, the GHZ state, which maximizes most of
the size criteria proposed, is simple in the sense that only a
small amount of information is required to describe it. Could
complexity be a more suitable criterion for a “Schrödinger’s
cat”? Indeed, one often finds it stated that complexity is likely
to play just as important a role as number and size in testing
quantum mechanics at the macroscopic scale.

Complexity may also be relevant in the context of quantum
computing. It is well known that simple quantum states such
as matrix product states with bounded bond dimension can
be simulated efficiently with classical computers [12–14].
Any state that offers an advantage over classical computing
must be significantly complex. We will make it clear below
what is meant by “simple” and “complex” in the language
of complexity measures. It is natural to ask whether there is
any connection between complexity and the power of quantum
computing.

As a starting point, we search for complex quantum states.
It is often argued that a generic state from the Hilbert space
is complex in various senses with high probability [15].
However, to the best of our knowledge no such states have been
explicitly written down (the existing examples of complex
states such as the subgroup states in Ref. [16] involve random
selection from a subset of the Hilbert space). In this paper,
we study an explicit class of states whose complexity grows
superpolynomially in the number of qubits. We believe that
an explicit construction will be very useful for further studies
on the topic of complex quantum states. Among the several
complexity measures proposed [16–21], we focus on the
tree size of a quantum state, introduced by Aaronson in an

attempt to give a more rigorous foundation to the debate
on the possibility of large-scale quantum computing versus
a hypothetical breakdown of quantum mechanics [16]. This
measure of complexity is motivated by the work of Raz, who
showed that any multilinear formula for the determinant and
permanent of a matrix must be superpolynomial in size [22].

The paper is organized as follows. In Sec. II we discuss
the tree size of a quantum state and its lower and upper
bounds. Section III is on the study of an explicit family
of superpolynomial complex states for qubits called the
determinant and permanent states. Next, we consider the
tree-size complexity of matrix product states in Sec. IV and
conclude in Sec. V.

II. TREE SIZE OF A MULTIQUBIT STATE

A. Definition

Let us first briefly describe the tree size (TS) of a quantum
state. An arbitrary pure quantum state of qubits can be
represented by a rooted tree (see Fig. 1). Each leaf vertex
is labeled with α |0〉 + β |1〉 for each qubit where α,β are
complex coefficients; each nonleaf vertex is labeled with either
a + gate or a ⊗ gate, and complex multiplicative constants are
put at the edges of the + gates [16]. The rooted trees for the
Bell state and the three-qubit GHZ state are given in Fig. 1. The
size of a rooted tree is defined as the number of leaf vertices.
It is obvious that any quantum state can be represented by
different rooted trees each with a different size. For example,
the state (|00〉 + |01〉 + |10〉 + |11〉) /2 whose size is 8 can
also be written as |+〉 |+〉 with size 2. The tree size of a
quantum state is taken as the minimum size over all possible
representations.

For a quantum state |�〉, the minimal representation with
size TS (|�〉) is the most compact way of writing down that
state. This explains why the tree size is a good measure of
complexity: When the most compact form of an object is very
complex, it is reasonable to say that the object itself has a high
degree of complexity. As an example we consider some of the
most commonly encountered n-qubit quantum states. It is not
difficult to show that the tree size is O(n) for the GHZ state,
O(n2) for the W state, and O(n4) for the one-dimensional
cluster state [16]. The tree size of the two-dimensional (2D)
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FIG. 1. Rooted trees of (a) the Bell state and (b) the three-qubit
GHZ state; and (c) a binary tree of the associated multilinear formula
that computes the coefficients of the Bell state.

cluster state is conjectured to be superpolynomial but no proof
has yet been given [16].

We observe that quantum states with polynomial tree size
are too simple to be useful for measurement-based quantum
computation (MBQC). If a quantum state has a polynomial tree
size, its minimal rooted tree can be produced with polynomial
computational effort in a classical computer. Moreover, local
measurements do not lead to an increase in the tree size of the
quantum state.1 Therefore, MBQC on a polynomial-tree-size
quantum state can be simulated in a classical computer
with polynomial overhead and hence offers no significant
advantage. This supports the conjecture that the 2D cluster
state possesses a superpolynomial tree size.

At first it may seem from the definition that the tree size
depends on the choice of basis |0〉 and |1〉, but in fact it is basis
independent. This follows immediately from

Proposition 1. If two quantum states can be converted
to each other by reversible stochastic local operations and
classical communication (SLOCC), then they possess equal
tree size. In other words, if there exist invertible local operators
(ILO) A1,A2, . . . ,An such that

|ψ〉 = A1 ⊗ · · · ⊗ An |φ〉 , (1)

then TS (|ψ〉) = TS (|φ〉).
Proof. Let mT φ be the minimal tree of |φ〉; applying a local

operator Ai on the ith qubit simply changes the superposition
α |0〉i + β |1〉i at an arbitrary leaf of that qubit to a different
superposition α′ |0〉i + β ′ |1〉i . Thus, the tree mT φ can also
describe |ψ〉, which means TS (|ψ〉) � TS (|φ〉). However, we
can also write

|φ〉 = A−1
1 ⊗ · · · ⊗ A−1

n |ψ〉, (2)

and the same line of argument results in TS (|φ〉) � TS (|ψ〉).
These two inequalities imply that TS (|ψ〉) = TS (|φ〉). �

1After a local projective measurement on a qubit, all the different
states at the leaves corresponding to this qubit in the minimal tree are
transformed to a single state and hence can be factorized out. It is
clear that this operation can only reduce the tree size.

An immediate corollary is that the tree size of a quantum
state is basis independent because a change of local basis
is equivalent to applying local unitary operators which are a
special case of invertible local operators. Another implication
of Proposition 1 is that all the states belonging to a SLOCC-
equivalent family must have the same tree size. This result
is useful for finding the tree size for quantum states of a few
qubits since it is possible to examine all the SLOCC-equivalent
families when the number of qubits is small [23,24].

B. Upper bounds on the tree size

While it is not easy to compute the tree size of a given state,
nontrivial upper and lower bounds are obtainable. An arbitrary
n-qubit quantum state can be written as a superposition of the
computational basis states

|�〉 =
2n−1∑
x=0

αx |x〉, (3)

where each of the terms |x〉 is an n-bit string |x1,x2,...,xn〉 with
xi = 0 or 1. Therefore, its TS is upper bounded by n2n [16].
In fact, it is easy to improve on this bound by collecting all
the terms |x〉 with x1 = 0 to one group and those with x1 = 1
to another group; one may write the n-qubit state in Eq. (3)
as |�〉 = |0〉 |χ0〉 + |1〉 |χ1〉, where |χ0〉 and |χ1〉 are some
states of n − 1 qubits. Let Bn denote the size of an n-qubit
state; when written in the form of the above equation, we
have Bn = 2(Bn−1 + 1). Solving this recursive formula with
B1 = 1 yields the upper bound

TSn � 3 × 2n−1 − 2 . (4)

It may be possible to reduce this bound further using an
optimized decomposition [25]. For a given state, an upper
bound can always be constructed by studying an explicit
decomposition, but we do not know yet any way to estimate
its tightness.

C. Lower bounds on the tree size

While upper bounds are sufficient to prove that a state is not
complex, lower bounds are needed in order to prove that a state
is complex. One of the reasons why the tree size is appealing
is that rigorous lower bounds can actually be computed.

As mentioned earlier, the tree-size complexity measure for
quantum states is closely related to the size of multilinear
formulas (MFS). A multilinear formula of the complex
variables {x1,x2,...,xn} can be represented by a binary tree
with each leaf vertex labeled with a variable xk or a complex
constant [22]. The nonleaf vertices are labeled with either
+ or ×. The size of each binary tree is the number of leaf
vertices. The size of a multilinear formula is the minimum
size taken over all possible binary-tree representations.

Now we define an associated multilinear formula
fψ (x1,x2,...,xn) that maps each bit string x = {x1,x2,...,xn}
to the coefficient αx , that is,

fψ (x) = αx. (5)

A binary tree for fψ can be obtained from a rooted tree of
the corresponding state |�〉 by a straightforward procedure:
From the rooted tree of the quantum state, one replaces each
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|0〉i by 1 − xi , |1〉i by xi , and the ⊗ gates by a set of binary
× gates [16]. It can be verified that the resulting multilinear
formula indeed computes the coefficients αx of the state |�〉.
The example for the Bell state is shown in Fig. 1(c). It is
therefore clear that, from the minimal tree of state |�〉, one
can immediately obtain a multilinear formula that computes its
coefficients (even though there may exist such a formula with
smaller size2). This implies that MFS(fψ ) = O [TS (|�〉)]: In
particular, if f (x) has a superpolynomial MFS, then the state∑

x f (x) |x〉 has a superpolynomial tree size. This is one of
the main results stated in Theorem 4 of Ref. [16].

III. SUPERPOLYNOMIAL COMPLEX QUANTUM STATES

In this section we write down explicitly a class of states that
possesses superpolynomial tree size and discuss their proper-
ties. These states are immediate consequences of Theorem 4
in Ref. [16] and the superpolynomial lower bound proved in
Ref. [22].

A. The family of states

Raz showed in Ref. [22] that any multilinear formula that
computes the determinant or the permanent (or in fact any
immanant with nonzero coefficients3) of a m × m matrix must
have superpolynomial tree size m�(log m).

Based on this result, we can exhibit an explicit family of
superpolynomial complex multiqubit states when the number
of qubits is n = m2 with m a positive integer. Since the
construction is analogous for the determinant, the permanent,
and any immanant, we focus on the determinant state unless
otherwise specified.

For the construction, the qubits are first labeled as
x11,x12, . . . ,xmm and arranged to a matrix

{x} =

⎛
⎜⎜⎜⎜⎝

x11 x12 · · · x1m

x21 x22 · · · x2m

...
...

. . .
...

xm1 xm2 · · · xmm

⎞
⎟⎟⎟⎟⎠. (6)

So, each bit string |x〉 in the expansion of Eq. (3) is associated
with a (0,1) matrix {x} whose elements are 0 or 1. We call the
state

∑
x αx |x〉 the determinant state if the coefficient αx is

taken as the determinant of the corresponding (0,1) matrix. In

2For instance, take the state 1√
2

(|00〉 − |11〉): The direct recipe gives

the multilinear formula 1√
2

[(1 − x1)(1 − x2) − x1x2], which has size

4; but this can be further expanded to 1√
2

(1 − x1 − x2), which has
size 2. Also, we notice that in Ref. [22] the size of a binary tree is
defined as the number of nodes N , which is related to the number of
leaves L by N = 2L − 1.

3An immanant with nonzero coefficients c(σ ) of an m × m matrix
M is Imm{M} = ∑

σ c(σ )
∏m

i=1 Miσi
[26]. Raz does not study this

case explicitly; however, the argument in Sec. 7 of Ref. [22] can be
used to show that the partial-derivatives matrix MφA

corresponding to
a nonzero-coefficient immanant has full rank. Hence, the multilinear
formula size of these immanants is also m�(log m).

other words, the m2-qubit determinant state is

|detm〉 =
2n−1∑
x=0

det({x}) |x〉 , (7)

where the normalization constants are neglected. The determi-
nant states for m = 1,2 are

|det1〉 = |1〉,
|det2〉 = − |0110〉 − |0111〉 + |1001〉

+ |1101〉 + |1101〉 − |1110〉 . (8)

Since MFS(fψ ) = O [TS (|�〉)], the tree size of |detm〉 must
scale as m�(log m) = n(1/4)�(log n), which is superpolynomial
in n.

B. Upper bound for the tree size

The size of the representation of |detm〉 given in Eq. (7)
is enormous for large m. There are 2m2

different (0,1) m × m

matrices. At first sight it may seem that the determinant of (0,1)
matrices must be small, yet the largest possible determinant
is 2−m

√
(m + 1)m+1 with equality if and only if there is a

Hadamard matrix of order m + 1 [27,28]. The Hadamard
conjecture states that this is true for m = 3 (mod 4) but the
search for a proof remains a long-standing unsolved problem
in mathematics [29]. Moreover, the number of terms left in
the expansions of Eq. (7) is equal to the number of m × m

(0,1) matrices with nonvanishing determinant, which is also
unknown for large m [30]. For m � 8 numerical computation
shows that this number is larger than 0.3 × 2m2

and hence it
grows rapidly with increasing m [28].

A much more compact representation than Eq. (7) is ob-
tained by using the expansion by minors (Laplace expansion)
[31]

det {x} =
m∑

j=1

(−1)i+j xijMij , (9)

where Mij is the determinant of {x} with row i and column j

crossed out. Inserting this expression for the determinant into
Eq. (7) and summing over all possible values of x yields the
recursive formula

|detm〉 =
m∑

j=1

(−1)i+j |1〉ij |detm−1〉ij |+〉
⊗

(2m−2) , (10)

which is understood as follows: The qubit at row i and column
j is in the |1〉 state, the qubits in the (m − 1) × (m − 1) block
obtained by removing row i and column j is in the |detm−1〉
state, and the remaining 2m − 2 qubits are in the |+〉 states.
Starting from |det1〉 = |1〉, one may use the recursive formula
to generate determinant states with larger numbers of qubits,
for instance,

|det2〉 = |1〉 |+〉 |+〉 |1〉 − |+〉 |1〉 |1〉 |+〉 . (11)

The permanent state also adopts the recursive formula in
Eq. (10) with all the −1 signs switched to +1.

How compact is this new expression? Let us denote by Sm

the size of |detm〉 when written as in Eq. (10). By counting the
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number of leaves we see that

Sm = m(Sm−1 + 2m − 1), (12)

from which we obtain Sm = m!λm with λm = ∑m
k=1

2k−1
(k−1)!

which converges rapidly to 3e. Thus, the tree size of |detm〉
is

TS(|detm〉) = O (m!) . (13)

This is the smallest upper bound we were able to find, which
suggests the possibility that the lower bound m�(log m) can be
improved further.

C. Entanglement properties

A less compact but more useful expression for studying the
entanglement properties of the determinant state is based on
the Leibnitz formula [31]

det {x} =
∑

σ

sgn(σ )
m∏

i=1

xiσi
, (14)

where the summation is taken over all m! possible permutation
σ of the set {1,2,...,m}; the sign is −1 for odd and +1 for even
permutations. With the help of this formula Eq. (7) can be
rewritten as

|detm〉 =
∑

σ

sgn(σ )

(
m⊗

i=1

|1〉iσi

)
|+〉

⊗
(m2−m) . (15)

Again, the permanent state has a similar representation with
the only difference being the omission of the sgn(σ ) terms.

The above formula expresses the determinant state as a
sum of m! product states. It is also a minimal product-state
expansion [32]. The reason is that any two terms in this
expansion have at least a pair of qubits that is in the state |1〉 |+〉
in one term and |+〉 |1〉 in the other; and any combination of
|1〉 |+〉 and |+〉 |1〉 is a mixed state with respect to either qubit
in the pair. Thus, it is not possible to have a product-state
expansion that has less than m! terms [33]. Thence, the Schmidt
measure of the determinant state is log2(m!). This measure is
a useful tool for quantifying multiparty entanglement [34].
We see that if the Schmidt measure of an n-qubit quantum
state is ES , then the minimal product-state expansion has
2ES terms and hence the tree size of this state is bounded
above by n2ES . As a consequence, a very complex quantum
state (with large tree size) must also be highly entangled. The
Schmidt measure is also a lower bound of the entanglement
persistency which is defined as the smallest number of local
measurements needed to disentangle a quantum state with
certainty [32,33]. An examination of local measurements with
the help of the recursive formula in Eq. (10) strongly suggests
that the entanglement persistency of the determinant state is
n − 1 which is the maximal value achievable for an n-qubit
quantum state.

D. Some symmetry properties

The determinant and permanent states are highly symmet-
ric. The determinant of a matrix changes only its sign under
the interchange of any two rows or any two columns while the
permanent remains unchanged. If one defines Rij (Cij ), i �= j ,
as the unitary operation that swaps the quantum state of the

m qubits in row (column) i with that of the m qubits in row
(column) j , it can be verified that

Rij |detm〉 = Cij |detm〉 = − |detm〉,
(16)

Rij |perm〉 = Cij |perm〉 = |perm〉,

so the determinant (permanent) state is the eigenvector with
eigenvalue −1 (1) of the operators Rij and Cij . One may
also check that both the determinant and permanent states are
invariant under the matrix transposition operation.

E. A quantum circuit generating complex states

Before considering a quantum circuit that generates states
with superpolynomial tree size, it is worth mentioning that the
subgroup states, which are proved to be superpolynomial in
tree size, can be generated by a polynomial time circuit [16].
Therefore, it is a possibility that a superpolynomial complex
state in the sense of tree size can be realized by a simple
quantum circuit.

Any state with a product-state expansion like that in Eq. (15)
can be realized with the help of ancilla qubits [17]. Let s be the
smallest integer such that 2s � m!. We first prepare s ancilla
qubits in the equal superposition |+〉⊗s

a and m2 main qubits
in the initial product state |�0〉 = |0〉⊗m2

. The total state is∑N
i=1 |i〉a |�0〉 where N = 2s . Multicontrolled Hadamard and

Pauli gates are then used to create the state

m!∑
i=1

|i〉a |�i〉 +
N∑

i=m!+1

|i〉a |�0〉, (17)

where |�i〉 is one of the product states in the expansion of
Eq. (15). Note that for the last N − m! states |i〉a of the ancilla
qubits, we do nothing to the main qubits. Next, the ancilla
qubits are measured in the {+,−} basis. For any outcome one
may verify that the resulting state is

|�m〉 =
m!∑
i=1

c(i) |�i〉 +
(

N∑
i=m!+1

c(i)

)
|�0〉 , (18)

where the c(i) coefficients are equal to either +1 or −1.
How these signs distribute among the terms depends on the
specific measurement outcome. The state described by the
first summation in the above equation can be rewritten after
the change of index i → σ as

|�1〉 =
∑

σ

c(σ )

(
m⊗

i=1

|1〉iσi

)
|+〉

⊗
(m2−m) , (19)

whose associated multilinear formula is the matrix immanant
with nonzero coefficients

Imm{x} =
∑

σ

c(σ )
m∏

i=1

xiσi
. (20)

Since the quantum state |�m〉 is the sum of |�1〉 with tree size
m�(log m) and a product state with tree size m2, it follows that
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FIG. 2. A circuit with controlled operations and ancilla qubits
for creating thefour-qubit determinant state, or a state which is
equivalently complex.

the tree size of this state must also be m�(log m).4 In short, we
obtain a superpolynomial complex quantum state regardless of
the measurement outcomes. It is obvious that the determinant
and permanent states are two special examples of the immanant
states given in Eq. (19). The quantum circuit for the m = 2 case
is shown in Fig. 2.

F. A frequent misunderstanding

We finish this section by addressing explicitly a misunder-
standing that we have frequently encountered when presenting
this work. It is a well-known fact that optimal algorithms make
the determinant much easier to compute than the permanent.
Based on this observation, our study, in which the determinant
and the permanent states are treated on equal footing, may
look suspicious. In reality, a comparison cannot be drawn.
Concretely:

(1) The difference in computability does not cast any
shadow on Raz’s proof that both the determinant and the
permanent require a multilinear formula of similar, superpoly-
nomial complexity: It just means that the optimal algorithms do
not use multilinear formulas. Given Raz’s bounds, the bound
on the complexity of the states follows rather immediately, as
explained above.

(2) In order to prepare (say) the permanent state, one
does not need to be able to compute permanents. Also,
the permanent state is not a resource that would allow
a simple computation of the permanent: Indeed, in order to
read the value of the permanent from the corresponding state,
one needs to estimate a probability that is exponentially small
in the size of the matrix. In other words, it may be possible
to find a simple circuit that produces those states, without any
relation with the complexity of computing the formula, and
without trivializing computationally complex problems. This
is the same situation as in “boson sampling” [35]. There, the
output states have coefficients which are proportional to the
permanent of matrices; nevertheless, the circuit that prepares
those states can be designed without any knowledge of the
value of the permanents, and the sampling does not lead to an
efficient computation of the permanent.

4If TS(�m) � mε log m for some positive constant ε, then TS(�1) �
mε log m + m2. Thus, for any constant μ > ε we have TS(�1) <

mμ log m for sufficiently large m, which is a contradiction.

IV. TREE SIZE OF MATRIX PRODUCT STATES

Matrix product states have attracted a lot of interest due to
their applications in quantum information theory and ground-
state computation in one-dimensional systems [36]. In this
section we discuss a relation between the bond dimension of
a matrix product state and its tree size. It turns out that matrix
product states with bounded bond dimension are “simple” as
their tree size is polynomial in the number of qubits. In other
words, when it comes to storing quantum states, matrix product
representation with bounded bond dimension does not offer a
superpolynomial advantage over the usual bracket notation.

Proposition 2. For a quantum state |ψn〉 written in matrix
product representation (MPS) with open boundary condition
(OBC) [36] as

|ψn〉 =
n⊗

i=1

(
A

(i)
0 |0〉 + A

(i)
1 |1〉 )

, (21)

where A
(1)
i are 1 × D matrices (row vectors), A

(n)
i are D × 1

matrices (column vectors), and the rest are D × D matrices;
the tree size is O[nlog2(2D)].

The tensor product in Eq. (21) must be written in the correct
order from 1 to n due to noncommutativity. It is obvious from
this proposition that the tree size is polynomial when the bond
dimension D is bounded.

Proof. By writing the D × D identity matrix as

I =
D∑

s=1

ese
T
s , (22)

where es is the sth unit column vector, and inserting it between
the n/2 and n/2 + 1 terms in the product of Eq. (21) we arrive
at

|ψn〉 =
D∑

s=1

∣∣φs,1
n/2

〉 ∣∣φs,2
n/2

〉
, (23)

where

∣∣φs,1
n/2

〉 =
n/2⊗
i=1

(
A

(i)
0 |0〉 + A

(i)
1 |1〉 )

es,

(24)∣∣φs,2
n/2

〉 = eT
s

n⊗
i= n

2 +1

(
A

(i)
0 |0〉 + A

(i)
1 |1〉 )

are n/2 qubit quantum states. Therefore,

TS (|ψn〉) � 2D × TS
( |φs,k

n/2〉
)

(25)

and this recursive relation yields TS(|ψn〉) = O[nlog2(2D)]. �
A direct corollary of this is that the 1D cluster state, which

has an OBC-MPS representation with D = 2 [36], can be
described by a tree with O(n2) leaves. This is an improvement
over the existing upper bound O(n4) given in Ref. [16].

In the above we have assumed that the number of qubit is
a power of two. When this is not true, one simply inserts the
identity matrix between the first 2�log2(n)	 qubits and the rest.
Repeating the process yields

TS (|ψn〉) � (2D)�log2(n)	+1. (26)
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Therefore, the asymptotic upper bound O[nlog2(2D)] still holds.
Finally, in the more general case when the matrices A(i) have
dimension Di × Di+1 that may differ from qubit to qubit, the
same line of argument also results in TS(|ψn〉) = O[nlog2(2D)]
with D = max (Di).

V. CONCLUSION

To conclude, we were able to construct explicitly a class
of superpolynomial complex n-qubit quantum states when n

is a square number. The tree size of these states, which we
call the determinant and permanent states, has a lower bound
of n�(log n). The best upper bound we are able to find for the
tree size is O(

√
n!) as given in Eq. (13). These states are

special cases of a wider family of superpolynomial-tree-size
quantum states which are constructed based on the immanant

of a matrix. These states are highly symmetric due to the
invariance of the determinant and permanent with respect to the
interchange of any two rows or two columns. A quantum circuit
for realizing a quantum state with superpolynomial tree size is
proposed. We also prove that all states in a SLOCC-equivalent
class has the same tree size, and the tree size of matrix product
states with bounded bond dimension is polynomial.
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