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Efficient decomposition of single-qubit gates into V basis circuits
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We develop efficient algorithms for compiling single-qubit unitary gates into circuits over the universal V

basis. The V basis is an alternative universal basis to the more commonly studied basis consisting of Hadamard
and π/8 gates. We propose two classical algorithms for quantum circuit compilation: the first algorithm has
expected polynomial time [in precision log(1/ε)] and produces an ε approximation to a single-qubit unitary
with a circuit depth � 12 log5(2/ε). The second algorithm performs optimized direct search and yields circuits
a factor of 3 to 4 times shorter than our first algorithm, but requires time exponential in log(1/ε); however, we
show that in practice the runtime is reasonable for an important range of target precisions. Decomposing
into the V basis may offer advantages when considering the fault-tolerant implementation of quantum
circuits.
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I. INTRODUCTION

Determining the optimal fault-tolerant compilation, or
decomposition, of a quantum gate is critical for designing
a quantum computer. Decomposition of single-qubit unitary
gates into the {H,T } basis, where H is the Hadamard gate
and T is the rotation about the z axis by π/4, has been
well studied in recent years. However, there have been few
studies of decomposing into alternative bases, which may offer
significant improvements in circuit depth or resource cost. We
consider the task of decomposing a single-qubit unitary gate
into a sequence of gates drawn from the V basis, first introduced
in [1,2]. The V basis contains rotations by θ = cos−1(−3/5)
around the x, y, and z axis. For example, the matrix for the
z-axis rotation, denoted as V3, is given by

V3 = 1√
5

[
1 + 2i 0

0 1 − 2i

]
= 1 + 2i√

5

[
1 0

0 −(3+4i)
5

]
.

The x-axis rotation V1 = HV3H and the y-axis rotation
V2 = SV1S

† are both Clifford adjoints of V3, where S is the
rotation around the z axis by π . Historically, the V basis
was the first basis proven to be efficiently universal, meaning
that the decomposition sequence is guaranteed to be of depth
O( log(1/ε)) [3], however the proof did not offer a constructive
method for finding such sequences. In this work, we provide
two decomposition algorithms that yield short circuits for the
universal V basis.

Recently, it has been shown that {H,T } is also efficiently
universal [4,5], and the proofs are constructive. Notably, char-
acterization of {H,T } circuits [6,7] has led to a constructive
algorithm for an efficient ancilla-free compilation to precision
ε of a given single-qubit unitary into the {H,T } basis with
a maximum T -count guarantee of 4 log2(1/ε) + 11 for Z

rotations and 12 log2(1/ε) + K , where K ∼ 33 for general
unitaries [4]. Further improvements were given in Ref. [5]
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in the form of a decomposition algorithm that outputs shorter
ancilla-free approximation circuits (albeit with less efficient
runtime) with an expected T count of 9.63 log2(1/ε) − 20.79.
These results are plotted in Fig. 1(a), for T count versus
precision ε. The solid blue curve plots the theoretical bound
for the algorithm given in Ref. [4]. The dashed red curve is
based on interpolation of the experimental results given in
Ref. [5]. These algorithms seek to minimize the number of
T gates due to the high fault-tolerant implementation cost of
T , as compared to the relatively inexpensive cost of Clifford
gates.

Given that the V basis is efficiently universal [3], it is natural
to consider constructing an efficient decomposition algorithm
for it. We present two algorithms for compiling efficiently
into the V basis, where we seek to minimize the number of
non-Clifford V gates due to their high implementation costs.
The first algorithm approximates single-qubit unitaries over
the set consisting of the V basis and the Clifford group; the
second approximates over the set consisting of the V basis and
the Pauli gates. The first algorithm (Sec. III) is a randomized
algorithm that runs in expected polynomial time and delivers
ε approximations with V count � 12 log5(2/ε). The second
algorithm (Sec. IV) is based on direct search and produces ε

approximations with V count � 3 log5 (1/ε) for most single-
qubit unitaries, and approximations with V count 4 log5 (2/ε)
for edge cases. The compilation time is linear in 1/ε and
thus exponential in log(1/ε), however, in practice we find
extremely short circuits (of length L = 28) at precision level
ε = 3 × 10−7 with merely 1 min of classical CPU time and
modest space usage.

These results are plotted, for V count versus precision ε,
in Fig. 1(b), for our randomized algorithm (solid red line),
an empirical version of our randomized algorithm (dashed
green line), and our direct search algorithm (double blue
curve); the curves are averages over the decomposition of
1000 random unitaries. The results indicate that efficient
approximating circuits can be obtained when considering other
universal bases, and that there may be potential advantages
in decomposing into other such universal bases. Our work
gives an alternative to {H,T } decomposition and produces
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FIG. 1. (Color online) (a) T count versus precision ε for decomposing using the algorithm in Ref. [4] (solid upper curve) and the algorithm
in Ref. [5] (dashed lower curve). (b) V count versus precision ε for decomposition into the V basis using the randomized algorithm (Sec. III;
solid upper curve), an empirical tightening of that algorithm (dashed middle curve), and the direct search algorithm (Sec. IV; double lower
curve).

circuits with lengths matching the proven lower bound of
�( log(1/ε)) [3].

Our motivation for studying the V basis is twofold. First,
we have been motivated by the efficient universality proof
in [3] and by the challenge of finding an algorithmic version
of it. Second, there have been advances in fault-tolerant im-
plementations of the V gates. A recent protocol for distillation
of nonstabilizer states [8] allows a V gate to be implemented
by way of T gates. Another approach is to use the circuit
shown in Fig. 2 (slightly modified from Ex. 4.41 in [9]) in
conjunction with state-of-the-art protocols for distilling Toffoli
states [10–12]. These implementation methods are presented
in Appendix.

In the case of both the {H,T } basis and the V basis, the
non-Clifford gates cannot be implemented fault tolerantly
in a purely unitary fashion. State-of-the-art fault-tolerant
implementations of T are based on state distillation, which
requires significant use of measurement, classical feedback,
and ancillae qubits [13–15]. Similarly, existing fault-tolerant
implementations of the V gates (see Appendix) also require
measurement, classical feedback, and ancillae qubits. In
both cases, efficient fault-tolerant methods continue to be
developed and optimized. For this reason, we choose to cost
the decomposition algorithms in terms of the number of
non-Clifford gates. A fine-grained cost comparison can then be

|0〉 H • • H

|0〉 H • • H

|ψ〉 S Z V3 |ψ〉

FIG. 2. Circuit to perform V3|ψ〉 when both measurement out-
comes are 0, or |ψ〉 otherwise [9].

determined based on a chosen fault-tolerant implementation or
device architecture.

The paper is organized as follows. Section II outlines
preliminary definitions and theorems. Section III presents our
randomized algorithm and corresponding experimental results.
We also compare number theory techniques used at the core of
our algorithm with those found in [4,5]. Our direct search
algorithm is presented in Sec. IV. Conclusions and future
directions are discussed in Sec. V.

II. PRELIMINARIES

The efficiently universal single-qubit unitary basis intro-
duced in Refs. [1] and [2] and further developed in Ref. [3]
consists of the following six special unitaries:

V1 = (I + 2 i X)/
√

5, V −1
1 = (I − 2 i X)/

√
5,

V2 = (I + 2 i Y )/
√

5, V −1
2 = (I − 2 i Y )/

√
5,

V3 = (I + 2 i Z)/
√

5, V −1
3 = (I − 2 i Z)/

√
5.

We call this basis the V basis.
The subgroup 〈V 〉 ⊂ SU(2) generated by this basis is

everywhere dense in SU(2) and thus {Vi,V
−1
i ,i = 1,2,3} is

a universal basis. Let the set of W circuits be the set of
those circuits generated by this basis and the Pauli matrices
I,X,Y,Z.

It is important to note that the monoid 〈W 〉 = 〈X,Y,Z,

V1,V2,V3〉 ⊂ SU(2) contains all of the {V −1
i ,i = 1,2,3} and

thus is in fact a subgroup of SU(2) containing 〈V 〉.
W circuits constitute a slight liberalization of the approach

in Ref. [3], where only circuits in the V basis are considered.
Our justification for the liberalization is that the Pauli operators
are a staple of any quantum computing architecture and can
be implemented fault tolerantly at a very low resource cost in
comparison to a non-Clifford group gate. It is also noted that
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the single-qubit Clifford group C in combination with any of
the six V matrices generates a monoid 〈C + V 〉 ⊂ SU(2) that
is in fact a group, containing 〈W 〉.

We call the number of V gates the V count of a circuit and
denote it as Vc. It is easy to show that an irreducible W circuit
contains at most one nonidentity Pauli gate. Thus, if v is the
V count of such a circuit, then the overall depth of the circuit
is either v or v + 1.

Throughout, we use trace distance to measure the distance
between two unitaries U,V ∈ PSU(2):

dist(U,V ) =
√

1 − |tr(UV †|/2, (1)

and denote the distance between a target unitary and the
approximating unitary as precision ε.

According to [3], any single-qubit unitary can be approx-
imated to a given precision ε by a V circuit with V count
O( log( 1

ε
)), however the proof in Ref. [3] is nonconstructive,

and no algorithm for actual synthesis of the approximating
circuits has yet been shown. Here we develop effective
solutions for synthesizing W -circuit approximations of single-
qubit unitaries.

Our solutions are based on the following theorem:
Theorem 1. A single-qubit unitary gate U can be exactly

represented as a W circuit of V count Vc � L if and only if it
has the form

U = (a I + b i X + c i Y + d i Z) 5−L/2, (2)

where a,b,c,d are integers such that a2 + b2 + c2 + d2 = 5L.
Theorem 1 follows from Theorem 2 given below, which

also gives rise to a constructive procedure for synthesizing a
W circuit that represents such a U . We begin by sketching
a linear-time subalgorithm for exact W -circuit synthesis that
employs arithmetic of Lipschitz quaternions [16,17]. More
specifically, consider the group W of quaternions generated
by

±1,±i,±j,±k,1 ± 2i, 1 ± 2j,1 ± 2k. (3)

Then the following holds:
Theorem 2. (1) W is equal to the set of Lipschitz

quaternions with norms 5l ,(l ∈ Z, l � 0). (2) Consider the
group W1 = {w/

√
norm(w) | w ∈ W }. Then the subgroup

of gates in PSU(2) representable as exact W circuits
is isomorphic to the central quotient W1/Z(W1) where
Z(W1) = Z2 = {1,−1}.

Proof. (1) We recall that the quaternion norm is multiplica-
tive and that ±1,±i,±j,±k are the only Lipschitz quaternions
of norm 1. Thus statement (1) is true for l = 0.

We prove it for l = 1: More specifically, let q = a +
b i + c j + d k,a,b,c,d ∈ Z and norm(q) = a2 + b2 + c2 +
d2 = 5.

Decompositions of 5 into sums of squares of four integers
are easily enumerated and we conclude that exactly two of the
coefficients in the list {a,b,c,d} are zero, exactly one is ±1,
and exactly one is ±2.

If a = ±1 then we observe that q is equal to one of 1 ±
2i, 1 ± 2j,1 ± 2k, − (1 ± 2i), − (1 ± 2j),−(1 ± 2k) and thus
belongs to W .

If one of b,c,d is ±1 we reduce the proof to the previous
observation by multiplying q times one of i,j,k.

For example, if c = ±1, then the real part of −jq is equal
to c = ±1.

Consider now a quaternion q with norm(q) = 5l ,l � 1.
Let q = p1 . . . pm be a prime quaternion factorization of q.

Since 5l = norm(q) = norm(p1) . . . norm(pm), for each i =
1, . . . m, the norm(pi) is either 5 or 1. As we have shown above
(considering l = 0,1), in either case pi ∈ W .

(2) Effective homomorphism h of W1 onto the W

circuits is the multiplicative completion of the following
map:

i → i X,

j → i Y,

k → i Z,

(1 ± 2i)/
√

5 → (1 ± 2 i X)/
√

5,

(1 ± 2j)/
√

5 → (1 ± 2 i Y )/
√

5,

(1 ± 2k)/
√

5 → (1 ± 2 i Z)/
√

5.

The correctness of this definition of homomorphism h is
verified by direct comparison of multiplicative relations
between the generators of W1 and g(W ) = {i X,i Y,i Z,(1 ±
2 i X)/

√
5,(1 ± 2 i Y )/

√
5,(1 ± 2 i Z)/

√
5}. These relations

happen to be identical.
Effective homomorphism h is an epimorphism since all of

the generators g(W ) of the W -circuits group are by design in
its image.

The characterization of Ker(h) is derived from represen-
tation of quaternions as orthogonal rotations of the three-
dimensional Euclidean space.

Let us arbitrarily map the units i,j,k into vectors of an
orthonormal basis in the Euclidean space and let us label the
corresponding basis vectors e(i),e(j),e(k). For a quaternion
with zero real part p = b i + c j + d k we write e(p) = b ∗
e(i) + c ∗ e(j) + d ∗ e(k).

Let H1 be the group of quaternions of norm 1 and g :
H1 → SO(3) be the representation defined as g(q)[e(b)] =
e(q ∗ b ∗ q−1).

It is known [17] that g(q) is an orthogonal rotation; g is
a representation of the group of quaternions of norm 1 and
that the kernel of this representation is the cyclic group Z2 =
{1,−1}.

The group of quantum gates PSU(2) also has a standard
orthogonal representation stemming from its adjoint repre-
sentation on the Lie algebra. More specifically if psu(2) is
regarded as the algebra of zero-trace Hermitian matrices then
ad : PSU(2) → Aut(psu(2)), where Aut is the automorphism
group, is ad(u)[m] = umu−1.

The adjoint representation of PSU(2) is faithful.
If we regard the above homomorphism h as the homomor-

phism h : W1 → PSU(2) then it is immediate that ad h = g on
W1. Since ad is faithful, i.e., injective, the kernel of h coincides
with Ker(g) = Z(W1) = (Z)2 = {−1,1}. �

Lipschitz quaternions form a division ring, and in view
of Theorem 2, a quaternion with norm equal to 5l can be
decomposed into a product of generators in Eq. (3) in l trial
division steps. The decomposition subalgorithm (Algorithm 1)
is thus as follows, where the input is a Lipschitz quaternion q

of norm 5l :
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Algorithm 1 Decomposition subalgorithm

Require: A quaternion q with norm 5l

1: ret ← empty list
2: while norm(q) > 0 do
3: find d in {1 ± 2i,1 ± 2j,1 ± 2k} such that d divides q

4: ret ← {d} + ret

5: q ← q/d //divides norm(q) by 5
6: end while
7: if q �= 1 then
8: ret ← q + ret
9: end if

10: return ret

Now, given a unitary U as described in Theorem 1, we
associate with it the quaternion q = a + b i + c j + d k that
has norm 5L and thus belongs to the subgroup W . It is easy to
translate the factorization of q in the basis given in Eq. (3) into
a factorization of U in the W basis. Thus, the approximation
of a target unitary gate G by a W circuit is constructively
reduced to approximating G with a unitary U as described in
Theorem 1.

III. RANDOMIZED APPROXIMATION ALGORITHM

In this section, we present an algorithm for decomposing
single-qubit unitaries into a circuit in the set 〈C + V 〉, where
C is the set of single-qubit Clifford gates and V is one of
the V gates. The expected polynomial runtime is based on a
conjecture, for which we have developed empirical evidence
based on computer simulation. We first present the conjecture
and relevant number theory background, and then present the
compilation algorithm.

A. Number theory background

Let N be a large positive integer, and � be a relatively small
fixed offset value. Let x,y be standard coordinates on a two-
dimensional Euclidean plane. We introduce the circumference

C(N,�) = {(x,y) | x2 + y2 = (
√

N − �)2}.
Let R(N,�) be the circular ring of width � defined as

R(N,�) = {(x,y) | (
√

N − �)2 < x2 + y2 < N}.
Consider a tangent straight line at any point on the

circumference C(N,�). The line divides the plane into two
half planes; let P+ be the half plane that does not contain the
origin. Next, define the circular segment

A(N,�,P+) = R(N,�)
⋂

P+.

The ring R(N,�) and the circular segment A(N,�,P+) are
shown schematically in Fig. 3.

We focus on the segments of the standard integer grid that
are contained in R(N,�) and A(N,�,P+), and their asymp-
totic behavior when N → ∞. We note that the Euclidean area
A of R(N,�) is

A(R(N,�)) = 2π �
√

N + O(�2)

and the Euclidean area of A(N,�,P+) is

A(A(N,�,P+)) = 4/3 �
√

2�N1/4 + O(�5/2N−1/4).

/

A

R

FIG. 3. (Color online) The ring R(N,�) (yellow, middle) and the
segment A(N,�,P+) (upper, blue, meniscus shaped), illustrated for
values N = 625 and � = 4.

Estimation of the number of integer grid points inside a flat
contour is a known open problem with a rich history [18]. For
our purposes, it suffices to know that the number of integer
grid points

{x,y ∈ Z,(x,y) ∈ R(N,�)}
is asymptotically equal to �(�

√
N ) and that the number of

integer grid points

{x,y ∈ Z,(x,y) ∈ A(N,�,P+)}
is asymptotically equal to �(�3/2N1/4). These claims can be
proven by elementary geometric means.

Finally, we assume that N = pL, where p is a fixed integer
prime number with p = 1 mod 4 and L is a large integer.
Consider the set

s4(N ) = {(x,y,z,w) ∈ Z4 | x2 + y2 + z2 + w2 = N}
of all representations of N as a sum of squares of four integers.
For N = pL, the cardinality of the set is

card(s4(N )) = 8(pL+1 − 1)/(p − 1) = �(N ).

This is an immediate consequence of the formula expressing
|s4(N )| as eight times the sum of divisors of N (see [19]).

The projection Prx,y(s4(N )) of s4(N ) onto the first two
coordinates consists of integer grid points (x,y) in the
origin-centered circle of radius

√
N satisfying a constraint

x2 + y2 = N − a2 − b2 where (a,b) is some other grid point
(a,b) (a witness) in the same circle. All witnesses (a,b) for
(x,y) are on the same origin-centered circumference of radius√

N − x2 − y2; the number of such witnesses is the number
r(N − x2 − y2) of the decompositions of N − x2 − y2 into
sums of two squares. The average 1

n
[r(1) + r(2) + · · · + r(n)]

converges to π [19,20]. Taking into account that the number
of integers � n decomposable into a sum of two squares is
�(n/

√
log n) [21], we have that on average a point (x,y) has

O(
√

L) witnesses, and so the cardinality of the projection
is �(N/

√
L) and the density in the circle is �(1/

√
L). The

essence of Conjecture 1 is that the density of the projection
points in the ring and meniscus is no less than in the circle.
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The conjecture is motivated by Ref. [22], although we count
grid points (x,y) while Hooley counts corresponding integers
x2 + y2. The conjecture is presented for a general prime p = 1
mod 4, but our algorithms are developed for p = 5, thus we
need the conjecture to be true only for p = 5.

Conjecture 1. Consider N = pL, where p is a fixed integer
prime number with p = 1 mod 4 and L is a large even integer.
For a constant � > 1, let the four-square decomposition set
s4(N ), the geometric ring R(N,�), and the circular segment
A(N,�,P+) be defined as above. Let Prx,y(s4(N )) be the
projection of the s4(N ) onto its first two coordinates. Then

(1) card(Prx,y(s4(N ))
⋂

R(N,�)) = �(pL/2/
√

L),

(2) card(Prx,y(s4(N ))
⋂

A(N,�,P+)) = �(pL/4/
√

L).

To empirically support the conjecture, first define the set

sn(N,�) = {a2 + b2 | a,b ∈ Z,(a,b) ∈ R(N,�)}.
It is easy to see that

sn(N,�) ⊂ [pL − 2�pL/2,pL].

If 2�pL/2 < pL, then the conditions of Theorem 1 in Ref. [22]
are satisfied and the corollary implies that the cardinality of
the set is

card(sn(N,�)) = �

(
pL/2√
log(pL)

)
= �

(
pL/2

L1/2

)
.

Thus, there are as many distinct circumferences in R(N,�) that
contain integer grid points, implying that the number of integer
grid points on any one of these circumferences is �(L1/2) on
average.

We further note that the set

v(L) = {pL − a2 − b2 | a,b ∈ Z,(a,b) ∈ R(N,�)}
has cardinality

m = card(v(L)) = �

(
pL/2

L1/2

)
.

Values from v(L) are contained in the interval [0,2 �pL/2].
The average density of integers in that segment that are
representable as a sum of two squares of integers is
�[

√
log(N )] = �(

√
L) [21]. Assuming that the density of

such integers across the set v(L) is the same, we infer from
the assumption that there are at least �(pL/4/

√
L) integer grid

points (a,b) ∈ A(N,�,P+) that are projections of some four
square decomposition of pL(i.e., such that there exist c,d ∈ Z
with pL = a2 + b2 + c2 + d2).

To verify statement (1) of Conjecture 1, we ran extensive
computer simulations for p = 5 and L = {16, . . . ,28}, and
for p = 13 and L = {12, . . . ,18}, using MATHEMATICA infinite
precision integer arithmetic and observed behavior consistent
with the conjecture. To motivate statement (2) of Conjecture 1,
we tested the polar angles of points in Prx,y(s4(N )) for unifor-
mity. The simulation covered N = 516, . . . ,528,1312, . . . ,1318

and tested the null hypothesis that the distribution of the polar
angles is uniform. Based on Kolmogorov-Smirnov statistics,
the null hypothesis could not be rejected at any meaningful
level of significance.

B. Algorithm

We now present the expected-polynomial time algorithm.
We begin by approximating an arbitrary Z rotation with a
〈C + V 〉 circuit.

Problem 1. Given a Z-rotation G = RZ(θ ) and a small
enough1 target precision ε, synthesize a 〈C + V 〉 circuit c(G,ε)
such that

dist(c(G,ε),G) < ε (4)

and

Vc(c(G,ε)) � 4 log5(2/ε). (5)

Theorem 3. There exists a randomized algorithm that solves
Problem 1 in expected time polynomial in log(1/ε).

We first present geometry that relates Theorem 3 to
Conjecture 1 for p = 5. Our goal is to select the target circuit
depth value L such that

ε < 2 × 5−L/4. (6)

Having found the smallest integer L satisfying Eq. (6), we
then represent G as G = cos( θ

2 ) I + i sin( θ
2 )Z and consider

approximating it with

U = (a I + b i X + c i Y + d i Z) 5−L/2,

as suggested by Theorem 1.
Approximating G to precision ε in the trace distance metric

is equivalent to finding U such that[
a cos

(
θ

2

)
+ d sin

(
θ

2

)]
5−L/2 > 1 − ε2.

For convenience we note that, without loss of generality, it
suffices to prove the theorem for −π/2 < θ < π/2 since we
can always rotate the target gate to a position within this
interval using RZ(±π/2) rotations from the Clifford group.
We also note that our selection of L ensures that 5L/4 ε ∼ 2.

Denote by Aε(θ ) the segment of the unit disk where
[x cos( θ

2 ) + y sin( θ
2 )] > 1 − ε2. Let D(L) be an isotropic

dilation of the plane with coefficient 5L/2. Then the area of
D(L)[Aε(θ )] is

A(D(L)[Aε(θ )]) = 5L 4
√

2

3
ε3 ∼ 8

4
√

2

3
5L/4.

Define the angle φ = √
2ε(1 − ε2/4) and the interval

Iw(ε,θ ) =
(

5L/2 sin

(
θ

2
− φ

)
,5L/2 sin

(
θ

2
+ φ

) )

with subinterval (5L/2 sin( θ
2 − ε),5L/2 sin( θ

2 + ε)). The length
of the latter is approximately 2 × 5L/2 cos( θ

2 )ε � 2
√

2 × 5L/4

and it contains approximately at least as many integer values.
Given any integer a such that

5L/2 sin

(
θ

2
− ε

)
< a < 5L/2 sin

(
θ

2
+ ε

)
,

1Although we do not have a closed-form bound on how small ε

should be, our algorithm works well in practice for ε < 2 × 5−4 =
0.0032.
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we derive geometrically that the intersection of the horizontal
line w = a with D(L)[Aε(θ )] is a straight line segment that is
longer than 5L/2 ε2

2 � 2 and that it contains at least two integer
grid points. We are now ready to prove the theorem.

Proof. Revisiting the notations of the previous subsection,
we introduce the set of all representations of 5L as a sum of
squares of four integers,

s4(5L) = {(x,y,z,w) ∈ Z4 | x2 + y2 + z2 + w2 = 5L}.
The key step in the algorithmic proof is finding a point
(a,d) in the intersection of Prx,y(s4(5L)) and D(L)[Aε(θ )].
Once such a point is found we can use a Rabin-Shallit
algorithm [23] to express 5L − a2 − d2 as b2 + c2,b,c ∈ Z.
Then U = (a I + b i X + c i Y + d i Z) 5−L/2 would be the
desired approximation of G, and can be represented precisely
as a W circuit in at most L quaternion division steps.

Consider a horizontal line w = a, where a ∈ Iw(ε,θ ). By
simple geometric calculation we find that the intersection of
this line with the D(L)[Aε(θ )] segment is a line segment that
is at most 5L/2ε2/ cos( θ

2 ) � 5L/2
√

2 ε2 long.
For our choice of L this maximum length is approximately

4
√

2 and thus the line segment contains at most five points
with an integer first coordinate. On the other hand, we have
shown earlier that for

5L/2 sin

(
θ

2
− ε

)
< a < 5L/2 sin

(
θ

2
+ ε

)

the intersection of the w = a line with D(L)[Aε(θ )] is a line
segment that is longer than 2 and must contain at least two
points with integer z coordinate. In other words, if a ∈ Iw(ε,θ )
is a randomly selected integer, then with probability at least
1/

√
2 the intersection segment contains at least two integer

grid points.
Algorithm 2 gives the randomized approximation

algorithm.

Algorithm 2 Randomized approximation
Require: Accuracy ε, angle θ

1: completion ← null
2: Sw ← set of all integers in Iw(ε,θ )
3: while completion == null and Sw �= ∅ do
4: Randomly, pick an integer a from Sw

5: Sw ← Sw − {a}
6: for all integer d such that (d,a) ∈ D(L)[Aε(θ )] do
7: if exist b,c ∈ Z

such that 5L − a2 − d2 = b2 + c2 then
8: completion ← (b,c)
9: Break;

10: end if
11: end for
12: end while
13: if completion==null then
14: return null;
15: end if
16: b ← first(completion)
17: c ← last(completion)
18: return U = (a I + b i X + c i Y + d i Z) 5−L/2

In the worst case the algorithm terminates by exhausting
the �(5L/4) candidate points in the D(L)[Aε(θ )] segment.
However, we note that this segment is that of Conjecture 1
when p = 5. Therefore the share of satisfactory candidates
among all of the integer grid points D(L)[Aε(θ )] is �(1/

√
L).

Thus the algorithm will terminate in O(
√

L) iterations on
average.

Since the average overall number of iterations is moderate,
the largest cost in the algorithm is line 7. It has been
shown by Rabin and Shallit [23] that the effective test
for an integer v to be a sum of squares of two integers
has expected running cost of O[log2(v) log ( log(v))]. In our
case v � 8 × 5L/2 and we estimate the expected cost of the
step as O(L2 log(L)). Therefore the overall expected cost
of the algorithm is O(L5/2 log(L)) which translates into
O[log(1/ε)5/2 log ( log(1/ε))]. �

Remarkably, the above solution requires simpler number
theory techniques than those developed for the {H,T } basis
in [4,5]. Conceptually, the simplification emerges for the same
reasons that working with a transcendental extension of a
numeric domain is typically easier than working with an
algebraic extension. At their core, the methods in both [4]
and [5] have algorithms for solving a norm equation in certain
rings of algebraic numbers. While Selinger [4] constructs his
own algorithm for cyclotomic numbers, Kliuchnikov et al. [5]
use a method based on S units [24] as implemented in the
PARI/GP software package. One can say that we also are solving
a norm equation in line 7 of the above algorithm, however
this is a norm equation over the simple domain of Gaussian
integers and happens to nicely coincide with the well-studied
classical problem of decomposing an integer into a sum of two
squares [23].

C. Empirical tightening of the algorithm

As will be discovered in Sec. IV, most, although not all,
single-qubit target gates allow approximating circuits with
V count Vc � 3 log5(1/ε) for small enough target precision
ε. Thus the resource count Vc = 4 log5(1/ε) guaranteed by
Algorithm 2 is too loose in most cases, including in the
case of most axial rotations. We thus consider tightening
the algorithm by setting L = �c log5(1/ε)�, c < 4 in an
attempt to find a suitable completion candidate following the
same randomized search loop as described in the previous
subsection.

We iterate over c from 3 to 3.9 with a suitable step size δc.
Since polynomial-time termination of the randomized search
loop is no longer supported by Conjecture 1, we set an arbitrary
time limit on the search loop for each iteration. The results of
this algorithm on a test set of 1000 random rotations at six
values of ε indicate that the minimal successful coefficient c

satisfies 3.5 < c < 4, with the average successful c estimated
at 3.7. Figure 4 shows results for V count versus precision ε

using the empirical tightening.
Example. The following decomposition approximates a

rotation around the z axis by 0.1 radians, RZ(0.1), and has
a V count of 76 at precision 4.3 × 10−15: V −1

1 V2 V1 V2 V −1
1

V3 V2 V3 V1 V2 V3 V −1
2 V −1

3 V1V
−1

2 V3 V2 V −1
3 V1 V −1

2 V −1
1

V3 V −1
1 V −1

3 V2 V2 V2 V −1
3 V −1

1 V2 V −1
1 V2 V −1

1 V −1
3 V1 V2 V2

V −1
3 V −1

2 V −1
2 V −1

1 V2 V −1
3 V −1

1 V2 V2V3 V1 V3 V −1
1 V −1

3 V1 V1
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FIG. 4. (Color online) V count versus mean precision ε (mea-
sured in trace distance). Results are presented for 1000 random axial
rotations for 17 values of the V count Vc. Dashed upper (red) line:
theoretical bound on precision, 2 × 5−Vc/4. Solid middle (blue) line:
interpolated average precision. Dotted lower (green) line: average
precision for an empirical version of the algorithm. Marker sizes are
proportional to the standard deviations of the precision at each V

count.

V3 V −1
2 V −1

2 V −1
2 V −1

2 V −1
1 V −1

1 V2 V −1
3 V1 V −1

3 V −1
2 V3 V −1

1

V2 V1 V −1
3 V2 V2 V −1

1 V2 V2 V1. This solution corresponds to
c = 3.7.

D. Experimental results

We implemented Algorithm 2 from Theorem 3 in MATH-
EMATICA. Our implementation has the following simplifica-
tions:

(i) Line 7 has been redefined to return PrimeQ[5L − a2 −
d2] for even a and d and to return false otherwise.2

(ii) Given a desired V count Vc, the algorithm terminates
whenever a random candidate at distance less than 2 × 5−Vc/4

from the target is picked.
We implicitly used the Rabin primality test since it is in

general faster than complete integer factorization. We ran
our MATHEMATICA solution over a set of 1000 random axial
unitary rotations at 17 different Vc values. The test statistics
are presented in Fig. 4. The solid blue line represents the
interpolated average precision achieved over the test set. The
sizes of the markers are proportional to the standard deviations
of the precision at each level. The dashed red line shows the
theoretical precision bound of 2 × 5−Vc/4. The dotted green
line charts the performance of the empirical version of the
algorithm described in the previous subsection. Note that the
tight match between the theoretical estimate and experimental
results is not very insightful since the algorithm has been
designed to terminate as soon as the theoretical precision has
been achieved.

2PrimeQ is MATHEMATICA primality test that does not require
complete factorization of the integer being tested. MATHEMATICA is a
registered trademark of Wolfram Research, Inc.

The randomized algorithm can be used for approximate
decomposition of any single-qubit unitary into a 〈C + V 〉
circuit since any G ∈ SU(2) can be decomposed exactly into
three axial rotations, and the algorithm can be applied to each
axial component. The V count in this case will scale as

Vc � 12 log5(6/ε) = 12 log5(1/ε) + 12 log5(6). (7)

However, for the majority of unitary gates, we can
significantly reduce the depth of the output circuit with a
corresponding increase in compilation time. The V count
estimate given in Eq. (7) reflects the tripling of the circuit
depth due to decomposition of the target unitary into three
axial rotations. An alternative approach would be to perform
a direct search in the four-dimensional integer grid; this
will be the basis for our second algorithm described in
Sec. IV.

E. Possible generalization

A foundation for efficient circuit synthesis over the V basis
is the set of quaternions of norm 5L and a body of number
theory facts and conjectures related to that set. Given an
integer prime p such that p = 1 mod 4, it is apparent that
most of these facts and observations generalize to quaternions
of norm pL, which are generated by the primitive ones of norm
p. Modulo Lipschitz units there are p + 1 such quaternions
in the generator set. These correspond to a basis of p + 1
unitary operators that we denote V (p). Together with the Pauli
gates a subset of (p + 1)/2 of the V (p) operators generate the
generalization of the W circuits.

However, in the case of p = 5, it was sufficient to add only
one V operator in order to ensure the asymptotic uniformity
of the grid of 〈C + {V }〉 circuits. For p > 5, additional
independent V (p) operators are required.

For example, when p = 13 the following gates are required,
in addition to the Clifford gates:

V1(13) = (2 I + 3 i Z)/
√

13,

V2(13) = (I + 2 i(X + Y + Z))/
√

13,

V3(13) = (2 I + i X + 2 i(Y + Z))/
√

13,

V4(13) = (2 I + i Y + 2 i(X + Z))/
√

13,

V5(13) = (2 I + i Z + 2 i(X + Y ))/
√

13.

A generalization of Theorem 2 characterizes the gates
representable exactly in the 〈C + {V (p)}〉 basis as normaliza-
tions of Lipschitz quaternions of norm pL,L ∈ Z. The exact
synthesis of the corresponding circuit for a unitary of the
form

U = (a I + b i X + c i Y + d i Z)/pL/2

amounts to a generalization of Algorithm 1 and requires at
most (p + 1) ∗ L quaternion divisions. Theorem 3 also gener-
alizes to 〈C + {V (p)}〉 circuits, to the extent that Conjecture
1 holds for the prime parameter p, and the circuit depth
estimate from the theorem generalizes to an estimate of the
form L � 4 logp(2/ε).

We have chosen to focus on the V (5) case for two reasons.
First, the basis requires only one non-Clifford gate for which
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we have a fault-tolerant implementation protocol. Second, we
have so far only collected empirical data for p = 5.

IV. DIRECT SEARCH APPROXIMATION ALGORITHM

In this section, we present an algorithm based on optimized
brute-force search for decomposing single-qubit unitaries into
a circuit in the set 〈P + V 〉, where P is the set of single-qubit
Pauli gates and V is one of the V gates. We first present relevant
background.

A. Vicinity of a unitary in PSU(2) as a spherical cap

We begin by characterizing an ε neighborhood of a single
qubit unitary as a “spherical cap” in a three-dimensional
sphere S3, i.e., as a portion of the sphere to one side of a
certain three-dimensional hyperplane in the four-dimensional
Euclidean space. Consider the four-dimensional Euclidean
space with standard coordinates α,β,γ,δ. Let

S3(R) = {(α,β,γ,δ) | α2 + β2 + γ 2 + δ2 = R2}
be the three-dimensional sphere of radius R centered at the
origin. For any point on S3(R) we generate the unitary

ν(α,β,γ,δ) = (α I + i β X + i γ Y + i δ Z)/R ∈ SU(2).

The quantum gate group PSU(2) is the central quotient
of SU(2) with the exact sequence 1 → Z2 → SU(2) →
PSU(2) → 1, therefore ν defines a Z2 covering of PSU(2)
(which is the same factorization that is commonly used to glue
an S3 into three-dimensional projective space).

Under this covering the PSU(2) unitaries with nonzero
trace are in one to one correspondence with the “northern”
hemisphere,

S3
+(R) = {(α,β,γ,δ) ∈ S3(R)|α > 0}.

Thus given a gate G, |tr(G)| > 0, then a small enough ε

vicinity of that gate,

cε(G) = {U ∈ PSU(2)| dist(U,G) < ε},
is unambiguously identified with a spherical cap in S3

+(R).
To clarify, consider G = ν(α,β,γ,δ) and define

Cε(G) = {(α′,β ′,γ ′,δ′) ∈ S3
+(R)|α α′

+β β ′ + γ γ ′ + δ δ′ > R(1 − ε2)}.
Then Cε(G) is a portion of S3(R) bounded by the hyperplane

α α′ + β β ′ + γ γ ′ + δ δ′ = R(1 − ε2)

and ν(Cε(G)) = cε(G).
We will focus further calculations on the ε neighborhoods

that do not contain zero-trace gates and thus correspond to
spherical caps completely contained in S3

+(R). It is trivial to
modify all of the equations to cases where an ε neighborhood
intersects the zero-trace “equator.”

Given a Cε(G) that is completely contained in S3
+(R), it

is easy to derive, geometrically, that the metric volume V of

Cε(G) is

V(Cε(G)) = 4πR3
∫ cos−1(ε′)

0
sin2(η)dη

= 2πR3

(
cos−1(ε′) − 1

2
sin[2 cos−1(ε′)]

)
,

where ε′ = 1 − ε2. Taking the Taylor series expansion of the
latter at ε = 0, we find that

V(Cε(G)) = 8π
√

2ε3R3

3
+ O(ε5).

In the next sections we focus on precision targets ε for which
the Cε(G) neighborhoods have sufficient metric volume.

B. Bound for uniform precision

We start by establishing that there exist unitary gates in
PSU(2) that cannot be approximated by W circuits of Vc � L

to a precision better than εL = 5−L/4/2. This is based on the
following observation:

Observation 1. Let w be a W circuit different from the
identity with Vc(w) � L, then it evaluates to U (w) with
|tr(U (w))| � 2(1 − 5−L/2) and U (w) is at least 5−L/4 away
from the identity.

Indeed

U (w) = a

5L/2
I + i (b X + c Y + d Z)

5L/2
, a,b,c,d ∈ Z.

Since U (w) is not the identity, |a| cannot be greater than
5L/2 − 1.

Now, let P ∈ {I,X,Y,Z} be a Pauli gate.
Observation 2. A circuit w with Vc(w) � L and distinct

from P evaluates to U (w) with a distance at least 5−L/4 from P .
Indeed, if w is a W circuit at a certain distance from P then

wP is a circuit with the same V count at the same distance
from the identity. Thus, if ε < εL = 5−L/4/2 and G ∈ PSU(2)
is any unitary such that

ε < dist(G,P ) < 2 εL − ε,

then there are no W circuits of Vc � L within distance ε from
G by the triangle inequality for dist:

∀w, dist(w,G) � dist(w,P ) − dist(G,P ) > ε.

On the other hand, dist(G,P ) is also greater than ε.
Therefore, the uniform precision guarantee cannot be better
than 5−L/4/2 for W circuits of Vc � L. In other words, the
uniform guarantee of optimal circuit depth cannot be better
than 4 log5(1/ε) − 4 log5(2).

Revisiting the above discussions, we note that for ε <

εL = 5−L/4/2 there exist “exclusion zones” of width 2(εL − ε)
around each of the Pauli gates consisting of unitaries that
cannot be approximated to precision ε by W circuits with
Vc � L. Using the spherical cap volume formulas from the
previous subsection, for ε significantly smaller than εL, we
estimate the combined volume of these exclusion zones,
relative to the volume of the S3

+ as O[5−L/2(5−L/4 − 3 ε)].
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C. A working conjecture

Given the set of W circuits with Vc � L, we will consider
two key precision targets: ε4(L) = 2 × 5−L/4 and ε3(L) =
5−L/3. Consider the three-dimensional hemisphere S3

+(5L/2).
As per the results from the previous subsection, the metric
volumes of the ε4 and ε3 neighborhoods are

V(Cε4(L)(G)) ∼ 64π
√

2 53L/4

3

and

V(Cε3(L)(G)) ∼ 8π
√

2 5L/2

3
.

Since the volume of S3
+(5L/2) is equal to π253L/2, the

relative metric share that these neighborhoods occupy on the
hemisphere are

V(Cε4(L)(G))

V(S3+(5L/2))
∼ 64

√
2 5−3L/4

3π

and

V(Cε3(L)(G))

V(S3+(5L/2))
∼ 8

√
2 5−L

3π
,

respectively.
Conjecture 2. (1) There exists a positive integer L4 such

that for any integer L > L4 and any single-qubit gate G there
exists a Wcircuit w such that

dist(G,w) � ε4(L).

(2) For large enough integer L (L > L3) there exists an open
subset G3 ⊂ PSU(2) with metric volume [1 − o(1)]V(S3

+)
(when L → ∞) such that for each G ∈ G3 there exists a W

circuit w with

dist(G,w) � ε3(L).

The common motivation for both clauses of this conjecture
is that the number of distinct W circuits scales as 5Vc . More
specifically, there are approximately 5 × 5L distinct unitaries
in PSU(2) that are represented exactly by W circuits with
Vc � L.

This stems from the fact that 5L has exactly 10(5L − 2)
distinct decompositions into a sum of four squares of integers,
which can be easily derived from the Jacobi formula for the r4

function:

r4(n) = 8
∑
SC(d)

d,SC(d) = (d | n) & (d mod 4 �= 0)

[see chapters on the r(n) function in Ref. [19]]. Geometrically,
there are exactly 10(5L − 2) distinct integer grid points on
S3(5L/2) and the set of such grid points is central-symmetrical
with respect to the origin, so approximately half of these
integer grid points lie on the S3

+(5L/2) piece of the hemisphere.
Further intuition in support of the conjectures is drawn from
[1,2], which investigate the distribution density of the elements
of the free group generated by 〈V1,V2,V3,V

−1
1 ,V −1

2 ,V −1
3 〉.

A stronger special case of Conjecture 2 postulates that for
any

G = ν(α,β,γ,δ) = (α I + i β X + i γ Y + i δ Z),

where α2 + β2 + γ 2 + δ2 = 1, there is an integer grid point on
S3(5L/2) within distance � 2 of (α,β,γ,δ) × 5L/2. Although
we do not claim that this stronger statement is true for all
unitaries G, the perceived near-uniformness of the distribution
of the integer lattice grid points over S3(5L/2) for large enough
L makes it plausible for most unitaries.

D. Algorithm outline

Our algorithm to address Problem 2 below employs
optimized direct search.

Problem 2. Given an arbitrary single-qubit unitary G ∈
PSU(2) and a small enough target precision ε, synthesize a W

circuit c(G,ε) such that

dist(c(G,ε),G) < ε (8)

and the V count of the resulting circuit is

Vc � 3 log5(1/ε) (9)

for the majority of target unitaries and

Vc � 4 log5(2/ε) (10)

in edge cases.
Let L be the intended V count of the desired approximation

circuit. Given a target single-qubit unitary gate represented
as G = αI + βiX + γ iY + δiZ, in order to find integers
(a,b,c,d) such that a2 + b2 + c2 + d2 = 5L and

dist(G,(aI + biX + ciY + diZ)5−L/2) < ε, (11)

we split the α,β,γ,δ coordinates into two-variable blocks.
Let us assume that the split is given by (α,δ),(β,γ ). For the
approximation inequality in Eq. (11) to hold it is sufficient that

(b 5−L/2 − β)
2 + (c 5−L/2 − γ )

2
< ε2 (12)

and

(a 5−L/2 − α)
2 + (d 5−L/2 − δ)

2
< ε2. (13)

Our goal is to achieve ε = 5−L/3. It is easy to see that there
are approximately π5L/3 integer pairs satisfying each of the
conditions in Eqs. (12) and (13) for that ε. We can now sweep
over all of the (b,c) integer pairs and build a hash table of
all of the 5L − b2 − c2 differences occurring in the first set.
Then we can sweep over all of the (a,d) integer pairs from the
second set, in search of one for which a2 + d2 occurs in the
hash table.

Using number-theoretical considerations (see, for example,
[23]), one can reduce the number of candidates considered in
this direct search by a factor of approximately LR

2
√

L ln(5)
(where

LR is the Landau-Ramanujan constant). Thus, for L = 34 the
reduction factor is approximately 0.05.

For target unitaries that cannot be approximated to precision
5−L/3, the algorithm iteratively triples the precision goal
(which has an effect of expanding the search space at each
iteration) until the satisfactory candidate is found. The outline
of the algorithm is given in Algorithm 3.
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Algorithm 3 Direct search approximation
Require: Accuracy ε, Target gate G = αI + βiX + γ iY +

δiZ

1: L ← �3 × log5(1/ε)�
2: hash ← Dictionary〈Integer,(Integer ∗ Integer)〉
3: bound± ← 5L (

√
α2 + δ2 ± ε)2

4: for all b,c ∈ Z satisfying Eq (12) do
5: if bound− � 5L − b2 − c2 �bound+ and 5L − b2 −

c2 is decomposable into two squares then
6: Add (5L − b2 − c2,(b,c)) →hash
7: end if
8: end for
9: completion ← fail

10: for all integer pairs (a,d) satisfying Eq (13) do
11: if hash contains key equal to a2 + d2 then
12: completion ← (a,b,c,d)
13: Break;
14: end if
15: end for
16: if completion �= fail then
17: completion ← completion.(I,i X,i Y,i Z)5−L/2

18: end if
return completion

E. Experimental results and comparison

The chart in Fig. 5 presents the results of evaluating our
direct search algorithm on a set of 1000 random unitaries.
The vertical axis plots precision ε on a logarithmic scale.
The horizontal axis plots the maximum V count allowed in
the approximating circuit. The dashed pink curve represents
the tight precision target of 5−Vc/3. The solid blue curve
represents the average approximation distance over the set
of test unitaries; the error bars measure the standard deviation
around the average. The green dotted curve plots the worst
cases. For a small number of test unitaries, the algorithm could

FIG. 5. (Color online) V count vs mean precision ε (measured
by trace distance) of the approximation of 1000 random unitaries.
The plot shows the 5−Vc/3 precision goal (dashed middle line, pink),
the experimental average (solid lower line, blue), and the worst cases
(dotted upper line, green).

TABLE I. V counts for precision ε for two V basis decomposition
algorithms: randomized approximation (RA) (Algorithm 2) and direct
search (DS) (Algorithm 3), for 1000 random nonaxial rotations.
Columns 2 and 3 list the median V count; column 4 lists the V

count for the worst case; column 5 gives the factor of improvement
between RA median and DA median.

ε RA, median DS, median DS, worst Imp. factor

10−3 56.5 13 15 4.35
10−4 73.5 15.9 18 4.62
10−5 91 20.5 22 4.44
10−6 108 24.6 26 4.39
10−7 125 28.95 31 4.32
10−8 142.5 33.2 35 4.29
10−9 159.5 37.3 39 4.28

not find an approximating sequence with precision 5−Vc/3 or
better for V count Vc.

In practice, experimental evidence suggests that this al-
gorithm works well for the majority of nonaxial unitary
rotations. We have found that approximation circuits obtained
by Algorithm 2 are about four times deeper than the circuits
produced by direct search using Algorithm 3. This factor
primarily arises because the nonaxial rotation is first broken
into three axial components and then a more liberal precision
of ε4(L) is pursued for each component.

Table I compares the V count and precision values for
Algorithms 2 and 3, for precisions between 10−3 and 10−9.
Results indicate approximately a factor of 4 improvement in
V count when using Algorithm 3. The improvement is also
apparent from the plot shown in Fig. 1 (green versus black
curves).

On a single desktop computer, a precision of 10−9 is
approximately the limit for the direct search algorithm. At
this precision, our implementation using .NET dictionaries
requires up to 100 GB of memory and up to 1 h CPU time for
each approximation target. Due to the exponential nature of
the direct search algorithm, the same compilation requires only
3 sec and very small memory for a precision around 10−6. In
practice, for many algorithms, a precision of 10−6 is sufficient
for approximating single-qubit unitaries [25]. It should also be
noted that the search space of the algorithm can easily be tiled
and distributed, which would allow precisions of 10−12 to be
achieved when using a high performance cluster or cloud.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, we have proposed two algorithms for
decomposing a single-qubit unitary into the V basis, an
efficiently universal basis that may have advantages over
decomposing into the {H,T } basis. Our algorithms produce
efficient circuits that approximate a single-qubit unitary with
high precision, and are computationally efficient in practice.
Another application of our algorithm is to Toffoli-based
circuits. To the best of our knowledge, an efficient constructive
algorithm for decomposing into the basis containing Clifford
gates plus the Toffoli gate has not been previously proposed.
Our methods provide an algorithmic solution: first compile into
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the V basis and subsequently replace each V by a Toffoli-based
circuit (Fig. 2).

A key direction for future research is to determine a
low-cost, exact implementation of a V gate, which could
include a native implementation on a given quantum computer
architecture. In Appendix, we present two possible exact
constructions, however the cost of these constructions does
not immediately merit decomposing into the V basis instead
of the {H,T } basis. Discovery of improved implementations
could make decomposing into the V basis advantageous over
decomposing into the {H,T } basis. In order for decomposition
into the V basis to be cost competitive with state-of-the-art
{H,T } decomposition, it is necessary to determine an exact,
fault-tolerant V gate implementation that costs less than the
cost of 6 T gates (where the complete cost of a T gate could
be determined, for example, based on a given state distillation
protocol [13–15]).
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APPENDIX: V GATE IMPLEMENTATION

A V gate can be approximated using, for example, a {H,T }
decomposition algorithm, but results in a circuit of length
70 or more, depending on the desired precision. Here, we
describe two possible exact implementations of the V gate, in
that they achieve perfect precision. We outline techniques for
implementing the V3 gate exactly:

V3 = (I + 2 i Z)/
√

5.

In matrix form, this gate can be represented as

V3 = 1√
5

[
1 + 2i 0

0 1 − 2i

]
= 1 + 2i√

5

[
1 0
0 −(3+4i)

5

]
.

The other V gates can then be implemented using V3 and
Clifford gates.

1. Implementing V3 with Toffolis

The first method uses the circuit given in Fig. 2, and is a
slight modification of Fig. 4.17 in Ref. [9]. It requires two
Toffoli gates and two ancillae qubits. With probability 5/8, V3

is applied to the target qubit, otherwise the identity is applied.
The expected number of times this circuit must be repeated in
order to result in the application of V3 is 8/5, with an expected
cost of 3.2 Toffolis. With advances in fault-tolerant Toffoli gate
implementations [10–12], this implementation of V3 becomes
appealing.

In addition, a generalization to V3(pi) gates, where p0 =
5,p1 = 17,p2 = 101,p3 = 257,p4 = 4097, . . . , can be im-
plemented using a nested circuit based on Fig. 2, where the S

gate is replaced with V (pi−1) for i > 0. When i = 0, the circuit
is the same as in Fig. 2. The expected number of applications
of the outermost circuit rapidly approaches 1 as pi grows.
Table II gives the expectations for p0, . . . ,p4.

TABLE II. The expected number of ap-
plications of the outermost circuit for select
values of pi .

Gate Expectation

V3(5) 8/5
V3(17) 20/17
V3(101) 104/101
V3(257) 260/257
V3(4097) 4100/4097

2. Implementing V3 with state distillation

The second method uses the protocol given in Ref. [8].
For additional details on the protocol, we refer the reader to
Ref. [8].

Ignoring global phase, we first solve for the angle of rotation
θ about the z axis invoked by V3 using the following identity:

eiθ = cos θ + i sin θ = −(3 + 4i)

5

⇒ θ = cos−1

(
−3

5

)
≈ 4.068 89.

Consider the angle θ ′ = cos−1( 3
5 ) ≈ 0.927 295. This angle is

π away from θ : θ = θ ′ + π . Thus, if we want to implement
rotation RZ(θ ), we can implement the gate sequence RZ(θ ) =
RZ(θ ′)RZ(π ), where RZ(π ) is the Pauli Z gate and

θ ′ = 2θ2 + π

4
,

where 2θ2 is the angle resulting from using the resource state
e−iπ/8HS†|H2〉. The π

4 part of the angle is a T = RZ(π/4)
gate, thus RZ(θ ′) = RZ(2θ2)T , and RZ(θ ) = RZ(2θ2)T Z.

The circuit to obtain a rotation of Z(2θ2) is given in Fig. 6.
The circuit results in the application of ±2θ2 to |ψ〉, each with
equal probability. If m = 0, then RZ(2θ2) has been applied. If
m = 1, we must apply RZ(4θ2). Further details on the m = 1
case are given in Sec. A 4.

3. Obtaining an |H2〉 resource state

To implement V3, we require a nonstabilizer state |H2〉,
which can be obtained using the ladder given in Ref. [8]. We
begin by describing how to obtain the ladder state |H2〉, and
then describe how to implement V3 using this resource state.

The circuit of Fig. 7 measures the parity of the two input
qubits and decodes the resulting state into the second qubit.
Let the two inputs be magic states |H 〉 and define θ0 = π

8 :

|H 〉 = |H0〉 = cos θ0|0〉 + sin θ0|1〉.
Upon application of the controlled-NOT gate �(X),

|H0〉|H0〉 �(X)−−→ cos2 θ0|00〉 + sin2 θ0|01〉
+ cos θ0 sin θ0(|11〉 + |10〉).

e−i HS† |H2〉 X |m〉
|ψ〉 • RZ((−1)m 2θ2) |ψ〉

FIG. 6. Circuit to rotate by angle ±2θ2 around the z axis.
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|H0〉 X |0〉 (|1〉)
|Hi〉 • |Hi+1〉 (|Hi−1〉)

FIG. 7. Two-qubit circuit used to obtain |Hi〉 states from initial
resource states |H0〉. Upon measuring the 0 (1) outcome, the output
state is |Hi+1〉 (|Hi−1〉).
Upon measurement m of the first qubit, we have

m=0−−→ cos2 θ0|0〉 + sin2 θ0|1〉
cos4 θ0 + sin4 θ0

, or

m=1−−→ 1√
2

(|0〉 + |1〉).

We define θ1 such that

cos θ1|0〉 + sin θ1|1〉 = cos θ0|0〉 + sin θ0|1〉
cos4 θ0 + sin4 θ0

,

from which we deduce cot θ1 = cot2 θ0.
Thus we have |H1〉 = cos θ1|0〉 + sin θ1|1〉, a nonstabilizer

state obtained from |H 〉 states, Clifford operations, and
measurements. If the measurement outcome is 1, then we
obtain a stabilizer state and discard the output (see Fig. 7). The
measurement outcomes occur with respective probabilities
pm=0,0 = cos4 θ0 + sin4 θ0 = 3

4 and pm=1,0 = 1 − p0 = 1
4 .

Now consider the next step of the ladder. We recurse on
this protocol using the nonstabilizer states produced by the
previous round of the protocol as input to the circuit in Fig. 7.
In this case, we need only go to state |H2〉, which is defined as

|H2〉 = cos θ2|0〉 + sin θ2|1〉,
where cot θ2 = cot3 θ0.

To obtain this state, we use as input the previously produced
|H1〉 state and a new |H0〉 state:

|H0〉|H1〉 �(X)−−→ cos θ0 cos θ1|00〉 + sin θ0 sin θ1|01〉
+ sin θ0 cos θ1|10〉 + cos θ0 sin θ1|11〉.

Upon measurement of the first qubit, we have

m=0−−→ (cos θ ′|0〉 + sin θ ′|1〉),
m=1−−→ (cos θ ′′|0〉 + sin θ ′′|1〉), where

cot θ ′ = cot θ1 cot θ0 = cot3 θ0 = cot θ2,

cot θ ′′ = cot θ1 tan θ0 = cot1 θ0 = cot θ0.

Thus, if we measure m = 0, we obtain the state |H2〉 and if we
measure m = 1, we obtain |H0〉. The probability of measuring
0 is given by

pm=0,1 = cos2 θ1 cos2 θ0 + sin2 θ1 sin2 θ0.

Note that 3
4 � pm=0,i < cos2 π

8 = 0.853 . . . , so the probabil-
ity of obtaining |H2〉 is far higher than the probability of
obtaining |H0〉.

4. Resource cost

What is the cost of obtaining a |H2〉 state in terms of |H0〉
resource states? We simulated 10 million instances of the
ladder to determine the average cost of obtaining |H1〉 and
|H2〉. Recall that the probabilities of moving “up” the ladder
are higher than moving “down” the ladder. For |H1〉, the cost
is on average 2.66 |H0〉 states, with a median cost of 2. For
|H2〉, the cost is on average 4.35 |H0〉 states, with a median
cost of 3.

What is the cost of implementing RZ(θ ′)? Recall that our
technique uses a probabilistic circuit with a success probability
of 1/2. Thus, on average it will require two attempts for
success. If the circuit succeeds, the cost in |H0〉 states is roughly
5.35. If the circuit fails, then we must correct the circuit by
applying a Z rotation of 2 × 2θ2.

This requires preparing a resource state RZ(4θ2), which
can be done using the circuit given in Fig. 6 with |ψ〉 =
e−iπ/8HS†|H2〉. On average, two attempts will be required to
prepare the state, resulting in an average cost of 4 |H2〉 states,
or roughly 4 × 4.35 = 17.4. The prepared state is applied to
the target qubit |ψ〉 using the same circuit in Fig. 6, except
now the top input qubit is |RZ(4θ2)〉. The total cost if the
circuit succeeds on this second attempt, after the first failure,
is 1 + 4.35 + 17.4 = 22.75.

As can be seen, each attempt that fails requires preparation
of a more costly resource state for the next attempt. The series
of attempts is a negative binomial of parameter p = 1

2 and
the expected number of attempts to achieve success goes as
∼ 1

p
= 2. In general, at attempt k, a resource state to perform

rotation by angle 2k × 2θ2 is required. The cost of preparing
the resource state grows exponentially in k, and in the limit
is infinite. However, in practice, we will only make one to
three attempts, and upon the final failure, apply a different
approximation technique to the remaining rotation,3 using
methods of, for example, Refs. [4] and [5]. The optimal number
of attempts to make before backing off to a different technique
can be determined based on the required precision level (since
the backoff method will only be approximate) and the chosen
technique.

3We may in fact apply the backoff technique to the entire
remaining sequence, that is, by determining the unitary from the
remaining sequence and approximating it with the backoff technique.
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