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Quantum Kronecker sum-product low-density parity-check codes with finite rate
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We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes
by Tillich and Zémor and generalized bicycle codes by MacKay et al. as limiting cases. The construction
allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the
block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog
of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle
codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the
estimated error threshold.

DOI: 10.1103/PhysRevA.88.012311 PACS number(s): 03.67.Pp, 03.67.Lx

I. INTRODUCTION

Quantum computing can become a reality only with the
help of some technique to protect the quantum information
from decoherence due to inevitable coupling to the environ-
ment [1–4]. Quantum error correcting codes (QECCs) [5–7]
offer such protection; however, often at a high cost in the
number of auxiliary qubits and with technologically difficult
requirements [8–17]. Thus, an optimal choice of the employed
code (or code family) is important.

Quantum codes with limited stabilizer generator weights, a
quantum analog of classical low-density parity-check (LDPC)
codes [18,19] could offer a viable solution: the simple structure
of stabilizer generators simplifies the individual measurements
and enables parallelism, thus making the measurement cycle
shorter. Further, by analogy with classical LDPC codes, there
might exist efficient algorithms for encoding and decoding
[19–23].

However, the parameters of quantum LDPC codes appear
to be strongly restricted compared to their classical analogs
because of the required commutativity of stabilizer generators.
In fact, there are no known “good-distance” families of quan-
tum LDPC codes with asymptotically finite relative distances,
or any bounds suggesting their existence or nonexistence. It
then becomes an intriguing question of the best asymptotic
properties achievable with quantum LDPC codes. In such a
setting explicit code designs become important, in particular,
for establishing the lower bounds on the parameters: the
number of encoded qubits k and minimum distance d for
a given block length n (which also defines the code rate
k/n), e.g., given the upper limit on the weight of stabilizer
generators.

The best-known quantum LDPC codes (that are also local)
are Kitaev’s toric codes and related surface codes with the
minimum distance scaling as

√
n [10,17,24,25]. Existence of

single-qubit-encoding LDPC codes with the distance scaling
as

√
n log n has been proved in Ref. [26]. Tillich and Zémor

proposed a finite-rate generalization of toric codes [27]. The
construction relates a quantum code to a direct product of
hypergraphs corresponding to two classical binary codes.
Generally, thus obtained quantum LDPC codes have finite rates
and the distances that scale as a square root of the block length.

In one of the first studies of quantum LDPC codes MacKay
et al. [19] constructed so-called bicycle codes. Numerically,

these codes exhibit good decoding properties; however, the
minimum distance of such codes is unknown. The quantum
hypergraph-product codes [27], on the other hand, are an
example of LDPC codes with known parameters; however,
decoding such codes may be difficult. We recently established
[28] the existence of a finite noise threshold, with and without
syndrome measurement errors, for limited-stabilizer-weight
quantum hypergraph-product codes, as well as for any such
LDPC code family with the distance increasing as a power
of block length. These results, however, might not apply
to the constructions of quantum LDPC codes based on
finite geometries [29,30] and to the constructions based on
Cayley graphs [21] due to the unbounded weight of stabilizer
generators.

In this work, we introduce a general bipartite ansatz for
quantum Calderbank-Shor-Steane (CSS) codes, and use it
to construct a large family of codes that in the limiting
cases reduce to (generalized) bicycle and hypergraph-product
codes—the hyperbicycle codes. The bipartite ansatz comprises
a number of known quantum code families, and can be used
to obtain a double-size CSS code from a generic (non-CSS)
stabilizer code. The hyperbicycle codes contain new quantum
LDPC code families with finite rates and distances that scale as
a square root of the block length. In addition, the hyperbicycle
construction can improve the rate of the hypergraph-product
codes while preserving the estimated error threshold.

II. PRELIMINARIES

In this section, we define classical and quantum error
correcting codes. We also review some of the known LDPC
code constructions.

A. Classical error correcting codes

A classical q-ary block error-correcting code (n,K,d)q is
a set of K length-n strings over an alphabet with q symbols.
Different strings represent K distinct messages which can be
transmitted. The (Hamming) distance between two strings is
the number of positions where they differ. Distance d of the
code C is the minimum distance between any two different
strings from C.

In the case of linear codes, the elements of the alphabet
must form a Galois field Fq ; all strings form n-dimensional
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vector space Fn
q . A linear error-correcting code [n,k,d]q is a

k-dimensional subspace of Fn
q . The distance of a linear code

is just the minimum weight of a nonzero vector in the code,
where weight wgt(c) of a vector c is the number of nonzero
elements. A basis of the code is formed by the rows of its
generator matrix G. All vectors that are orthogonal to the
code form the corresponding (n − k)-dimensional dual code;
its generator matrix is the parity-check matrix H of the original
code.

For a binary code C[n,k,d], the field is just F2 = {0,1}. For
a quaternary code C, the field is F4 = {0,1,ω,ω}, with

ω2 = ω + 1, ω3 = 1, and ω ≡ ω2. (1)

For nonbinary codes, there is also a distinct class of additive
classical codes, defined as subsets of Fn

q closed under addition
(in the binary case these are just linear codes).

A code C is cyclic if inclusion (c0,c1, . . . ,cn−1) ∈ C implies
that (cn−1,c0,c1, . . . ,cn−2) ∈ C. Codes that are both linear
and cyclic are particularly simple: by mapping vectors to
polynomials in the natural way, c → c(x) ≡ c0 + c1x + · · · +
cn−1x

n−1, it is possible to show that any such code consists
of polynomials which are multiples of a canonical generator
polynomial g(x), which must divide xn − 1 (using the algebra
corresponding to the field Fq). The quotient defines the check
polynomial h(x),

h(x)g(x) = xn − 1, (2)

which is the reverse of the canonical generator polynomial
of the dual code, hrev(x) ≡ xdeg(h)h(1/x). The degree of the
generator polynomial is deg g(x) = n − k. The corresponding
generator matrix G can be chosen as the first k rows of the
circulant matrix Cn formed by subsequent shifts of the vector
that corresponds to g(x), explicitly:

Cn =

⎛⎜⎜⎜⎜⎜⎜⎝
g0 g1 g2 . . . gn−1

gn−1 g0 g1

gn−2 gn−1 g0
...

...
. . .

g1 g2 g3 . . . g0

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

B. Quantum stabilizer codes

Qubit-based quantum error correcting codes (QECCs) are
defined on the complex Hilbert space H⊗n

2 where H2 is the
complex Hilbert space of a single qubit α |0〉 + β |1〉 with
α,β ∈ C and |α|2 + |β|2 = 1. Any operator acting on such
an n-qubit state can be represented as a combination of Pauli
operators which form the Pauli group Pn of size 22n+2:

Pn = im{I,X,Y,Z}⊗n, m = 0, . . . ,3, (4)

where im is the phase, X, Y , Z are the usual Pauli matrices, and
I is the 2 × 2 identity matrix. It is customary to map the Pauli
operators, up to a phase, to two binary strings, v,u ∈ {0,1}⊗n

[31],

U ≡ im
′
XvZu → (v,u), (5)

where Xv = X
v1
1 X

v2
2 . . . Xvn

n and Zu = Z
u1
1 Z

u2
2 . . . Zun

n . A
product of two quantum operators corresponds to a sum
(mod 2) of the corresponding pairs (vi ,ui).

An [[n,k,d]] stabilizer codeQ is a 2k-dimensional subspace
of the Hilbert space H⊗n

2 stabilized by an Abelian stabilizer
group S ⊂ Pn such that −1 
∈ S [32]. Explicitly,

Q = {|ψ〉 : S |ψ〉 = |ψ〉 ,∀S ∈ S }. (6)

The group S is generated by the necessarily Hermitian com-
muting Pauli operators (stabilizer generators) G1, . . . ,Gn−k ,
S = 〈G1, . . . ,Gn−k〉. Each generator Gi ∈ S is mapped
according to Eq. (5) in order to obtain the binary generator
matrix H = (AX|AZ) in which each row corresponds to a
generator, with rows of AX formed by v and rows of AZ formed
by u vectors. For generality, we assume that the matrix H may
also contain unimportant linearly dependent rows which are
added after the mapping has been done. The commutativity
of stabilizer generators corresponds to the following condition
on the binary matrices AX and AZ:

AXAT
Z + AZAT

X = 0 (mod 2). (7)

A more narrow set of Calderbank-Shor-Steane (CSS) codes
[33] contains codes whose stabilizer generators can be chosen
to contain products of only Pauli X or Pauli Z operators. For
these codes the stabilizer generator matrix can be chosen in
the form

H =
(

GX 0
0 GZ

)
, (8)

where the commutativity condition simplifies to GXGT
Z = 0.

The dimension of a quantum code is

k = n − rank H ; (9)

for a CSS code this simplifies to

k = n − rank GX − rank GZ. (10)

The distance d of a quantum stabilizer code is given by the
minimum weight of an operator U which commutes with
all operators from the stabilizer S , but is not a part of the
stabilizer, U 
∈ S . In terms of the binary vector pairs (a,b),
this is equivalent to a minimum weight of the bitwise OR(a,b)
of all pairs satisfying the symplectic orthogonality condition,

AXb + AZa = 0, (11)

which are not linear combinations of the rows of H . A code
of distance d can detect any error of weight up to d − 1, and
correct any error of weight up to 
d/2�.

In an equivalent representation, one can map any Pauli
operator U in Eq. (5), to a quaternary vector over F4, e ≡
u + ωv. A product of two quantum operators corresponds to a
sum (mod 2) of the corresponding vectors. Two Pauli operators
commute if and only if the trace inner product e1 ∗ e2 ≡
e1 · e2 + e1 · e2 of the corresponding vectors is zero (which is
equivalent to the symplectic orthogonality condition), where
e ≡ u + ωv. With this map, generators of a stabilizer group
are mapped to rows of a generator G of an additive code
over F4, with the condition that the trace inner product of any
two rows vanishes [31] [see Eq. (7)]. The vectors generated
by rows of G correspond to stabilizer generators which act
trivially on the code; these vectors form the degeneracy group
and are omitted from the distance calculation. For CSS codes
in Eq. (8) the generator matrix is a direct sumG = Gx ⊕ ωGz.

012311-2



QUANTUM KRONECKER SUM-PRODUCT LOW-DENSITY . . . PHYSICAL REVIEW A 88, 012311 (2013)

In the following, we will use both quaternary and binary
representations.

A classical LDPC code is a code with a sparse parity-check
matrix H . For a regular (j,l) quantum LDPC code, every
column and every row of G have weights j and l respectively,
while for a (j,l)-limited quantum LDPC code these weights
are limited from above by j and l.

In the case when a quantum LDPC code is represented in
terms of the binary matrix H , the same restrictions apply to
the matrix OR(AX,AZ).

C. Bicycle codes

In one of the first studies of quantum LDPC codes, MacKay
et al. proposed a CSS code construction [19] which can be
written in a block form as

GX = GZ = (A,AT ), (12)

where A is a binary circulant matrix. Bicycle codes are
obtained after some of the rows in GX or GZ are deleted.
Numerically, such codes show good error-correction capabili-
ties [19,20]; however, the distance of such codes is unknown.

D. Hypergraph-product codes

Tillich and Zémor proposed a CSS construction which can
be interpreted as a finite-rate generalization of toric codes
[27] and allows for LDPC constructions. For such codes,
the generator matrix is constructed from a product of two
hypergraphs, each corresponding to a parity-check matrix
of a classical binary code (see Fig. 1 for an example of a
construction from square circulant matrices in Ref. [34]). The
resulting CSS code can be recast in a matrix form with the
generators given by [34]

GX = (E2 ⊗ H1,H2 ⊗ E1),
(13)

GZ = (
HT

2 ⊗ Ẽ1,Ẽ2 ⊗ HT
1

)
.

X

X
Z

Z

FIG. 1. (Color online) Left: Two stabilizer generators (marked by
arrows) and two pairs of anticommuting logical operators (marked by
lines) of a [[450,98,5]] code in Eq. (13) formed by circulant matrices
H1 = H2 corresponding to coefficients of the polynomial h(x) =
1 + x + x3 + x7 (red squares: X operators; blue squares: Z operators;
green squares: overlap of Z and X operators; dark and light gray
squares: dual sublattices of physical qubits; white squares: empty
spaces). All other stabilizer generators are obtained by shifts over the
same sublattice with periodic boundaries. In the shaded region, each
gray square uniquely corresponds to a different logical operator, thus
98 encoded logical qubits. Right: same for the toric code [[450,2,15]].

Here each sublattice block is constructed as a Kronecker prod-
uct (denoted with “⊗”) of two binary matricesH1 (dimensions
r1 × n1) and H2 (dimensions r2 × n2), and Ei and Ẽi , i = 1,2,
are unit matrices of dimensions given by ri and ni , respectively.
The matrices GX and GZ , respectively, have r1r2 and n1n2

rows (not all of the rows are necessarily linearly independent),
and they both have n ≡ r2n1 + r1n2 columns, which gives
the block length of the quantum code. The commutativity
condition GXGT

Z = 0 is obviously satisfied by Eq. (13) since
the Kronecker product obeys (A ⊗ B)(C ⊗ D) = AC ⊗ BD.

The parameters [[n,k,d]] of thus constructed quantum code
are determined by those of the four classical codes which use
the matricesH1,H2,HT

1 , andHT
2 as the parity-check matrices.

The corresponding parameters are introduced as

CHi
= [ni,ki,di], CHT

i
= [̃ni ,̃ki,d̃i], i = 1,2, (14)

where we use the convention [27] that the distance di(d̃i) = ∞
if ki (̃ki) = 0. The matrices Hi are arbitrary, and are allowed to
have linearly dependent rows and/or columns. As a result, both
ki = ni − rankHi and k̃i = ñi − rankHi may be nonzero at
the same time as the block length of the “transposed” code
CHT

i
is given by the number of rows of Hi , ñi = ri .

Specifically, for the hypergraph-product code (13), we
have n = r2n1 + r1n2, k = 2k1k2 − k1s2 − k2s1 with si =
ni − ri, i = 1,2 (Theorem 7 from Ref. [27]), while the
distance d satisfies the conditions d � min(d1,d2,d̃1,d̃2) (The-
orem 9 from Ref. [27]), and two upper bounds (Lemma 10
from Ref. [27]): if k1 > 0 and k̃2 > 0, then d � min(d1,d̃2); if
k2 > 0 and k̃1 > 0, then d � min(d2,d̃1).

A full-rank parity-check matrix H1 of a binary code
with parameters CH1 = [n1,k1,d1] (r1 = n1 − k1, k̃1 = 0)
and H2 = HT

1 defines a quantum code with parameters
[[(n1 − k1)2 + n2

1,k
2
1,d1]] [27]. Furthermore, a family of finite-

rate (h,v)-limited classical LDPC codes with asymptotically
finite relative distance will correspond to a family of finite-rate
(v,h + v)-limited quantum LDPC codes with the distance
scaling as d ∝ √

n.

III. TWO-SUBLATTICE CODES

The commutativity condition for QECCs in Eq. (7) puts
a strong limitation on suitable parity-check matrices. The
problem becomes even more difficult when the additional
requirement of LDPC structure is imposed. In particular, this
strongly limits possible counting arguments for establishing
bounds on code parameters. In such a setting, constructions
based on some ansatz become very useful. In the following,
we study several CSS constructions based on two sublattices
corresponding to the columns of the binary matrices A1(BT

2 )
and B1(AT

2 ):

GX = (A1,B1), GZ = (
BT

2 ,AT
2

)
, (15)

where the matrices Ai , Bi , i = 1,2, satisfy the condition
A1B2 + B1A2 = 0 (we assume binary linear algebra through-
out this paper).

A. Two-sublattice CSS code from a generic stabilizer code

A large number of two-sublattice CSS codes (15) can be
obtained from regular stabilizer codes by the following:
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Theorem 1. For any quantum stabilizer code [[n,k,d]] with
the generator matrix

H = (A|B), (16)

there is a reversible mapping to a two-sublattice quantum
CSS code (15) with A1 = AT

2 = A, B1 = BT
2 = B and the

parameters [[2n,2k,d ′]], where d � d ′ � 2d.
Proof. Explicitly, the generator matrices are

GX = (A,B), GZ = (B,A). (17)

The dimension of the code simply follows from Eqs. (9)
and (10), given that rank GX = rank GZ = rank H . Any bi-
nary vector e = (a|b) such that Ab + Ba = 0 maps to a pair
of double-size vectors ez = (b,a), ex = (a,b) which satisfy
GXez = 0, GZex = 0; the corresponding weights obey the
inequality wgt OR(a,b) � wgt(a,b) � 2 wgt OR(a,b), which
ensures the conditions on the distance.

It is easy to check that the reverse mapping also works. �
Note that an original code that exceeds the generic quantum

Gilbert-Varshamov (GV) bound [35] is mapped to a CSS code
that exceeds the version of the GV bound specific for such
codes [33]. Also, an original sparse code is mapped to a sparse
code, with the same limit on the column weight, and row
weight at most doubled. So, if one has a non-CSS code and
wants to use one of the measurement techniques designed
for such codes, this can be done by first constructing the
corresponding CSS code. We use the reverse version of this
mapping in Sec. IV H to construct the non-CSS versions of
hyperbicycle codes.

B. Generalized bicycle codes

Let us now start with two commuting square n by n binary
matrices, AB + BA = 0. Then, we can satisfy the general two-
sublattice ansatz (15) by taking A1 = A2 = A, B1 = B2 = B,
which gives

GX = (A,B), GZ = (BT ,AT ). (18)

In particular, the commutativity is guaranteed for circulant
matrices A and B, which corresponds to a generalization of
the bicycle codes [19], see Eq. (12). In this case, we map
the linear combinations of rows in GX to a classical length-n
additive cyclic code over F4, where elements of the code are
constructed from the generator matrix G = ωA + B. If the
circulant matrices A and B are generated by the polynomials
f1(x) and f2(x), respectively, the space of the additive code
corresponding to the stabilizer is generated by the polynomial
g(x) = f1(x)ω + f2(x) modulo xn − 1. That is, elements of
the stabilizer are given by the coefficients of the polynomials
b(x)g(x) mod(xn − 1), with arbitrary binary b(x).

A canonical form of cyclic additive codes over F4 has
been introduced in Ref. [31], where Theorem 14 states
that any cyclic additive code can be represented via two
generators as 〈ωp(x) + q(x),r(x)〉mod(xn − 1) with p(x) =
gcd[f1(x),xn − 1], r(x) = gcd[(xn − 1)f2(x)/p(x),xn − 1]
and deg q(x) < deg r(x) (gcd stands for the greatest common
divisor). The code dimensionality is k = 2n − deg p(x) −
deg r(x). The special case of cyclic additive codes with a
single generator has been analyzed in Ref. [36] in which case
the code dimensionality simplifies to k = n − deg p(x), which

formally corresponds to r(x) = xn − 1. Note that, unlike the
case of the usual quantum additive cyclic codes [31,36], the
mapping from Eq. (18) works for any circulant matrices A and
B; no additional commutativity condition is needed for the
generator polynomials p(x), q(x), and r(x). The parameters
of thus obtained quantum codes are given by the following:

Theorem 2. The generalized bicycle codes in Eq. (18) have
the block length n′ = 2n, the number of encoded qubits k =
2 deg p(x) + 2 deg r(x) − 2n [k = 2 deg p(x) in the single
generator case] and the distance exceeding or equal that of
the classical code over F4 formed by codewords orthogonal to
G with respect to the trace inner product.

Proof. The code dimensionality immediately follows from
the parameters of the canonical form of the code generated by
g(x). The orthogonal code contains the quantum code, hence
the distance estimate. �

Note that the distance estimate in Theorem 2 is tight only
for pure codes since a possibility for degeneracy is not taken
into consideration.

Example 1. Suppose a cyclic linear code [n,k,d] over F4

with a generator polynomial �(x) that divides xn − 1 generates
a code space G⊥. Then the parameters of the quantum
CSS code in Eq. (18) are [[2n,2n − 4 deg �(x), � d]]. This
construction is similar to non-CSS code construction from
linear cyclic codes in Ref. [31], except that here the dual code
does not have to be self-orthogonal. For a cyclic [30,25,4]
code with �(x) = (1 + x)2(1 + ωx)(1 + x + ωx2) we obtain
a quantum code [[60,40,4]].

Example 2. A CSS family of odd-distance rotated toric
codes [34] is obtained for f1(x) = (1 + x2t2+1) and f2(x) =
x(1 + x2t2−1), t = 1,2, . . . by construction in Eq. (18). These
codes have the parameters [[2t2 + 2(t + 1)2,2,2t + 1]]. Ex-
plicitly, [[10,2,3]], [[26,2,5]], [[50,2,7]], [[82,2,9]], . . . .

The constructions in Theorems 1 and 2 [Eqs. (17) and (18)
respectively] coincide for symmetric matrices, A = AT , B =
BT . Then, from a generalized bicycle code with symmet-
ric matrices corresponding to two palindromic polynomials
fi(x) = xdeg fi (x)fi(1/x), i = 1,2, we can obtain non-CSS
halved bicycle codes in Eq. (16) by applying the reverse of
Theorem 1 to the matrices A and B [34].

Example 3. A non-CSS family of smallest odd-distance
rotated toric codes [36] is obtained for palindromic f1(x) =
xt (1 + x2t2+1) and f2(x) = xt+1(1 + x2t2−1), t = 1,2, . . . by
construction in Eq. (16). These codes have the parameters
[[t2 + (t + 1)2,1,2t + 1]]. Explicitly, [[5,1,3]], [[13,1,5]],
[[25,1,7]], [[41,1,9]], . . . .

The codes in the last two examples exceed the lower bound
in Theorem 2 due to degeneracy.

C. Tensor-product constructions and Haah’s codes

Further generalization of the bicyclelike construction in
Eq. (18) can be achieved by combining tensor products with
commuting (e.g., circulant) matrices. The most general form
of two-sublattice tensor sum-product codes has the form

A =
∑
i1...ik

HA
i1,1 ⊗ · · · ⊗ HA

ik,k
,

B =
∑
i1...ik

HB
i1,1 ⊗ · · · ⊗ HB

ik,k
,
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TABLE I. Tensor-product two-sublattice representation of Haah’s codes corresponding to Eq. (15) where H1 is a circulant matrix
corresponding to parity-check polynomial p(x) = 1 + x of a repetition code, E is a unit matrix of the same dimensions with H1, and
the summation is mod 2.

Code 1
A = H1 ⊗ E ⊗ E + E ⊗ H1 ⊗ E + E ⊗ E ⊗ H1

B = H1 ⊗ H1 ⊗ E + E ⊗ H1 ⊗ H1 + H1 ⊗ E ⊗ H1

Code 2
A = H1 ⊗ E ⊗ E + E ⊗ H1 ⊗ E + E ⊗ H1 ⊗ H1 + H1 ⊗ E ⊗ H1 + H1 ⊗ H1 ⊗ H1

B = E ⊗ E ⊗ H1 + H1 ⊗ H1 ⊗ E + E ⊗ H1 ⊗ H1 + H1 ⊗ E ⊗ H1

Code 3
A = H1 ⊗ E ⊗ E + E ⊗ H1 ⊗ E + E ⊗ H1 ⊗ H1 + H1 ⊗ E ⊗ H1 + H1 ⊗ H1 ⊗ H1

B = H1 ⊗ E ⊗ E + E ⊗ H1 ⊗ E + E ⊗ E ⊗ H1 + H1 ⊗ H1 ⊗ E + E ⊗ H1 ⊗ H1 + H1 ⊗ H1 ⊗ H1

Code 4
A = E ⊗ H1 ⊗ H1 + H1 ⊗ E ⊗ H1 + E ⊗ H1 ⊗ E

B = H1 ⊗ E ⊗ E + E ⊗ E ⊗ H1 + E ⊗ H1 ⊗ H1 + H1 ⊗ H1 ⊗ H1

where HA
i,l and HB

i,l are matching, pairwise-commuting binary
square matrices (i.e., HA

i,lHB
j,l + HB

j,lHA
i,l = 0 for any i and

j ). For circulant matrices HA
i,l and HB

j,l the commutativity is
automatically satisfied.

Several examples of such codes are given by the Haah’s
codes [37]. These are local codes in three dimensions without
string logical operators, and thus may lead to realizations of
self-correcting quantum memories. Such codes are defined on
two sublattices and have exactly the tensor-product structure
discussed here. In Table I, we list four codes presented in
Ref. [37]. These codes are essentially constructed from a
repetition code and it is straightforward to generalize this
construction to arbitrary cyclic binary codes by using the
corresponding binary circulant matrix H1. The commutativity
of matrices A and B in Eq. (15) immediately follows. A
non-CSS generalization of construction in Table I can be
achieved by using symmetric circulant matrices [see non-CSS
construction in Eq. (16)].

IV. CSS AND NON-CSS HYPERBICYCLE CODES

This section contains our most important results. We show
that the families of hypergraph-product and generalized bicy-
cle codes can be obtained as limiting cases of a larger family of
hyperbicycle codes. The main advantage of this construction
is that it gives a number of previously unreported families of
quantum codes with tight bounds on, or even explicitly known
distance. This includes many strongly degenerate LDPC codes
with the distance much greater than the maximum weight of a
stabilizer generator. In this section we discuss the construction
of such codes, their parameters, and give examples.

A. CSS hyperbicycle codes: Construction

We define the hyperbicycle CSS codes as follows:

GX =
(

Eb ⊗
∑

i

I
(χ)

i ⊗ ai,
∑

i

bi ⊗ I
(χ)
i ⊗ Ea

)
,

(19)

GZ =
(∑

i

bT
i ⊗ Ĩ

(χ)
i ⊗ Ẽa, Ẽb ⊗

∑
i

Ĩ
(χ)

i ⊗ aT
i

)
.

Here we introduce two sets of binary matrices ai (dimen-
sions r1 × n1, i = 0, . . . ,c − 1) and bi (dimensions r2 × n2,
i = 0, . . . ,c − 1); Ea , Eb, Ẽa , and Ẽb are unit matrices
of dimensions given by r1, r2, n1, and n2, respectively.

Matrices I
(χ)
i (Ĩ (χ)

i ) are permutation matrices (dimensions
c × c) given by a product of two permutation matrices,
i.e., I

(χ)
i = SχIi (Ĩ (χ)

i = ST
χ IT

i ) where (Ii)kj = δj−k,i mod c is
a circulant permutation matrix, (Sχ )kj = δj−k,(k−1)(χ−1) mod c,
and the positive integers c and χ are coprime. A version of
this construction for c = 2 and χ = 1 has been previously
reported by us in Ref. [34].

The matrices GX and GZ , respectively, have cr1r2 and
cn1n2 rows (not all of the rows are linearly independent),
and they both have

n ≡ c(r1n2 + r2n1) (20)

columns, which gives the block length of the quantum code.
The commutativity condition GXGT

Z = 0 is obviously satisfied
by Eq. (19) since the permutation matrices commute with
each other. Note that for c = 1 and χ = 1 we recover the
hypergraph-product codes in Eq. (13) and for ri = ni = 1,
i = 1,2 (i.e., ai and bi given by binary numbers) we recover
the generalized bicycle code construction in Eq. (18).

In order to characterize codes in Eq. (19) it is convenient to
introduce the “tiled” binary matrices:

H1 =
∑

i

I
(χ)
i ⊗ ai, H2 =

∑
i

bi ⊗ I
(χ)
i ,

(21)
H̃1 =

∑
i

Ĩ
(χ)

i ⊗ aT
i , H̃2 =

∑
i

bT
i ⊗ Ĩ

(χ )
i .

For example, for c = 5 and χ = 2 we have

H1 =

⎛⎜⎜⎜⎝
a1 a2 a3 a4 a5

a4 a5 a1 a2 a3

a2 a3 a4 a5 a1

a5 a1 a2 a3 a4

a3 a4 a5 a1 a2

⎞⎟⎟⎟⎠ ; (22)

note that the subsequent block rows are shifted by χ = 2
positions.

For the following discussion it is useful to define auxiliary
binary matrices:

H0
1 =

∑
i

Ii ⊗ ai, H0
2 =

∑
i

bi ⊗ Ii . (23)

In addition, we will also be using the matrix

↔
H0

2 =
∑

i

Ii ⊗ bi, (24)
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which can be obtained from H0
2 by row and column permuta-

tions. In terms of the matrices (23) we can write

H1 = (Sχ ⊗ Ea) · H0
1, H2 = (Eb ⊗ Sχ ) · H0

2,
(25)

H̃1 = (
ST

χ ⊗ Ea

) · H0T
1 , H̃2 = (

Eb ⊗ ST
χ

) · H0T
2 .

With this notation, it is clear that the generator matrices (19)
correspond to the hypergraph code generators (13), except
that the identity matrices Ei , Ẽi are now reduced in size by
a factor of 1/c. Respectively, the hyperbicycle codes defined
by Eq. (19) with c > 1 can be viewed as reduced hypergraph
codes. Indeed, the block length of the original hypergraph
code (13) defined with the present binary matrices (21) is

norig = c2(r1n2 + r2n1). (26)

B. CSS hyperbicycle codes: Dimension

Just as for the hypergraph codes, the parameters of classical
codes CHi

and CH̃i
with parity-check matrices Hi and H̃i

in Eq. (21) contain information about the parameters of the
quantum code in Eq. (19). We denote the distances of these
binary codes as di and d̃i , and their dimensions as ki and k̃i ,
i = 1,2.

Regardless of the choice of the matrices ai , bi , the codes
CHi

and CH̃i
are quasicyclic, with the cycle of length equal

to the dimension c of the cyclic permutation matrices I
(χ)
i

(Ĩ (χ)
i ), i = 1,2. Indeed, the corresponding block shifts merely

lead to permutations of rows of the check matrices Hi , H̃i [see
Eq. (22)]. In order to define the dimension of the corresponding
hyperbicycle codes with generators (19), we first classify
the vectors in CHi

and CH̃i
with respect to this circulant

symmetry.
We start with the case of a binary cyclic code with block

length c, with the generator polynomial g(x), which divides
xc − 1. [Polynomial algebra in this section is done modulo 2.]
Any codeword corresponds to a polynomial w(x) which
contains g(x) as a factor, and, therefore, every cyclotomic
root of g(x) is also a root of w(x). However, the particular
polynomial w(x) = g(x)f (x) may also contain other factors
of xc − 1 and thus have symmetry different from that of
g(x). We can define a linear space C(p) of length-c vectors
corresponding to w(x) with the exact symmetry of g(x) where
p(x) ≡ (xc − 1)/g(x) by defining the equivalence w1(x) ≡
w2(x) for a given g(x) as f1 = f2 mod p′(x) for all p′(x) such
that p′(x) 
= p(x) is a factor of p(x). The same equivalence can
be also defined modulo greatest common divisor (gcd) of all
such polynomials p′(x). In terms of the corresponding check
polynomial p(x), the dimension k

(p)
0 of thus defined space

C(p) is zero unless p(x) is a nonzero power of an irreducible
polynomial pα(x), in which case k

(p)
0 = deg pα(x).

For the quasicyclic code CH1 with the first check matrix
in Eq. (21), the vector w is in the symmetry class of p(x),
where p(x) divides xc − 1, if w satisfies the condition [p(I1) ⊗
Ea] w = 0 and is not a member of such a symmetry class
of any factor of p(x). For each polynomial p(x), the left-
hand side in these equations is a sum of cyclic shifts of the
vector w corresponding to each nonzero coefficient of p(x).
We denote the dimension of the subcode of CH1 with all vectors

in the symmetry class of p(x) as k
(p)
1 . The symmetry implies

that k
(p)
1 must contain the dimension k

(p)
0 introduced in the

previous paragraph as a factor, and, in particular, k
(p)
1 must

be zero whenever k
(p)
0 is zero. A convenient basis of C(p)

H1
can

be constructed using the following:
Lemma 1. Any vector of the subcode C(p)

H1
can be chosen in

the form

w =
k

(p)
0 −1∑
i=0

(Ii · g) ⊗ αi , (27)

where the vector g corresponds to the generating polynomial
g(x) ≡ (xc − 1)/p(x); the vectors (Is ⊗ Ea)w, 0 � s < k

(p)
0 ,

are linearly independent.
Proof. Any vector of the subcode C(p)

H1
can be expanded in

the form ω
(p)
i ⊗ ei , where ei are all distinct weight-1 vectors,

and ω
(p)
i are vectors from C(p). Generally, any vector ω ∈ C(p)

can be written as a sum of shifts of the vector g,
∑k

(p)
0 −1

s=0 Is · g;
we obtain Eq. (27) by rearranging the summations. Linear
independence follows from the symmetry of the vectors ω

(p)
i ∈

C(p). �
Note that, in addition to the symmetric vectors, the code CH1

may contain vectors with no special symmetry with respect to
the discussed block shifts. We will formally assign these to the
check polynomial p(x) = xc − 1, and define k

(xc−1)
0 ≡ 1.

For the vectors of the code CH2 with the second check
matrix in Eq. (21), the condition to be in the symmetry class of
p(x) reads [Eb ⊗ p(I1)]w = 0 while [Eb ⊗ p′(I1)]w 
= 0 for
all p′(x) 
= p(x) that divide p(x). We denote the dimension
of the corresponding subcode as k

(p)
2 . The same classification

can be done for codes CH̃i
; the corresponding dimensions are

k̃
(p)
i , i = 1,2. The introduced symmetry classification is in the

heart of the following:
Lemma 2. A vector υ that belongs to both CEb⊗H1 and

CH2⊗Ea
must be in the same symmetry class p(x) with respect

to both codes H1 and H2, including the no-symmetry case
p(x) = xc − 1. Any such vector can be generally expanded in
terms of

υα,β =
k

(p)
0 −1∑
i,j=0

β i ⊗ (Ii+j · g) ⊗ αj , (28)

where
∑

i β i ⊗ (Ii · g) ∈ C(p)
H2

and
∑

i(Ii · g) ⊗ αi ∈ C(p)
H1

and
g corresponds to the polynomial g(x) ≡ (xc − 1)/p(x).

Proof. The parameter χ does not enter this discussion since
it corresponds to permutations of rows in matrices H0

1 and H0
2.

That the symmetry must be the same becomes evident if we
write the most general expansion

υ =
∑
ij

e2
i ⊗ γ ij ⊗ e1

j , (29)

where γ ij are length-c vectors and e1(2)
i are distinct weight-1

vectors. Indeed, the condition to be in the symmetry class of
p(x) is the same for both codes: [Eb ⊗ p(I1) ⊗ Ea]υ = 0 for
p(x) itself but not for any of its factors; thus γ ij must be in
C(p). The expansion (28) follows from Lemma 1. �
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We can now count linearly-independent rows in the gener-
ator matrices:

Lemma 3. The numbers of linearly independent rows in
matrices (19) are

rank GX = r1r2c −
∑

l

k̃
(pl )
1 k̃

(pl )
2 /k

(pl )
0 ,

(30)
rank GZ = n1n2c −

∑
l

k
(pl )
1 k

(pl )
2 /k

(pl )
0 ,

where pl(x) are all binary factors of xc − 1 such that k(pl )
0 
= 0,

including xc − 1 itself.
Proof. We first count linearly dependent rows in GZ . Notice

that the equations υT · (Eb ⊗ H̃1) = 0 and υT · (H̃2 ⊗ Ea) =
0 are both satisfied for υ in Eq. (28) (Lemma 2). Each pair
(α,β) generates k

(p)
0 linearly independent vectors, the same as

each of them generates for the corresponding subcodes C(p)
Hi

,

i = 1,2, respectively. Thus there are exactly k
(p)
1 k

(p)
2 /k

(p)
0

linearly independent vectors corresponding to every p(x) with
nonempty C(p). Such vectors have to be complemented with
the pairs of vectors of no symmetry (if any) which formally
correspond to p(x) = xc − 1 and k

(p)
0 = 1. According to

Lemma 2 these are all possible solutions, which gives rank GZ

in Eq. (30). We obtain rank GX by substituting the parameters
of the codes with the parity-check matrices H̃1, H̃2. �

We finally obtain the following:
Theorem 3. A quantum CSS code with generators (19)

encodes

k = 2
∑

l

k
(pl )
1 k

(pl )
2 /k

(pl )
0 − k1s2 − k2s1 (31)

qubits, where pl(x) are all binary factors of xc − 1 such that
k

(pl )
0 
= 0, including xc − 1 itself, and si = ni − ri , i = 1,2.

Proof. The number of encoded qubits k can be deduced
from Lemma 3 using the relation

k
(p)
i − k̃

(p)
i = sik

(p)
0 , i = 1,2. (32)

The latter follows from the fact that the rank of a matrix does
not change under transposition (and also under permutations
of rows and columns, e.g., as needed to transform Hi into
H̃i). Specifically, restricting the action of matrices Hi and
H̃i to subspace C(p), we obtain reduced mutually transposed
matrices of dimensions given by rik

(p)
0 × nik

(p)
0 and nik

(p)
0 ×

rik
(p)
0 , which immediately gives Eq. (32). �
By construction, any k

(p)
i may only be nonzero if the

corresponding ki > 0, i = 1,2. Then, Eq. (31) gives the
following:

Consequence 4. A quantum CSS code with generators (19)
can only have k > 0 if at least one of the binary codes with the
parity-check matrices (21) is nonempty.

C. CSS hyperbicycle codes: General distance bounds

Theorem 5. The minimum distance of the code with
generators (19) satisfies the lower bound,

d � 
d0/c�, d0 ≡ min(d1,d2,d̃1,d̃2). (33)

Proof. Consider a vector u such that GX · u = 0. We
construct a reduced quantum code in the form (19), with

the same c, by keeping only those columns of the matrices
ai , bi that are involved in the product GX · u. This way, for
every nonzero bit of u, one of the reduced matrices H′

1, H′
2

[see Eq. (21)] may get c columns, so that these matrices have
no more than c wgt(u) columns. If we take wgt(u) < 
d0/c�,
according to Consequence 4, the reduced code encodes no
qubits, thus the corresponding reduced u′, G′

X · u′ = 0, has
to be a linear combination of the rows of G′

Z . The rows of
G′

Z are a subset of those of GZ , with some all-zero columns
removed; thus the full vector u is also a linear combination of
the rows of GZ . Similarly, a vector v such that GZ · v = 0 and
wgt(v) < 
d0/c�, is a linear combination of rows of GX. �

Let us introduce the minimum distances d
(p)
i corresponding

to the subset of the vectors of the code CHi
which contain one

of the vectors with the exact symmetry of p(x),

d
(p)
i = min

{
wgt(a + b)|0 
= a ∈ C(p)

Hi
, b ∈ CHi

\ C(p)
Hi

}
. (34)

Evidently, thus introduced distances satisfy

d
(p)
i � di, min

l
d

(pl )
i = di, i = 1,2; (35)

the minimum is taken over all pl(x) as in Theorem 3. We will
also introduce the distances d̃

(p)
i corresponding to the matrices

H̃i , i = 1,2.
The upper bound on the distance of the code with

generators (19) is formulated in terms of thus introduced
subset-distances d

(p)
i , d̃

(p)
i , i = 1,2:

Theorem 6. For every p(x), a binary factor of xc − 1 such
that k(p)

1 > 0 and k̃
(p)
2 > 0, the minimum distance d of the code

with generators (19) satisfies d � min(d (p)
1 ,d̃

(p)
2 ). Similarly,

when k
(p)
2 > 0 and k̃

(p)
1 > 0, we have d � min(d (p)

2 ,d̃
(p)
1 ).

Proof. Given k
(p)
1 > 0, consider vector u ≡ (e ⊗ c,0),

where c ∈ C(p)
H1

and wgt(e) = 1. As long as k̃
(p)
2 > 0, we can

always select such e that u is not a linear combination of rows
of GZ , which would indicate that d � wgt(c).

Indeed, by construction, vector c can be written in the
form (27); let us pick a bit s which is not identically zero
in all αi and construct a vector [cf. Eq. (28)]

u(p),s =

⎛⎜⎝e ⊗
∑

i

αis(Ii · g)︸ ︷︷ ︸⊗e1
s ,0

⎞⎟⎠ . (36)

Taking all r2 different vectors e and all k
(p)
0 linearly indepen-

dent translations (Lemma 1), we obtain the vector space [as
indicated in Eq. (36) with a brace] isomorphic to that on which
the subcode C(p)

H̃2
operates. On the other hand, there are only

r2k
(p)
0 − k̃

(p)
2 linearly independent combinations of rows of the

matrix H̃2 restricted to the subspace C(p). Since k̃
(p)
2 > 0, at

least one of vectors u(p),s is linearly independent of the rows
of the matrix H̃2 restricted to the subspace C(p).

Now, we can construct such a vector u for every c from
the set in Eq. (35), which proves d � d

(p)
1 . The other bounds

in the Theorem can be obtained from this one by considering
isomorphic codes (e.g., interchanging H̃2 and H1, and also H1

and H2). �
The meaning of the condition on p(x) in Theorem 6 can

be elucidated if we rewrite the number of encoded qubits (31)
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with the help of identity (32),

k =
∑

l

k
(pl )
1 k̃

(pl )
2 /k

(pl )
0 +

∑
l

k
(pl )
2 k̃

(pl )
1 /k

(pl )
0 . (37)

Obviously, every term in Eq. (37) giving a nonzero contribution
to k, also gives an upper bound on the minimum distance of
the quantum code.

D. Codes with finite rate and distance scaling
as square root of block length

Here we show explicitly that the family of hyperbicycle
codes contains (v,h + v)-limited LDPC codes with the dis-
tance d ∝ √

n that are distinct from the hypergraph product
codes. Let us start with a random(h,v)-regular parity-check
matrix of a classical LDPC code, where h < v. By removing
linearly dependent rows, we can form full-rank (h,v)-limited
parity-check matrix a1 that, along with bj = aT

1 (j 
= 1 and
χ are arbitrary; in case when j = 1 and χ = 1 we recover
the hypergraph-product codes), we use in Eq. (19) in order
to construct the hyperbicycle code where only one term in
each summation in Eq. (19) is taken. The rate of the classical
code defined by the parity-check matrix a1 is bounded from
below, i.e., Rc ≡ kc/nc � 1 − h/v. With high probability at
large nc, the classical code will also have the relative distance
in excess of some finite number δc [38]. If the classical
LDPC code defined by a1 has parameters [n1,k1,d1] then,
according to Theorems 3, 6, and 5, the quantum code will have
parameters [[c(n1 − k1)2 + cn2

1,ck
2
1, � d1/c]]. It follows that

a finite rate (h,v)-limited classical LDPC code (defined by the
parity-check matrix a1) with finite relative distance (we expect
the subset relative distance in (35) to be finite as well) will
correspond to a finite rate (v,h + v)-limited quantum LDPC
code with the distance d ∝ √

n.

E. Codes with repeated codewords

In some cases, the distance of the hyperbicycle codes is
larger than the lower bound in Theorem 5. In this section, we
consider the special case of square matrices ai , bi (ri = ni),
with the additional restriction that the codes CHi

, CH̃i
are

nonempty (ki = k̃i > 0) and contain only fully symmetric
vectors in the symmetry class of p(x) = 1 + x. The results we
proved so far give the parameters of such codes summarized
by (see also Theorem 3 in Ref. [34]).

Consequence 7. Suppose ai and bi in Eq. (21) are such
that k

(1+x)
i = ki > 0 and ri = ni . Then the CSS code with

generators (19) has the block length n = 2cn1n2, encodes
k = 2k1k2 qubits, and has the minimum distance d limited
by 
d0/c� � d � d0, d0 ≡ min(d1,d2,d̃1,d̃2).

Proof. By assumption, all vectors in the codes CHi
, i = 1,2,

are in the symmetry class of p(x) = 1 + x, which corresponds
to k

(p)
0 = 1 and block-symmetric vectors in the form

w1 = g ⊗ α, w2 = β ⊗ g, (38)

respectively, with g = (1, . . . ,1) [see Eq. (27)]. The number
of encoded qubits k immediately follows from Theorem 3,
the block length n from Eq. (20), and the lower bound on the
distance from Theorem 5. Furthermore, with all vectors in the

binary codes having the same symmetry, the upper bound in
Theorem 6 is just d � d0. �

At this point, we notice that the proof of the lower bound

d0/c� on the distance in Theorem 5 implies that there may
be uncorrectable errors of the form

∑
s(βs ⊗ gs ⊗ β ′

s ,α
′
s ⊗

gs ⊗ αs), where all gs have wgt(gs) = 1. On the other hand,
if we were to consider only fully symmetric vectors, with
gs = g = (1, . . . ,1), the factor of 1/c would be unnecessary.
We formulate this result as follows:

Lemma 4. A symmetric vector u = (w1,w2), wi = ∑
s β i

s ⊗
g ⊗ αi

s with g = (1, . . . ,1), i = 1,2, that satisfies GXu = 0
and is linearly independent from the rows of GZ , has sublattice
weights wgt(wi) either zero or � d0.

Let us first consider the case c = 2 (then χ must be equal
to 1); we previously formulated the sufficient conditions to
increased lower distance bound as Theorem 3 in Ref. [34]
which was given without a proof.

Theorem 8. Suppose c = 2, ai and bi in Eq. (21) are such
that k

(1+x)
i = ki > 0, ri = ni and binary codes with generator

matrices
∑

ai ,
∑

aT
i ,

∑
bi , and

∑
bT

i have distances at least
2. Then the CSS quantum code with generators Eq. (19) has
parameters [[4n1n2,2k1k2,d0]], where d0 = min(d1,d2,d̃1,d̃2).

Proof. In addition to what is stated in Consequence 7,
we only need to prove that d0 is also the lower bound on
the distance. To this end, notice that any vector u such that
GXu = 0 can be decomposed as the sum of an “actual”
solution plus degeneracy, u(1+x) + γ T GZ , where u(1+x) ≡
(w1,w2) is a block-symmetric vector satisfying the conditions
of Lemma 4 and linearly independent from the rows of GZ .
This decomposition can be verified by comparing k with the
number of linearly independent solutions in the form (36),
as well as those on the other sublattice. First, let us assume
wgt(w1) > 0 and therefore wgt(w1) � d0. We can rewrite
the corresponding decomposition as w1 = ∑

s βs ⊗ g ⊗ e1
s ,

where g ≡ (1,1), each e1
s has length n1 and wgt(e1

s ) = 1,
with the nonzero element in the position s; there must be
at least d0/2 nonzero vectors βs . The full solution including
the degeneracy can be formally written as

∑
s w′

1s ⊗ e1
s , where

w′
1s ≡ βs ⊗ g + γ ′

s ⊗ (1,0) + γ ′′
s ⊗ (0,1), (39)

where the sum of the last two vectors is a linear combination
of rows of H̃2. The key to the proof is the observation
that γ ′

s + γ ′′
s is a linear combination of rows of bT

0 + bT
1 ,

and therefore is in the binary code generated by
∑

s bT
s ; by

condition the corresponding weight is either zero or � 2.
Without limiting generality, we can drop the case γ ′

s = γ ′′
s 
= 0

which corresponds to a symmetric vector and can be included
as a part of u(1+x). We are left with the trivial γ ′

s = γ ′′
s = 0, in

which case w′
1s = βs ⊗ (1,1) remains unchanged; otherwise

γ ′
s 
= γ ′′

s , in which case the weight of the modified w′
1s can

be lower bounded by that of the sum of the components
corresponding to (1,0) and (0,1),

wgt(w′
1s) � wgt(γ ′

s + γ ′′
s ) � 2; (40)

with at least d0/2 such terms the total weight is d0 or greater.
The same arguments can be repeated in the case wgt(w2) 
= 0,
as well as for the space orthogonal to GX. Overall, this proves
the lower bound d � d0; combined with the upper bound we
get d = d0. �
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Theorem 9. Suppose c is even, ai and bi in Eq. (21)
are such that k

(1+x)
i = ki , ri = ni , and binary codes with

generator matrices
∑

ai ,
∑

aT
i ,

∑
bi , and

∑
bT

i have dis-
tance at least 2. Then the quantum code in Eq. (19) has
parameters [[2n1n2c,2k1k2,d]], where (2/c)d0 � d � d0 and
d0 ≡ min(d1,d2,d̃1,d̃2).

Proof. The proof is similar to the proof of Theorem 8, except
that now vectors w′

1s are defined by the analog of Eq. (39)
which has g = (1, . . . ,1) with c components and more terms
with γ

(j )
s in the right-hand side, j = 1, . . . ,c. We need to show

that a nonzero w′
1s has wgt(w′

1s) � 2, which ensures that the
minimum distance of the code is at least 2d0/c.

With c > 2 and even, after the summation over all possible
shifts of the vector w′

1s with respect to the block structure
the symmetric term disappears, and we obtain the inequal-
ity c wgt(w′

1s) � c wgt(γ 1
s + γ 2

s + · · · + γ c
s ). The sum in the

right-hand side is a linear combination of rows of
∑

bT
i ; by

assumption, its weight is either �2 or zero. The only nontrivial
situation corresponds to the latter case with some γ 
1

s 
= 0. For
the sum to be zero, either there is an even number m of identical
vectors γ 
1

s = γ 
2
s = · · · = γ 
m

s , with m < c and all indices
different [this situation results in wgt(w′

1s) � (c − m) � 2
since both m and c are even and βs 
= 0], or there are at least
two pairs of unequal vectors γ 
1

s 
= γ 
2
s and γ 
3

s 
= γ 
4
s , with

γ 
2
s 
= γ 
4

s , which also gives wgt(w′
1s) � 2. �

In order to obtain codes with repeated structure (see
Fig. 2), one can start with two cyclic LDPC codes with
block lengths ni , i = 1,2, and the check polynomials
hi(x) that divide xni − 1. The polynomials hi(x) will
also divide xcni − 1, thus the corresponding circulant
parity-check matrix Hi of dimensions cni × cni will lead
to a code with repeated structure satisfying Theorem 9
since the corresponding generator polynomial is gi(x) =
(x(c−1)ni + x(c−2)ni + · · · + 1) (xni + 1)/hi(x), i = 1,2.

Example 4. Suppose we use the polynomial h(x) cor-
responding to the shortened Reed-Muller cyclic code with

FIG. 2. (Color online) Same as Fig. 1 for the [[294,18,8]] code

in Eq. (19) formed by circulant matrices H0
1 = ↔

H0
2 corresponding

to coefficients of the polynomial h(x) = 1 + x + x3 with c = 3 and
χ = 1. Two stabilizer generators are marked by red and blue arrows,
respectively, and two anticommuting logical operators are marked by
red and blue lines, respectively. All other stabilizer generators are
obtained by shifts over the same sublattice with periodicity in the
horizontal direction and shifted periodicity (shown by arrows) in the
vertical direction. In the shaded region, each gray square uniquely
corresponds to a different logical operator, thus 18 encoded logical
qubits. One can observe the tripling of the logical operators, thus
the overlap (green square) is also repeated three times. Note that
according to Consequence 7 the code distance is bounded by 4 �
d � 12; the actual d = 8 was found numerically.

parameters [2m − 1,m + 1,2m−1 − 1] in order to construct
circulant matrices H1 = H2 of dimensions 2(2m − 1) ×
2(2m − 1). According to Theorem 9, a code in Eq. (19) with
c = 2 and χ = 1 will have parameters [[4(2m − 1)2,2(m +
1)2,2(2m−1 − 1)]]. This family leads to weight limited LDPC
codes and up to m = 11 there is always a choice of polynomial
h(x) of weight 4 which leads to quantum LDPC code with
stabilizer generators of weight 8.

Example 5. Given two “small” cyclic codes [ni,ki,di]
with check polynomials hi(x), i = 1,2, we can construct a
c = 1 hypergraph-product quantum code with the parameters
[[2n1n2,2k1k2,d0]], d0 = min(d1,d2), a repeated even-c code
with the parameters [[2cn1n2,2k1k2,d]], 2d0 � d � cd0, or
a hypergraph-product code [[2c2n1n2,2k1k2,d0c]] using the
“large” cyclic codes with the same check polynomials and the
block lengths cni .

Note that in this example the code rate goes down compared
to the hypergraph-product code constructed from the “small”
cyclic codes and goes up compared to the hypergraph-product
code constructed from the “large” cyclic codes.

F. Planar qubit layout of hyperbicycle codes and encoding

The stabilizer generators corresponding to Eq. (19) can
be graphically represented on two rectangular regions cor-
responding to two sublattices. In case, when matrices H1

and H2 are square, the rectangular regions of sublattices
have the same dimensions and can be drawn together with
parameters c and χ corresponding to the number of square
blocks and boundary shift, respectively; see, e.g., Figs. 2 and 3.
Furthermore, in some cases, we can represent logical operators
by linelike operators with a possibility of using this layout for
encoding.

v v v vvvvvva b c d e c d e 
a b a b 

c d e 
FIG. 3. (Color online) Upper plot: visualization of a [[90,2,9]]

hyperbicycle code in Eq. (19) formed by 3 × 3 circulant matrices

H0
1 =

↔
H0

2 corresponding to coefficients of the polynomial h(x) =
1 + x, c = 5, and χ = 3. The boundaries are periodic if one
moves in the horizontal direction and shifted by χ = 3 blocks
(as shown by arrows) if one moves in the vertical direction.
Lower plot: a general block construction leading to rotated periodic
boundaries of hyperbicycle codes for c = 5 blocks and for the
shift χ = 3. This corresponds to α = 1 and β = 2 case of the
infinite series of block constructions with c = α2 + β2, χ = α + β,
and β = α + 1. In the case of toric code stabilizer generators, this
maps to a rotated toric code from Ref. [34], or to the t = 1 case of
the infinite series of block constructions with c = t2 + (t + 1)2 and
χ = 2t + 1 in Example 7.
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We start by considering the case c = 1 and χ = 1 cor-
responding to the hypergraph-product codes. The stabilizer
generators for the quantum code in Eq. (13) can be graphically
represented by two (dotted) lines living on different sublattices
with the dots (red and blue squares in Fig. 1 marked by arrows)
placed in the positions corresponding to 1s in the rows of the
binary matrices H1, H2, H̃1 = HT

1 , and H̃2 = HT
2 . For cyclic

codes, e.g., in Fig. 1, the relative position of dots stays the
same and we can translate each stabilizer generator over the
corresponding sublattice. In general, the form of stabilizer
generators is position dependent and the characteristic two-line
structure (see Fig. 1) ensures commutativity.

The logical operators Xj , Zj , j = 1, . . . ,k can be chosen
among the rows of the matrices,

X 1 = (H̃⊥
2 ⊗ Ẽ1,0), X 2 = (0,Ẽ2 ⊗ H̃⊥

1 ), (41)

and

Z1 = (E2 ⊗ H⊥
1 ,0), Z2 = (0,H⊥

2 ⊗ E1), (42)

where the index corresponds to the sublattice number on which
the logical operator lives and ⊥ stands for the orthogonal
space mod 2. It is convenient to choose the matrices H⊥

1 , H⊥
2 ,

HT
1

⊥, and HT
2

⊥ in the canonical row echelon form (which
may require some row and column permutation of the original
matrices H1 and H2). In such a case, the logical operators can
be represented by vertical and horizontal (dotted) lines that
have only one nonzero element in the region of the size k1 × k̃2

for the first sublattice and of the size k̃1 × k2 for the second
sublattice (shaded region in Fig. 1) resulting in k = k1k̃2 +
k̃1k2 logical qubits. Thus, for such a representation, each
physical qubit in the region of size k1k̃2 + k̃1k2 (shaded region
in Fig. 1) overlaps with only one logical qubit and can be used
for encoding. Note that in general the two sublattices cannot
be drawn together as they will have different dimensions for
nonsquare matrices H1 and H2. In such a case, the sublattices
can be represented by two different rectangular regions and
the stabilizer generators have one line per sublattice.

The hyperbicycle construction in Eq. (19) for arbitrary c and
χ has a block structure of several rectangular regions stitched
together with one of the periodic boundaries being shifted by
χ blocks (see Fig. 3, lower plot). The stabilizer generators
can be graphically represented by two (dotted) lines with the
dots (red and blue squares in Fig. 4) placed in the positions
corresponding to 1s in rows of the binary matricesH1,H2, H̃1,
and H̃2. For cyclic codes, e.g., in Fig. 4, the relative position of
dots stays the same and we can translate the stabilizer generator
with (shifted) periodic boundaries. Just like for the hypergraph
product codes, the form of stabilizer generators is position
dependent in the case of noncyclic codes.

Generally, the logical operators of hyperbicycle codes can-
not all be chosen to have a simple planar layout (see Example 6
below and Fig. 4, left). However, the simple structure of the
logical operators is preserved in the special case of CSS codes
with c odd and k

(1+x)
i = ki (see Theorem 3). Here, similar to

the c = 1 case, the logical operators Xj , Zj , j = 1, . . . ,k, can
be chosen among the rows of the matrices (41) and (42). The
only difference is that the logical operators are now repeated
c times, which can lead to codes with increased distance (see
Fig. 2). Again, one-to-one correspondence between a set of

FIG. 4. (Color online) Same as Fig. 1. Left: X and Z stabilizer
generators for the CSS hyperbicycle code [[900,50,14]] formed by
circulant matrices corresponding to coefficients of a polynomial
h(x) = 1 + x + x3 + x5 and c = 2, χ = 1. Right: a single stabilizer
generator of a [[289,81,5]] non-CSS hyperbicycle code in Eq. (16)
formed by symmetric circulant matrices corresponding to coefficients
of a polynomial h(x) = 1 + x + x3 + x6 + x8 + x9 and c = 1. The
division into two sublattices is impossible and all other stabilizer
generators are obtained by shifts over the light and dark gray qubits
with periodicity in the vertical direction and shifted periodicity
(shown by arrows) in the horizontal direction.

physical qubits (shaded regions in Figs. 1 and 2) and logical
qubits can be used for encoding.

Example 6. A CSS hyperbicycle code in Eq. (19) with
parameters [[900,50,14]] is obtained from circulant matrices

H0
1 = ↔

H0
2 corresponding to the polynomial h(x) = (1 + x +

x3 + x5), ni = 15, c = 2, χ = 1, and bi = ai . The correspond-
ing layout is shown in Fig. 4, left.

G. Codes from two circulant matrices

We note that any circulant matrix has the block form
required for the hyperbicycle construction in Eq. (19). Specif-

ically, the matrices H0
1 and

↔
H0

2 in Eqs. (23) and (24) can
correspond to any pair of circulant matrices of appropriate
size. Thus, well known families of cyclic binary codes can be
employed for this construction. As mentioned in the previous
section, this leads to planar qubit layouts where the stabilizer
generators are translationally invariant with (shifted) periodic
boundary conditions.

The choice of χ 
= 1 can lead to codes with increased
distance. This can be best seen on the example with the toric
code (Fig. 3) where by rearranging the qubits we can bring the
code into a new layout with proper periodic but rotated bound-
aries [34]. Then, it will be the Manhattan distance (defined on
blocks, e.g., of size 3 × 3 in Fig. 3) between the boundaries
that will actually determine the distance of the code.
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For a given area, the largest Manhattan distance can be
expected for a square. Let us choose a square with the edges
defined by the vectors L1 = (α,β) and L2 = (−β,α), with
mutually prime α > 0 and β > 0, i.e., gcd(α,β) = 1. There
exists an integer pair of α′, β ′ such that αα′ + ββ ′ = 1.
An equivalent domain on the plane can be also chosen
using the vectors L′

1 = (c,0) and L′
2 = (χ,1), where c =

α2 + β2 and χ = αβ ′ − βα′ are mutually prime. These then
define a geometric block construction of quantum codes
with rotated boundaries (see Fig. 3, lower plot). In addition,
this construction corresponds to a hyperbicycle code (19)
with c and χ given above. For the rotated toric code we
obtain the code parameters: n = cn2

1, k = 2, and the distance
d = (α + β)n1 or in terms of the distance bound in Theorem 5 ,
d = (α + β)d0/c.

Note that the described construction requires |χ | � α +
β > 1. (The example in Fig. 3 corresponds to α = 1, β = 2,
which gives c = 5 and the equality χ = α + β = 3.) Thus, for
codes equivalent to rotated toric codes this gives a distance
improvement compared to the general distance bound in
Theorem 5.

Example 7. If we take α = t , β = t + 1, t = 1,2, . . . , we
get c = t2 + (t + 1)2, χ = α + β = 2t + 1. A CSS family
of rotated toric codes is obtained when H0

1 corresponds
to the polynomial h(x) = (1 + x) (for H0

2 we use bi =
ai). By construction in Eq. (19) we obtain codes with
parameters [[2n2

1c,2,n1χ ]]. Explicitly for n1 = 2 we obtain
[[40,2,6]], [[104,2,10]], . . . , and for n1 = 3, [[90,2,9]],
[[234,2,15]], . . . .

As the following examples confirm, numerically we see that
χ > 1 can also produce codes exceeding the lower distance
bound in Theorem 5, and in some cases even saturate the upper
distance bound in Theorem 6.

Example 8. A [[90,8,8]] CSS hyperbicycle code is obtained
whenH0

1 corresponds to the classical cyclic code [15,4,8] with
the generator polynomial g(x) = (1 + x3 + x4) (forH0

2 we use
bi = ai), c = 5, and χ = 3.

Example 9. A [[90,10,7]] CSS hyperbicycle code is
obtained when H0

1 corresponds to the classical cyclic code
[15,5,7] with the check polynomial h(x) = (1 + x + x3 + x5)
(for H0

2 we use bi = ai), c = 5, and χ = 3.
Example 10. A [[126,8,10]] CSS hyperbicycle code is

obtained when H0
1 corresponds to the classical cyclic code

[21,5,10] with the check polynomial h(x) = (1 + x + x5) (for
H0

1 we use bi = ai), c = 7, and χ = 3. The same construction
with χ = 1 results in the code [[126,14,6]].

Example 11. The same construction starting with the clas-
sical cyclic code [30,8,8] with the check polynomial h(x) =
(1 + x2 + x8), c = 10, and χ = 3 gives a code [[180,16,8]],
while χ = 1 gives [[180,16,6]] with a smaller distance.

Example 12. The same construction starting with the
classical cyclic code [[30,8,8]] corresponding to the check
polynomial h(x) = (1 + x2 + x8) with c = 15 and χ = 2
gives a [[120,32,4]] CSS hyperbicycle code; χ = 1 gives a
code [[120,32,2]].

Note that in many cases the code rate goes up compared
to the hypergraph-product code constructed from the same
(“large”) cyclic codes, while the construction from the “small”
cyclic codes is not possible (cf. Example 5), e.g., this is the
case for Examples 7–12.

H. Non-CSS versions of hyperbicycle codes

We observe that when H1 = H̃1 and H2 = H̃2, the con-
struction in Eqs. (19) can be mapped to non-CSS codes in
Eq. (16) that in many cases have the same distance but half
the number of encoded and physical qubits. In particular, this
happens when χ = 1 and matrices H1 and H2 are symmetric.
By non-CSS hyperbicycle codes we then mean a result of the
mapping in Theorem 1 of the code in Eq. (19). The dimensions
of such codes can be readily found by applying Theorem 3
where s1 = s2 = 0.

Theorem 10. A quantum non-CSS code constructed from
matrices (25) such that H1 = H̃1 and H2 = H̃2 and the
stabilizer generator matrix

G = (Eb ⊗ H1|H2 ⊗ Ea) (43)

encodes k = ∑
l k

(pl )
1 k

(pl )
2 /k

(pl )
0 logical qubits into n = cn1n2

physical qubits, where pl(x) are all binary factors of xc − 1
such that k

(pl )
0 
= 0, including xc − 1 itself. The distance of

such a code is bounded by d � 
d0/c�, d0 ≡ min(d1,d2)
(the same notations as in Theorem 5). In addition, for every
pl(x), such that k

(pl )
1 > 0 and k

(pl )
2 > 0, the minimum distance

d of the code satisfies d � min(d (pl )
1 ,d

(pl )
2 ) (the same notations

as in Theorem 6).
Proof. The lower distance bound follows from the proof of

Theorem 5 given the fact that any code word of the original
quantum code has to have support on at least one of the
sublattices with weight exceeding 
d0/c�. The upper distance
bound in Theorem 6 also applies to non-CSS hyperbicycle
codes since by construction this bound involves only one
sublattice. �

Theorem 11. Suppose c is even, ai and bi in Eq. (21)
are such that k

(1+x)
i = ki , ri = ni and binary codes with

generator matrices
∑

ai and
∑

bi have distances at least 2.
Then quantum non-CSS code with generators in Eq. (19)
that have been reduced by construction in Eq. (16) has
parameters [[n1n2c,k1k2,d]] where (2/c)d0 � d � d0 and
d0 ≡ min(d1,d2).

Proof. The improved lower distance bound follows from
the proof of Theorem 8 given the fact that any code word of
the original quantum code has to have support on at least one
of the sublattices with weight exceeding (2/c)d0. �

For χ = 1 we can use palindromic check polynomials
h(x), i.e., hrev(x) = h(x), such that cn − deg h(x) is even, in
order to construct symmetric circulant matrices Hi from the
polynomial x[cn−deg h(x)]/2h(x).

Example 13. A [[289,81,5]] non-CSS hyperbicycle code
(see Fig. 4) is obtained from Eqs. (16), (19), and (25)
using symmetric circulant matrices H1 = H2 corresponding
to coefficients of the palindromic polynomial h(x) = 1 + x +
x3 + x6 + x8 + x9 where c = 1 and χ = 1.

V. CONCLUSIONS

We introduced and started to explore a general bipartite
ansatz for quantum CSS codes. Among the better-studied
families of quantum CSS codes, this ansatz can be used to
describe the bicycle codes [19], hypergraph-product codes
[27], Haah’s codes [37], the CSS codes constructed over higher
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alphabets [22,39], and it also can be used to construct a double-
size CSS code from an arbitrary non-CSS stabilizer code.

Within this framework, we introduced a large family of
hyperbicycle codes that includes as subclasses the best of
the known LDPC code families. The construction allows
for explicit upper and lower bounds on the code distance.
We also described a number of new LDPC code families
with finite rates and distances scaling as a square root of
block length. Our discussion is accompanied with geometrical
interpretations of the hyperbicycle codes which can facilitate
design and applications of such codes. The construction is
particularly useful for designing LDPC codes with relatively
small block lengths which is important since the original
hypergraph product codes have relatively poor parameters at
small block lengths. Furthermore, hyberbicycle codes allow
for code constructions with a wide range of parameters which
might be useful for designing fault-tolerant gates (e.g., gates
performed by code deformations).

Another advantage of hyperbicycle construction is that it
can be based on a pair of very well studied classical cyclic
codes. This leads to codes with good parameters up to limited
but relatively large block lengths (in general, cyclic codes with
asymptotic rates below one have poor asymptotic parameters).
The planar layout of thus constructed quantum codes possesses
translational invariance of stabilizer generators which may
simplify the implementation (see, e.g., Ref. [40]).

The quantum LDPC codes discussed in this work have
been shown to possess a finite noise threshold [28] since
the lower bound on the distance scales as a square root of
the block length. This threshold, however, corresponds to

the maximum-likelihood (ML) decoding. While an efficient
general-purpose decoder comparable with belief-propagation
remains unknown for quantum codes [20], at smaller error
rates efficient decoding is possible by employing the ideas
expressed in Ref. [28].

Even though the lower distance bounds presented in this
paper are in some cases inferior compared to the hypergraph-
product codes, we do not expect that this will have a significant
effect on the value of the noise threshold as the distance still
scales as a square root of the block length while the LDPC
structure of the stabilizer generators is preserved [28]. Given
that, we expect that one can achieve better encoding rates with
hyperbicycle codes compared to hypergraph product codes
without affecting the threshold.

Our results notwithstanding, there are several open ques-
tions in regard to the hyperbicycle codes. In particular, it
would be interesting to establish conditions under which
the hyperbicycle codes reach the upper distance bound.
Furthermore, the case when the block shift χ and the number
of blocks c are commensurate has not been analyzed. It would
also be interesting to explore the exact relation between the
hyperbicycle codes and the CSS codes constructed over higher
alphabets [22,39].

ACKNOWLEDGMENTS

We are grateful to I. Dumer and M. Grassl for multiple
helpful discussions. This work was supported in part by the US
Army Research Office under Grant No. W911NF-11-1-0027,
and by the NSF under Grant No. 1018935.

[1] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
R. Cleve, and I. L. Chuang, Phys. Rev. Lett. 85, 5452 (2000).

[2] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
M. H. Sherwood, and I. L. Chuang, Nature (London) 414, 883
(2001).

[3] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B.
Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer
et al., Nature (London) 432, 602 (2004).

[4] J. M. Martinis, Quantum Inf. Process. 8, 81 (2009).
[5] P. W. Shor, Phys. Rev. A 52, R2493 (1995).
[6] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).
[7] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 (1996).
[8] E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342

(1998).
[9] B. Rahn, A. C. Doherty, and H. Mabuchi, Phys. Rev. A 66,

032304 (2002).
[10] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys.

43, 4452 (2002).
[11] A. M. Steane, Phys. Rev. A 68, 042322 (2003).
[12] A. G. Fowler, C. D. Hill, and L. C. L. Hollenberg, Phys. Rev. A

69, 042314 (2004).
[13] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, Quantum

Inf. Comput. 4, 237 (2004).
[14] A. G. Fowler, Ph.D. thesis, The University of Melbourne, 2005.
[15] E. Knill, Nature (London) 434, 39 (2005).

[16] E. Knill, Phys. Rev. A 71, 042322 (2005).
[17] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504

(2007).
[18] M. S. Postol, arXiv:quant-ph/0108131v1 (unpublished).
[19] D. MacKay, G. Mitchison, and P. McFadden, IEEE Trans. Inf.

Theory 50, 2315 (2004).
[20] D. Poulin and Y. Chung, Quantum Inf. Comput. 8, 987

(2008).
[21] A. Couvreur, N. Delfosse, and G. Zémor, arXiv:1206.2656.
[22] K. Kasai, M. Hagiwara, H. Imai, and K. Sakaniwa, IEEE Trans.

Inf. Theory 58, 1223 (2012).
[23] A. Hutter, J. R. Wootton, and D. Loss, arXiv:1302.2669.
[24] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
[25] H. Bombin and M. A. Martin-Delgado, Phys. Rev. A 76, 012305

(2007).
[26] M. Freedman, D. Meyer, and F. Luo, in Computational

Mathematics (Chapman and Hall/CRC, Boca Raton, Florida,
2002), Chap. 12.

[27] J.-P. Tillich and G. Zemor, in ISIT 2009: IEEE International
Symposium on Information Theory (IEEE, New York, 2009),
pp. 799–803.

[28] A. A. Kovalev and L. P. Pryadko, Phys. Rev. A 87, 020304(R)
(2013).

[29] S. Aly, in Proceedings of the Global Communications Confer-
ence (IEEE, New York, 2008), pp. 1–5.

[30] J. Farinholt, arXiv:1207.0732.

012311-12

http://dx.doi.org/10.1103/PhysRevLett.85.5452
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/nature03074
http://dx.doi.org/10.1007/s11128-009-0105-1
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevA.55.900
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1126/science.279.5349.342
http://dx.doi.org/10.1126/science.279.5349.342
http://dx.doi.org/10.1103/PhysRevA.66.032304
http://dx.doi.org/10.1103/PhysRevA.66.032304
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1103/PhysRevA.68.042322
http://dx.doi.org/10.1103/PhysRevA.69.042314
http://dx.doi.org/10.1103/PhysRevA.69.042314
http://dx.doi.org/10.1038/nature03350
http://dx.doi.org/10.1103/PhysRevA.71.042322
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://arXiv.org/abs/arXiv:quant-ph/0108131v1
http://dx.doi.org/10.1109/TIT.2004.834737
http://dx.doi.org/10.1109/TIT.2004.834737
http://arXiv.org/abs/arXiv:1206.2656
http://dx.doi.org/10.1109/TIT.2011.2167593
http://dx.doi.org/10.1109/TIT.2011.2167593
http://arXiv.org/abs/arXiv:1302.2669
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevA.76.012305
http://dx.doi.org/10.1103/PhysRevA.76.012305
http://dx.doi.org/10.1103/PhysRevA.87.020304
http://dx.doi.org/10.1103/PhysRevA.87.020304
http://arXiv.org/abs/arXiv:1207.0732


QUANTUM KRONECKER SUM-PRODUCT LOW-DENSITY . . . PHYSICAL REVIEW A 88, 012311 (2013)

[31] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane,
IEEE Trans. Inf. Theory 44, 1369 (1998).

[32] D. Gottesman, Ph.D. thesis, Caltech, 1997.
[33] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098

(1996).
[34] A. A. Kovalev and L. P. Pryadko, in ISIT 2012: IEEE Inter-

national Symposium on Information Theory (IEEE, New York,
2012), pp. 348–352.

[35] K. Feng and Z. Ma, IEEE Trans. Inf. Theory 50, 3323 (2004).

[36] A. A. Kovalev, I. Dumer, and L. P. Pryadko, Phys. Rev. A 84,
062319 (2011).

[37] J. Haah, Phys. Rev. A 83, 042330 (2011).
[38] S. Litsyn and V. Shevelev, IEEE Trans. Inf. Theory 48, 887

(2002).
[39] I. Andriyanova, D. Maurice, and J. Tillich, in ISIT 2012:

IEEE International Symposium on Information Theory (IEEE,
New York, 2012), pp. 343–347.

[40] A. De and L. P. Pryadko, Phys. Rev. Lett. 110, 070503 (2013).

012311-13

http://dx.doi.org/10.1109/18.681315
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1109/TIT.2004.838088
http://dx.doi.org/10.1103/PhysRevA.84.062319
http://dx.doi.org/10.1103/PhysRevA.84.062319
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1109/18.992777
http://dx.doi.org/10.1109/18.992777
http://dx.doi.org/10.1103/PhysRevLett.110.070503



