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Unifying geometric entanglement and geometric phase in a quantum phase transition
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Geometric measure of entanglement and geometric phase have recently been used to analyze quantum phase
transition in the XY spin chain. We unify these two approaches by showing that the geometric entanglement and
the geometric phase are respectively the real and imaginary parts of a complex-valued geometric entanglement,
which can be investigated in typical quantum interferometry experiments. We argue that the singular behavior of
the complex-value geometric entanglement at a quantum critical point is a characteristic of any quantum phase
transition, by showing that the underlying mechanism is the occurrence of level crossings associated with the
underlying Hamiltonian.
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Quantum phase transitions (QPTs) are qualitative changes
in the properties of many-body systems driven by quantum
fluctuations at zero temperature. A key feature to understand
the nature of QPTs is the quantum correlations between
the system degrees of freedom, which at the critical point
bring about an intersection of the ground-state and excited-
state energy levels. While QPTs have traditionally been
characterized by appropriate correlation functions [1,2], many
researchers have recently addressed this problem from a
quantum information perspective. One idea along this line
is to use measures of entanglement to characterize QPTs.
Indeed, there has been a great deal of work analyzing properties
of quantum entanglement in many-body systems undergoing
QPT [3–5]. Another idea is based on the fact that nontrivial
geometric phases (GPs) are strongly affected by quantum
and classical correlations residing in the many-body quantum
states [6], and especially by the level degeneracies associated
with QPTs in such systems. Therefore GPs can also be used to
detect the presence of a QPT. Relations between GP and QPTs
have been established theoretically [7–9] and experimentally
in NMR [10].

In this paper, we examine the geometric measure of
entanglement (GE) [4,11,12] and GPs in the vicinity of QPT
in an XY spin chain. We determine the relation between these
geometric objects, allowing us to identify them as the real and
imaginary part of a single measurable quantity, which we call
the complex-valued GE. We demonstrate that the complex GE
is accessible in interferometry experiments. The established
relation is valid for a general quantum many-body system. At
a quantum critical point both real and imaginary parts of the
complex-valued GE display the same singular behavior, which
in turn is closely associated with the singular behavior of the
quantum geometric tensor triggered by a level degeneracy.
This provides a universal approach to the study of quantum
critical phenomena.

Consider the one-dimensional XY model system with
N sites in a transverse magnetic field. The corresponding
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Hamiltonian reads

H (r,h) = −
N∑

j=1

(
1 + r

2
σx

j σ x
j+1 +1 − r

2
σ

y

j σ
y

j+1 + hσ z
j

)
,

(1)

with a periodic boundary condition such that the first and
(N + 1)th sites are identified. Here, r is the anisotropy
parameter, h is the magnetic field strength, and σ k

j , k = x,y,z,
are the standard Pauli operators of the j th spin. In the
thermodynamic limit (N → ∞), the system described by
Eq. (1) undergoes a QPT at h = hc = 1. The full phase diagram
can be found in Refs. [2,13]. In the anisotropy range 0 < r � 1
the system belongs to the Ising universality class. The isotropic
case r = 0 corresponds to the XX model, which belongs
to the Berezinsky-Kosterlitz-Thouless universality class. The
standard procedure to solve the eigenvalue problem of H (r,h)
is to convert the spin operators into fermionic operators, using
successively Jordan-Wigner, Fourier, and Bogoliubov trans-
formations [14]. The ground state in the even-fermion-number
sector can be expressed in terms of fermionic modes cj as

|ψ(r,h)〉

=
m< N−1

2∏
m=0

[cos θm(r,h) + i sin θm(r,h)c†mc
†
N−m−1]|↑...↑〉, (2)

with tan 2θm(r,h) = r sin π(2m+1)
N

/(h − cos π(2m+1)
N

) [4]. For
0 < r � 1 the ground state in the thermodynamic limit is
doubly degenerate in the ferromagnetic regime h < 1 and
singly degenerate for h > 1, with the critical value for hc = 1
being a point of conical intersection.

Entanglement of the ground state |ψ(r,h)〉 can be measured
by approximating it by the closest pure product state [12]. This
state is given by the maximal overlap

�max(r,h) = max
�

|〈�|ψ(r,h)〉| , (3)

over all pure product states �. The resulting number �max(r,h)
is the entanglement eigenvalue of the XY ground state [12].
GE of the ground state is quantified via [4]

Elog2
[ψ(r,h)] = − log2 �2

max(r,h), (4)
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which in the thermodynamic limit is characterized by the
geometric entanglement density

ε(r,h) = lim
N→∞

εN (r,h), (5)

where εN (r,h) = Elog2
[ψ(r,h)]/N is the entanglement per site.

Using the translational symmetry of |ψ(r,h)〉, the closest pure
product state for each value of r and h takes the form [4]

|�(ξ )〉 = ⊗N
j=1

[
cos

(
ξ

2

)
|↑〉j + sin

(
ξ

2

)
|↓〉j

]
, (6)

where the parameter ξ is chosen so as to maximize the overlap,
i.e., �max(r,h) = maxξ |〈�(ξ )|ψ(r,h)〉| ≡ |〈�(ξmax)|ψ(r,h)〉|.
By using Eq. (5), one obtains the GE density [4]

ε(r,h) = − 2

ln 2
max

ξ

∫ 1/2

0
dμ ln[cos θ (μ,r,h) cos2(ξ/2)

+ sin θ (μ,r,h) sin2(ξ/2) cot πμ], (7)

with tan 2θ (μ,r,h) = r sin 2πμ/(h − cos 2πμ).
It has been shown [4] that features of quantum criticality,

such as universality, critical exponents, and scaling, are
captured by the singular behavior of the GE of the XY ground
state. The critical exponents for different universality classes
have been found by scaling analysis of divergences at the
singular points of the GE density. The singular behavior of the
GE density at the critical point hc = 1 is shown in Fig. 1, where
∂εN (r,h)/∂h has been plotted as function of magnetic field h

for different values of r in the thermodynamic limit. In the
inset we plot the same quantity for an Ising model for finite
values of N . The cusp at hs > 1 for 0 < r � 1, coalescing
with the singularity at hc = 1 as r → 0, is an interesting feature
related to properties of the closest product state �(ξmax). For
each 0 � r � 1 there is a finite value of h = hs for which
ξmax vanishes and �(ξmax) is polarized in the z direction [4].
This state remains the closest pure product state for all h > hs ,
causing a discontinuity jump in the second derivative of ε(r,h)
at h = hs .

Recently, a generic connection between GPs and QPTs has
been identified [7]. A scaling analysis of GP of the XY ground
state reveals similar information about quantum criticality as
the GE density. The top panel in Fig. 2 shows the behavior of
the GP per site β

g

N (r,h) of the XY ground state, accumulated

FIG. 1. (Color online) Derivative of the ground-state GE density
ε(r,h) of the XY model as a function of the magnetic field h in the
thermodynamic limit. Solid curve: Ising limit (r = 1); dashed curve:
anisotropic (r = 0.5) XY model; and dot-dashed curve: anisotropic
(r = 0.05) XY model. The inset corresponds to the Ising limit for
different finite lattice sizes N = 11,18,31,64.

FIG. 2. (Color online) Top panel: Derivative of the GP density,
GP per particle, corresponding to cyclic evolution of the XY ground
state given in Eq. (8), as a function of the magnetic field h in the
thermodynamic limit. Lower panel: h derivative of the difference
between GP densities corresponding to the evolutions given in Eqs. (8)
and (9), plotted as a function of magnetic field h in the thermodynamic
limit. Solid curve: Ising limit (r = 1); dashed curve: anisotropic
(r = 0.5) XY model; dot-dashed: anisotropic (r = 0.05) XY model.
The insets correspond to the Ising limits for different finite lattice
sizes N = 11,18,31,64.

by adiabatically rotating each spin around the z axis via

C(r,h)
g : [0,π ] 
 φ → Utot(φ)|ψ(r,h)〉〈ψ(r,h)|U †

tot(φ), (8)

where Utot(φ) = ⊗N
j=1Uj (φ) = ⊗N

j=1 exp(
iσ z

j φ

2 ), for different
lattice size N . βg(r,h) = limN→∞ β

g

N (r,h) is the GP density,
i.e., the GP per site in the thermodynamic limit.

The lower panel of Fig. 2 displays the behavior of the
difference between the GPs per site associated with C(r,h)

g and
the evolution

C(r,h)
p : [0,π ] 
 φ → Utot(φ)|�(r,h)〉〈�(r,h)|U †

tot(φ) (9)

of the closest pure product state |�(r,h)〉 ≡ |�(ξmax)〉. C(r,h)
p

is a path of pure product states along which each instant state
is the closest pure product state of the corresponding instant
ground state along the path C(r,h)

g . The entanglement is fixed
along this pair of paths. The associated GP difference is in this
sense related to the entanglement residing in the initial ground
state |ψ(r,h)〉.

In the thermodynamic limit, we obtain the GP densities

βg(r,h) = lim
N→∞

β
g

N (r,h) = 2π

∫ 1/2

0
sin2 θ (μ,r,h)dμ,

(10)
βp(r,h) = lim

N→∞
β

p

N (r,h) = 2π sin2(ξmax/2),

corresponding to C(r,h)
g and C(r,h)

p , respectively.
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The GP density difference is

β(r,h) ≡ βg(r,h) − βp(r,h). (11)

For 0 < r � 1, β(r,h) displays the same (Ising universality
class) critical behavior at h = hc as ε(r,h). Interestingly, even
the cusp in ε(r,h) at hs > hc is captured by β(r,h) [now
in the form of a discontinuous jump in the first derivative of
β(r,h)], while the ground-state GP density βg(r,h) is smooth
on this h interval.

For the XX model (r = 0), we observe that β(0,h) = 0
and therefore ∂

∂h
β(0,h) = 0 for the specific evolution oper-

ator Utot(φ) [15]. On the other hand, as indicated in the lower
panel of Fig. 2, ∂

∂h
β(r,h) is singular at h = hc = 1 when

r �= 0. Thus,

lim
r→0

∂β(r,h)

∂h

∣∣∣∣
h=hc

�= dβ(0,h)

dh

∣∣∣∣
h=hc

, (12)

which shows that the XX criticality is detected by a nonsmooth
contractible phase difference. Arguments along this line have
been used in Refs. [8,16] to locate the criticality of XX model
by using GP. From the analysis of Ref. [4], we see that also
∂ε(r,h)/∂r scales differently for r �= 0 and r = 0 near the
critical point. Just as in the case of GE density, the nature of
Eq. (12) identifies the different universality classes of the XY

spin chain.
We now give a unifying operational interpretation of GP

and GE for the XY system, in the context of interferometry.
Let |0〉,|1〉 span the state space of an auxiliary qubit, playing
the role of the two interferometer arms. Prepare the initial state
|�i〉 = 1√

2
(|0〉 + |1〉)|ψ(r,h)〉. In the |1〉 arm, project onto the

product state |�(ξ )〉 given in Eq. (6). The two spin chain states
|ψ(r,h)〉 and |�(ξ )〉 are exposed to the parallel transporting
unitary operators U

‖
ψ (φ) = ⊗N

j=1e
i
2 φ(σ z

j −〈ψ(r,h)|σ z
j |ψ(r,h)〉) and

U
‖
�(φ) = ⊗N

j=1e
i
2 φ(σ z

j −〈�(ξ )|σ z
j |�(ξ )〉), respectively, where φ ∈

[0,π ]. Note that U
‖
ψ (φ) and U

‖
�(φ) are the same uni-

tary up to an overall phase factor, which assures that
|〈�(ξ )|U ‖†

� U
‖
� |�(r,h)〉| for given r and h is a function of ξ

only. The resulting state U
‖
�(π )|�(ξ )〉 in the |1〉 arm is parallel

transported along the shortest geodesic back to |�(ξ )〉, while a
U(1) shift e−if is applied to the |0〉 arm. Finally, the two arms
are brought back to interfere, resulting in the final state,

|�f 〉 = 1
2 |0〉[ei(ϕg−f )|ψ(r,h)〉 + eiϕp |�(ξ )〉〈�(ξ )|ψ(r,h)〉]
+ · · · , (13)

with ϕg and ϕp being the GPs associated with the evolution of
|ψ(r,h)〉 and |�(ξ )〉, respectively. The intensity in the |0〉 arm
becomes

I0 = 1
4 [1 + |〈�(ξ )|ψ(r,h)〉|2] + 1

2 Re[A(r,h; ξ )e−if ], (14)

where

A(r,h; ξ ) = 〈ψ(r,h)|e−iϕp |�(ξ )〉〈�(ξ )|eiϕg |ψ(r,h)〉
= |〈�(ξ )|ψ(r,h)〉|2 eiϕ. (15)

Here, |A(r,h; ξ )| = |〈�(ξ )|ψ(r,h)〉|2 and arg A(r,h; ξ ) = ϕ

characterize the visibility and phase shift of the interfer-
ence fringes obtained by varying f . Note that A(r,h; ξ )
is unchanged under any local gauge transformation and
reparametrization of the paths. The entanglement eigenvalue

�max(r,h) and the GP difference ϕ(r,h) associated with C(r,h)
g

and C(r,h)
p can be read-out from the interference fringes by

tuning the single parameter ξ to the value ξmax giving the
maximal visibility.

Following the procedure leading to GE, we introduce a
complex-valued GE, being defined as the following extensive
entanglement sensitive quantity:

Ec
log2

[ψ(r,h)] = − log2 A(r,h; ξmax)

= Elog2
[ψ(r,h)] − i

ϕ(r,h)

ln 2
. (16)

The properties of the quantum critical point are characterized
by both the real and imaginary parts of the complex-valued
GE density:

εc(r,h) = lim
N→∞

1

N
Ec

log2
[ψ(r,h)] = ε(r,h) − i

β(r,h)

ln 2
. (17)

The GE and GP densities are thus two different sides of the
same coin: the complex-valued GE density εc(r,h).

Let us now generalize the above ideas to a generic N -body
system. Assume that the system is prepared in the state |�〉
and thereafter evolves around a loop C� generated by a one-
parameter family of local unitary operators U (t) = ⊗N

j Uj (t),
with Uj (t) acting on subsystem j . The closest product state
|�〉 evolves under the same U (t). Note that the resulting C�

is in general an open path. Let ϕ(�) = ϕ(�) − ϕ(�) be the
GP difference associated with paths C� and C�. By following
the above interferometer scheme, the interference fringes are
characterized by

A(�) = �2
max(�)eiϕ(�), (18)

with |�〉 chosen to maximize the visibility. Similar to the XY

case discussed above, A(�) can be used to define complex-
valued GE of the N -body system prepared in �. Furthermore,
A(�) can be interpreted in terms of the Hermitian metric T
on the projective state manifold P(H) [17]. This metric tensor
is defined as T (v,u) = 〈v|(1 − |ψ〉〈ψ |)|u〉 for tangent vectors
u and v at a state |ψ〉〈ψ | ∈ P(H). We can write T =G − iF ,
where G is the Riemannian metric providing the Fubini-Study
measure of distance inP(H) andF is the symplectic curvature
2-form responsible for the GP. Let ds2 = G(v,v) for each
tangent vector v to P(H) denote the square of the line element
associated with metric G. Then, we have

�max(�) = 1 − 1

2

[∫
G

ds

]2

, ϕ(�) =
∫

S

F , (19)

where G is a geodesic in state space connecting � and �, and S

is the oriented surface with boundary ∂S = C� ∗ G ∗ G−1
� ∗

C−1
� ∗ G−1. The inverse denotes the reverse direction along

the corresponding path (see Fig. 3). Equation (19) provides a
physical realization of the Hermitian metric T in terms of the
complex-valued GE, which is accessible in an interferometer.

A general relation between QPTs and the geometrical
objects ds and F have been pointed out in Refs. [7,18],
where the external parameter λ ∈ M was incorporated into
the system. This relation can be understood basically by
pulling back the Hermitian metric T on M via the map
�0 : M 
 λ −→ |ψ0(λ)〉〈ψ0(λ)| ∈ P(H), where |ψ0(λ)〉 is
the unique ground state of the corresponding Hamiltonian
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FIG. 3. (Color online) Paths C� and C� of many-body state �

and its closest product state �, respectively. G is a geodesic in state
space projecting � onto �.

H (λ). For a coordinate system on M, the components of the
pull-back tensor T = �∗

0T are

Tμν =
∑
n�=0

〈ψ0(λ)|∂μH |ψn(λ)〉〈ψn(λ)|∂νH |ψ0(λ)〉
[E0(λ) − En(λ)]2

, (20)

where ψn(λ) are eigenstates of the system and the indices
μ,ν = 1, . . . ,dimM are labeling the coordinates of M. The
tensor T is known as quantum geometric tensor, whose
imaginary part is the Berry curvature on M [19] and the real
part provides an approximation of the fidelity of two ground
states associated to neighboring points on M [18]. Unlike
the physical interpretation of T , the above interpretation of T
as complex-valued GE is exact and does not depend on any
approximation.

The energy denominators En(λ) − E0(λ) in Eq. (20) show
that in the thermodynamic limit, ReT and ImT will show a
singular behavior at the QPT, as a QPT occurs at level crossing
or avoided level crossing. This singularity is then reflected in

�max[ψ0(λ)] and ϕ[ψ0(λ)] through the expressions given in
Eq. (19). Therefore it can be captured by both GE and GP
difference, which are respectively the real and imaginary parts
of the complex-valued GE. This source of singularity has been
brought up in the Berry phase and fidelity approaches [7,18].
Our analysis suggests that the critical behavior at QPT in the
GE and thus in the complex-valued GE of a generic many-body
ground state comes from the same source.

In summary, we have established a unifying connection
between the GP and the GE in a generic many-body system.
They are respectively the real and imaginary part of a gener-
alized complex-valued GE and they both become singular at
a QPT. We have given an exact geometrical interpretation of
the complex-valued GE in terms of the induced Hermitian
metric on the projective Hilbert state space. Finally, we
have proposed one common source for the critical behavior
of the GE at any QPT. The approach presented here can
be tested experimentally in an interferometry setup, where
the geometric entanglement would then yield the visibility
of the interference fringes, whereas the geometric phase
would describe the phase shifts. The resulting interference
fringes would therefore display large fluctuations at the critical
point. A test-bed experiment to demonstrate the relevance of
the complex-valued geometric entanglement in translational
symmetric few-qubit ground states would be within reach in,
e.g., NMR systems.
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H.-H. Tu, ibid. 84, 064409 (2011); W. Son, L. Amico, R. Fazio,
A. Hamma, S. Pascazio, and V. Vedral, Europhys. Lett. 95, 50001
(2011).

[6] M. S. Williamson and V. Vedral, Phys. Rev. A 76, 032115
(2007).

[7] S. L. Zhu, Phys. Rev. Lett. 96, 077206 (2006).
[8] A. C. M. Carollo and J. K. Pachos, Phys. Rev. Lett. 95, 157203

(2005).

[9] G. Chen, J. Li, and J.-Q. Liang, Phys. Rev. A 74, 054101 (2006);
H. T. Cui, K. Li, and X. X. Yi, Phys. Lett. A 360, 243 (2006);
L.-C. Wang, J.-Y. Yan, and X. X. Yi, Chin. Phys. B 19, 040512
(2010); J. Lian, J.-Q. Liang, and G. Chen, Europhys. J. B 85,
207 (2012).

[10] X. Peng, S. Wu, J. Li, D. Suter, and J. Du, Phys. Rev. Lett.
105, 240405 (2010); F. M. Cucchietti, J.-F. Zhang, F. C.
Lombardo, and P. I. Villar, and R. Laflamme, ibid. 105, 240406
(2010).

[11] A. Shimony, Ann. NY Acad. Sci. 755, 675 (1995); D. C. Brody
and L. P. Hughston, J. Geom. Phys. 38, 19 (2001).

[12] T.-C. Wei and P. M. Goldbart, Phys. Rev. A 68, 042307 (2003).
[13] E. Barouch and B. M. McCoy, Phys. Rev. A 3, 786

(1971).
[14] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (NY) 16, 407

(1961); E. Barouch and B. M. McCoy, Phys. Rev. A 2, 1075
(1970); S. Katsura, Phys. Rev. 127, 1508 (1962).

[15] Note that the GE density ε(0,h) vanishes above the critical point
h > hc = 1, while it is positive below hc [4]. So, |ψ(0,h)〉 and
|�(0,h)〉 coincide only above hc; below hc these two states
differ and may therefore pick up different GPs under general
local unitary evolutions that differ from Utot(φ). Therefore

012310-4

http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1103/PhysRevA.66.032110
http://dx.doi.org/10.1103/PhysRevA.66.032110
http://dx.doi.org/10.1103/PhysRevA.71.060305
http://dx.doi.org/10.1103/PhysRevLett.100.130502
http://dx.doi.org/10.1103/PhysRevLett.101.025701
http://dx.doi.org/10.1103/PhysRevB.83.201101
http://dx.doi.org/10.1103/PhysRevB.84.064409
http://dx.doi.org/10.1209/0295-5075/95/50001
http://dx.doi.org/10.1209/0295-5075/95/50001
http://dx.doi.org/10.1103/PhysRevA.76.032115
http://dx.doi.org/10.1103/PhysRevA.76.032115
http://dx.doi.org/10.1103/PhysRevLett.96.077206
http://dx.doi.org/10.1103/PhysRevLett.95.157203
http://dx.doi.org/10.1103/PhysRevLett.95.157203
http://dx.doi.org/10.1103/PhysRevA.74.054101
http://dx.doi.org/10.1016/j.physleta.2006.08.040
http://dx.doi.org/10.1088/1674-1056/19/4/040512
http://dx.doi.org/10.1088/1674-1056/19/4/040512
http://dx.doi.org/10.1103/PhysRevLett.105.240405
http://dx.doi.org/10.1103/PhysRevLett.105.240405
http://dx.doi.org/10.1103/PhysRevLett.105.240406
http://dx.doi.org/10.1103/PhysRevLett.105.240406
http://dx.doi.org/10.1111/j.1749-6632.1995.tb39008.x
http://dx.doi.org/10.1016/S0393-0440(00)00052-8
http://dx.doi.org/10.1103/PhysRevA.68.042307
http://dx.doi.org/10.1103/PhysRevA.3.786
http://dx.doi.org/10.1103/PhysRevA.3.786
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1103/PhysRevA.2.1075
http://dx.doi.org/10.1103/PhysRevA.2.1075
http://dx.doi.org/10.1103/PhysRev.127.1508


UNIFYING GEOMETRIC ENTANGLEMENT AND GEOMETRIC . . . PHYSICAL REVIEW A 88, 012310 (2013)

|β(0,h < hc)| � 0, while β(0,h > hc) = 0 for a general
local unitary evolution.

[16] A. Hamma, arXiv:quant-ph/0602091.
[17] J. P. Provost and G. Vallee, Commun. Math. Phys. 76, 289

(1980).

[18] L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. 99, 095701
(2007); P. Zanardi, P. Giorda, and M. Cozzini, ibid. 99, 100603
(2007).

[19] M. V. Berry, Proc. R. Soc. A 329, 45
(1984).

012310-5

http://arXiv.org/abs/arXiv:quant-ph/0602091
http://dx.doi.org/10.1007/BF02193559
http://dx.doi.org/10.1007/BF02193559
http://dx.doi.org/10.1103/PhysRevLett.99.095701
http://dx.doi.org/10.1103/PhysRevLett.99.095701
http://dx.doi.org/10.1103/PhysRevLett.99.100603
http://dx.doi.org/10.1103/PhysRevLett.99.100603
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023



