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Coherent time evolution and boundary conditions of two-photon quantum walks
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Multiphoton quantum walks in integrated optics comprise an attractive controlled quantum system, that can
mimic less readily accessible quantum systems and exhibit behavior that cannot in general be accurately replicated
by classical light without an exponential overhead in resources. The ability to observe the time evolution of such
systems is important for characterizing multiparticle quantum dynamics—notably this includes the effects of
boundary conditions for walks in spaces of finite size. Here we demonstrate the coherent evolution of quantum
walks of two indistinguishable photons using planar arrays of 21 evanescently coupled waveguides fabricated in
silicon oxynitride technology. We compare three time evolutions, that follow closely a model assuming unitary
evolution, corresponding to three different lengths of the array—in each case we observe quantum interference
features that violate classical predictions. The longest array includes reflecting boundary conditions.
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I. INTRODUCTION

Random walks describe stochastic motion of a particle
around a discrete space and are widely applied as a statistical
tool in areas ranging from genetics to economics. The quan-
tum mechanical version—quantum walks—is an interference
phenomenon of quantum particles that exhibits distinctly
different dynamics. Quantum walks on many graphs exhibit
ballistic propagation of the walker’s probability distribution,
while many trials of a classical random walk will build
a distribution localized around the initial position [1]—a
one-dimensional quantum walk is a typical example. For
certain tasks, quantum walk dynamics are beneficial and
have inspired new quantum algorithms [2] and approaches
to universal quantum computing by realizing quantum walks
on a finite set of graphs [3]; in this setting, quantum walks
are traditionally thought of as being simulated on a quantum
computer. Quantum walks are also a physical phenomena in
their own right, describing for example evolution in solid-state
systems [4,5] and transport phenomena in biomolecules [6]—
all such systems are finite and therefore exhibit either periodic,
absorbing, reflecting, or cyclic boundary conditions which
have been treated theoretically, for example [7,8].

There are two main models of quantum walks [1]—
continuous time and discrete time, of which single walker ex-
amples have been demonstrated experimentally using trapped
ions [9–11], optical resonators [12], NMR [13,14], single
photons in bulk [15,16] and fiber optics [17,18], and laser light
in coupled waveguide arrays [19]. The observable dynamics
of single walkers can be described by either single-particle
quantum mechanics or classical wave mechanics [20], as
demonstrated by optical quantum walks using laser light.
When multiple indistinguishable particles undergo a quantum
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walk, correlations occur that cannot in general be explained or
mimicked with classical physics, without either sacrificing vis-
ibility in observable features [21]—quantified by an inequality
relating correlated outcomes—or introducing a factorially
increasing number of experiments [22] or resources. The
latter approach has been recently adopted with optical fibers
and laser light [23]. Two-particle quantum walks [21] have
been demonstrated with photons guided in integrated optics:
Indistinguishable photons have lead to quantum correlations
in a planar [24] and a circular [25] array of evanescently
coupled waveguides; polarization entangled quantum walks
have recently been demonstrated and shown to emulate the
quantum interference statistics of fermions, bosons, and the
intermediate regime [26,27].

Here we measure three distinct time steps of a two-photon
continuous-time quantum walk in three arrays of 21 waveg-
uides, with identically designed coupling and propagation
parameters, integrated on a single chip. The length of each
array z is varied, to provide the mechanism for observing
multiphoton dynamics in time (z = ct for speed of light c in
the structure). The longest time step exhibits boundary effects
from photons being reflected at the outer waveguides. In all
three cases, we observe quantum interference that violates an
inequality that relates correlations between different waveg-
uides and assumes classical light as the input [21].

II. THEORETICAL MODEL

Photons propagating in a planar array of N evanescently
coupled single mode waveguides realize a quantum walk on a
one-dimensional lattice [see Fig. 1(a) for N = 21]. Assum-
ing nearest-neighbour coupling from the evanescent fields
between waveguides j and j ± 1 (amplitude κj,j±1 = κj±1,j )
and a waveguide propagation constant βj , the Hamiltonian is
modeled with

Ĥ = c

N∑
j=1

βja
†
j aj + κj,j−1a

†
j−1aj + κj,j+1a

†
j+1aj , (1)
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where a
†
j and aj are the bosonic creation and annihilation

operators for a photon in waveguide j and for uniform arrays
κi,j and βj are constant.

Time evolution of a given state |ψ(t)〉 is determined by
the unitary operator U (t) = exp(−iH t) according to |ψ(t)〉 =
U (t) |ψ(t0 = 0)〉. The transition amplitude from the initial
state of a particle in waveguide j (a†

j |0〉 = |1〉j ) at time t0 = 0

to the state of a particle in waveguides j ′ (a†
j ′ |0〉 = |1〉j ′)

at time t is then given by Uj ′,j (t) = 〈1|j ′ exp(−iH t) |1〉j ,
yielding the single-particle transition probability:

pj ′,j (t) = |Uj ′,j (t)|2, (2)

which also describes the photon density distribution one
expects in experiments with coherent light.

Quantum correlations occur in the output state of the
quantum walk of multiple indistinguishable particles [21].
From injecting a photon pair into waveguides k and j , the
probability to detect one photon in waveguide j ′ coincident
with detecting one photon in waveguide k′ is given by the
two-photon correlation function [28]:

�
(j,k)
j ′,k′ (t) = 1

1 + δj ′,k′
|Uj ′,j (t)Uk′,k(t) + Uk′,j (t)Uj ′,k(t)|2. (3)

Nonclassical features emerge from interference of the complex
probability amplitudes inside the | · |2. Equation (3) with

FIG. 1. (Color) Waveguide structure for measuring time evolu-
tion. (a) Graph representing the planar array of 21 waveguides. (b)
Chip with the three measured waveguide arrays. One can see the three
input waveguides for each array, followed by the narrow coupling
region and the spreading to the output at the top of the chip. (c)
Schematic of the waveguide structure; the waveguides run parallel
within the coupling region and bend to the input and output separation
uniformly.

unitary operator U is the theoretical description to which we
compare our experimental results. The correlation function
of distinguishable particles is treated using classical proba-
bility theory, multiplying and summing the possible single-
photon transition probabilities: �

′(j,k)
j ′,k′ (t) = pj ′,j (t)pk′,k(t) +

pk′,j (t)pj ′,k(t). To distinguish between two-photon quantum
interference experiments and any classical treatment of light,
Ref. [21] defined the inequality

Vj,k(t) = 2

3

√
�cl

j,j (t)�cl
k,k(t) − �cl

j,k(t) < 0, (4)

which is only violated by the interference of indistinguishable
photons [24].

III. EXPERIMENTAL SETUP

The quantum walk Hamiltonian Eq. (1) is implemented with
waveguide arrays fabricated in silicon oxynitride (SiOxNy)
with a designed refractive index contrast of 4.4%. This high
index contrast enables fabrication of micron sized single
mode waveguides which are pitched at 2.8 μm within the
coupling region in order to achieve sufficient mode overlap
for nearest-neighbor coupling. The waveguides are designed
with a constant height of 0.6 μm and width of 1.8 μm. Three
waveguide arrays with coupling region lengths z = 350, 700,
and 1050 μm were fabricated on a compact 5-mm-long chip

FIG. 2. Single-photon evolution. (a) Simulated probability distri-
bution for a single-photon walk starting in the middle of the array at
waveguide number 11. (b–d) Three measured intensity distributions
I normalized to the total intensity for the arrays of (b) 350 μm,
(c) 700 μm, and (d) 1050 μm.
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(Fig. 1) and measured to simulate three values of time evolution
parameter t = z/c.

Identical, horizontally polarized 808-nm photons generated
from a type-I down conversion source (see Appendix B) are
launched into each of the three arrays using a butt-coupled
array of polarization maintaining, single mode optical fiber
with a standard pitch of 250 μm; this addresses the input of
the array by bending the input waveguides to a separation
of 250 μm (with a maximum bend radius of 600 μ m).
The output of the array is similarly addressed by bending
the output waveguides to a separation of 125 μm and butt
coupling the output chip to a second 250-μm pitch array
allowing correlated two-photon detection with commercially
available fiber-coupled avalanche photodiode single-photon
counting modules, across even and odd labeled waveguides.
Two-photon correlations were measured by recording pairs
of detection within a 5-ns window as a coincidence event.
Coincidence logic was performed with field programmable
gate arrays. Photon-number resolving detection was performed
nondeterministically using fiber beam splitters.

IV. RESULTS AND DISCUSSION

The single-photon distribution pj ′,j (t) was characterized
with 810-nm laser light injected into the central waveguide
(input waveguide 11). Figure 2 shows the single-photon
distribution measured with a power intensity meter, for the
three different array lengths in comparison with the theoretical
prediction calculated according to Eq. (2).

Two-photon correlations �j ′,k′(t) were measured from
injecting indistinguishable photon pairs into the two pairs
of input waveguides ({11,12} and {10,12}) that provide the
most overlap throughout the device, for each of the three
simulated time evolutions. Indistinguishability of the photons
was verified by performing a Hong-Ou-Mandel type exper-
iment [29] with an average visibility of V = 98.4 ± 0.5%.
The correlation matrices for inputs {10,12} for the three
propagation lengths are shown in Figs. 3(a)–3(c) (correlations
for inputs {11,12} given in the Appendix B).

Each of the 121 measured two-photon coincidence pos-
sibilities (from all 231 possible combinations) were mea-
sured over 15-min integration periods and are corrected

FIG. 3. (Color) Two-photon data. (a)–(c) Experimental and (d)–(f) theoretical correlations for detecting simultaneously one photon in
waveguide j ′ and one in waveguide k′ when injecting photon pairs in waveguide 10 and 12. (g)–(i) Violations of Eq. (4) in units of standard
deviations.
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for relative detector efficiency. We quantify the agree-
ment between the theoretical calculations �th

j ′,k′(t) and
the experimental data �

exp
j ′,k′(t) with the similarity S =

(
∑

j ′,k′

√
�

exp
j ′,k′ · �th

j ′,k′)2/
∑

j ′,k′ �
exp
j ′,k′

∑
j ′,k′ �

th
j ′,k′ .

In order to derive the values of the entries of the Hamiltonian
Eq. (1) of our waveguide structure we use standard coupled
mode theory [30], according to which the propagation constant
of waveguide j is given by βj = n 2π

λ
, where n is the effective

refractive index and λ is the vacuum wavelength. The coupling
constant κ between two identical waveguides can be deduced
from the propagation constants of the two normal modes
β+ and β− of the coupled system as κ = (β− − β+)/2. We
use a waveguide mode solver (FIMMWAVE) to calculate the
corresponding propagation constants. The uniform array with
the designed waveguide dimensions can be modeled with
coupling and propagation constants of κ = 0.00489 μm−1 and
β = 11.40462 μm−1. We use these values as initial parameters
for our theoretical calculations. The spreading regions at the
input and output add an effective coupling length of 75 μm to
each array length, so that the total coupling lengths are given
by ztot = ttotc = 425,775, and 1125 μm.

Maximizing the similarity of the measured two-photon
distribution with theoretical predictions we obtain one Hamil-
tonian [Eq. (1)] for all three arrays with

βi =
⎧⎨
⎩

11.385 for i = 1,21
11.403 for i = 2,20,

11.397 else
κi =

⎧⎨
⎩

0.0049 for i = 1,20
0.0058 for i = 2,19,

0.00513 else

where κi = κi,i+1 = κi+1,i .
Taking the parameters for the two outermost waveg-

uides as free parameters and assuming identical coupling
and propagation constants for the remaining waveguides is
sufficient to achieve good agreement between experimental
data and theoretical prediction. The resulting similarities are
summarized in Table I. Comparing our measured data with
predictions for a uniform array we obtain similarities of
above 90% for the two shorter arrays and around 70% for
the longest array, where the two photons reach the outer
waveguides. This suggests fabrication deviations influencing
mainly the outermost waveguides, since boundary effects like
an additional self-coupling term added to the propagation
constant of outermost waveguides are a magnitude smaller
than the derived perturbations [31].

We verify the quantum behavior of the photons at all three
time steps through the violation of the classical inequality
Eq. (4) as depicted in Figs. 3(g)–3(i). The array length of
700 μm shows the strongest violation with a maximal value
of 128 standard deviations, while the longest array (1050 μm)
shows comparatively small violations of a maximum of 45

TABLE I. Similarities for different time steps and two-photon
input combinations. We assume Poissonian statistics for the photon
detection to derive the stated errors.

zd ztot S, input 11,12 S, input 10,12

350 μm 425 μm 94.0 ± 0.2% 90.0 ± 0.2%
700 μm 775 μm 90.3 ± 0.1% 90.1 ± 0.1%
1050 μm 1125 μm 89.6 ± 0.1% 90.7 ± 0.1%

FIG. 4. Time evolution of maximum violation Vmax for input 10
and 12 in comparison with measured maximum violations (points).
Error bars on experimental data are smaller than data points.
Theoretical and experimental correlation matrices used to calculate
the violations are normalized as probability distributions.

standard deviations. This behavior is in agreement with a the-
oretical study of the time dependence of the violation (Fig. 4).
We calculate the violations for the theoretical correlation
matrices (for all 121 measurable two-photon coincidences)
and plot the maximum value.

Within the time interval relevant for our experiment the
maximum violation decreases with time as the photons
distribute over the waveguides. For longer times, as the photons
reached the boundaries of the array and are back reflected, the
maximum violation shows an oscillatory pattern. The local
minima and maxima for the maximum violation reflect the
changing phase relation between the matrix elements of the
unitary time evolution operator Uj,k .

V. CONCLUSION AND OUTLOOK

In summary, we have observed the time evolution of a
two-photon continuous time quantum walk on an array of
21 evanescently coupled waveguides. The three measured
time steps agree with theoretical prediction made assuming
coherent unitary evolution; this is evidence of coherent
evolution of multiphoton states within integrated optical
circuits. However, full characterization of time evolution can
be achieved via state tomography, and, as the size of quantum
walks increase, schemes that approximately determine
the quantum process using resources efficiently could be
implemented [32]. We have observed that the magnitude
with which two-photon quantum interference violates
classical prediction varies over the three measured time steps.
Our numerical simulations support these fluctuations and
specifically predict that it is possible to have zero violations,
despite genuine two-photon interference. In further array
designs the pitch and width of the outer waveguides can be
adapted to model various boundary gradients.
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APPENDIX A: EXPERIMENTAL RESULTS FOR INPUT
WAVEGUIDES 11 AND 12

Here we present the experimental results for a second
input combination when injecting photon pairs in neighboring
waveguides numbered 11 and 12 [see Fig. 1(c)]. Figure 5 shows
the correlation matrices and violations measured. Quantum
interference results in distinctly different correlations com-
pared to the input combination of waveguides 10 and 12. In
all three time evolutions we observe a generalized bunching
behavior; the two particles are likely to go to the same side of
the array. Figure 6 compares the theoretically predicted time
evolution of the maximum violation with our measurements.

Compared to the input {10,12}, the photons’ wave functions
start overlapping at an earlier time, so violations can be
observed at an earlier time (around tc = 130 μm). Despite

FIG. 6. Time evolution of maximum violation Vmax for input 11
and 12 in comparison with measured maximum violations (points).
Error bars on experimental data are smaller than data points.
Theoretical and experimental correlation matrices used to calculate
the violations are normalized as probability distributions.
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FIG. 7. (Color) Schematic of the type-I down conversion source
used to generate (unentangled) photon pairs.

genuine two-photon interference, the maximum violation goes
down to zero at tc = 230 μm.

APPENDIX B: TWO-PHOTON DOWN
CONVERSION SOURCE

The setup of the two-photon down conversion source is
shown in Fig. 7. The photon pairs were produced via type-I
spontaneous parametric down conversion in a 2-mm-thick χ2

nonlinear bismuth borate BiB3O6 crystal. A continuous-wave
diode laser (404 nm) pumped the crystal with 60 mW to create
degenerate photons at a wavelength of λ = 808 nm. Inter-
ference filters (3.1 nm) ensured spectral indistinguishability
before we launched the light into two polarization-maintaining
fibres, which were butt coupled to the chip with refractive index
matching liquid.

[1] J. Kempe, Contemp. Phys. 44, 307 (2003).
[2] A. M. Childs and J. Goldstone, Phys. Rev. A 70, 022314 (2004).
[3] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[4] S. Bose, Phys. Rev. Lett. 91, 207901 (2003).
[5] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys. Rev.

Lett. 92, 187902 (2004).
[6] M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019 (2008).
[7] O. Mülken and A. Blumen, Phys. Rev. E 71, 036128 (2005).
[8] A. J. Bessen, arXiv:quant-ph/0609128.
[9] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert,

M. Enderlein, T. Huber, and T. Schaetz, Phys. Rev. Lett. 103,
090504 (2009).

[10] F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt,
and C. F. Roos, Phys. Rev. Lett. 104, 100503 (2010).

[11] M. Karski, L. Forster, J.-M. Choi, A. Steffen, W. Alt,
D. Meschede, and A. Widera, Science 325, 174 (2009).

[12] D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and
J. P. Woerdman, Phys. Rev. A 61, 013410 (1999).

[13] C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Phys.
Rev. A 72, 062317 (2005).

[14] J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Phys.
Rev. A 67, 042316 (2003).

[15] B. Do, M. Stohler, S. Balasubramanian, and D. Elliott, JOSA B
22, 499 (2005).

[16] M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal,
A. Aspuru-Guzik, and A. G. White, Phys. Rev. Lett. 104, 153602
(2010).

[17] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J.
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