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We consider the problem of characterizing genuine multiparticle entanglement for permutationally invariant
states using the approach of positive partial transpose mixtures. We show that the evaluation of this necessary
biseparability criterion scales polynomially with the number of particles. In practice, it can be evaluated easily up
to ten qubits and improves existing criteria significantly. Finally, we show that our approach solves the problem
of characterizing genuine multiparticle entanglement for permutationally invariant three-qubit states.
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I. INTRODUCTION

Quantum-state analysis of large-scale systems is nontrivial
since many generic methods only work for, at most, small
system sizes. Experimentally, the manipulation and control
of several qubits has already become standard, and cur-
rent records comprise, for instance, entanglement between
14 qubits in ion traps [1], 10-qubit entanglement using hyper-
entangled photons [2], or the generation of 8 entangled photons
[3,4]. Even for such medium-scale systems, the available
analysis tools can be rather cumbersome, for instance, the task
of quantum-state tomography, i.e., the process to determine
the underlying quantum state by suitable measurements and
hence gain full information. The standard Pauli tomography
scheme [5] scales exponentially such that a feasible, generic
tomography protocol for 14 qubits is out of scope.

However, quite often one intends to work with special
classes of states only. This offers the possibility that one can
tailor or optimize the analysis tool for those more restricted
sets. Such more efficient tomography protocols have been
recently designed for generic states of low rank [6], particularly
important low-rank states like matrix product states [7] or
multiscale entanglement renormalization ansatz states [8],
or for states which possess some further symmetry such as
permutation invariance [9].

Although full information on a quantum state is appealing,
it is usually dispensable since one is often more interested in
a few key characteristics or properties of the states, which are
also used to compare different experiments. From the plethora
of interesting characteristics, the main objective of multipartite
systems lies on genuine multipartite entanglement [10,11].
This is the strongest phenomenon of quantum-mechanical
correlations within such systems that cannot be explained via
sufficient control on systems of smaller particle size, known
as biseparable states. Despite its importance, characterization
and detection of this kind of resource is still hard, and only
recently have some methods been proposed [12–17]. A very
promising detection method constitutes the concept of positive
partial transpose (PPT) mixtures [18,19], the generalization of
the PPT criterion [20] to the multipartite setting.

In this paper we tailor, similar to the tomography protocols,
the detection of genuine multipartite entanglement via PPT
mixtures to permutationally invariant states. We show that the
question of whether a given permutationally invariant state
possesses a PPT mixture requires resources which scale only

polynomially in the number of qubits. Thus, in combination
with the tomography protocol [9] (and its variants [21–23]) and
its efficient state reconstruction algorithm [24], we develop an
additional tool to analyze the data after such a quantum-state
tomography process. At this point, we would like to stress that
the derived detection method does not rely on the fact that
the underlying state indeed possesses this symmetry: If the
permutationally invariant part of a quantum state is entangled,
then the complete state must be entangled too [9]. As a further
result we prove that the criterion of PPT mixtures is necessary
and sufficient to decide whether a given permutationally
invariant three-qubit state is genuinely multipartite entangled
or not. Thus we obtain another interesting class of states,
similar to graph-diagonal states of three and four qubits [25],
where this approach completely solves the question of genuine
multiparticle entanglement. As examples, we study states such
as Greenberger-Horne-Zeilinger (GHZ) and Dicke states and
obtain strongly improved detection statements for up to ten
qubits. We would like to add that in the present paper, we
focus on the numerical evaluation of the criterion of PPT
mixtures. Of course, an analytic approach via the construction
of appropriate witnesses is also possible. This can lead to
criteria which can be used for arbitrary particle numbers.
Results for this problem will be reported elsewhere [26].

The structure of this paper is as follows: Section II
summarizes the background on multipartite entanglement,
the concept of PPT mixtures, and permutationally invariant
states. The theoretical results of this paper are given in Sec.
III, in particular the aforementioned results for the structure
and scaling of permutationally invariant PPT states and for
the sufficiency statement for the three-qubit permutationally
invariant case. Section IV provides some details of our nu-
merical implementation via semidefinite programming (SDP),
which is used afterwards to test and to compare our method
on a special family of states in Sec. V. Finally, we summarize
in Sec. VI.

II. PRELIMINARIES

A. PPT mixtures

First, let us review the concept of PPT mixtures [18],
which represents a method to detect genuine multipartite
entanglement. Similar to the PPT criterion of the bipartite
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case [20], it is a suitable relaxation on the level of quantum
states which gets more tractable.

Let us first explain the method for a system of three particles
because this already highlights the idea. A tripartite state is
separable with respect to the bipartition A|BC if it can be
written as

ρ
sep

A|BC =
∑

k

qk |φk
A〉 〈φk

A| ⊗ |ψk
BC〉 〈ψk

BC | , (1)

where qk form a probability distribution, i.e.,
∑

k qk = 1
and qk � 0 for all k. The definition is analogous for the
other possible bipartitions B|AC, C|AB. A biseparable state
is now defined as a convex combination of states which
are biseparable with respect to a specific bipartition; more
precisely, the state can be written as

ρbs
ABC = p1ρ

sep

A|BC + p2ρ
sep

B|AC + p3ρ
sep

C|AB. (2)

If a state is not biseparable, it is called genuinely multipartite
entangled.

Naturally, since the bipartite separability problem is already
hard, the full characterization of biseparable states can only
be worse. The idea of the PPT mixtures is to define a set of
states which includes the set of biseparable states but which
is much easier to characterize than the latter. At the core
of this method lies the PPT, or Peres-Horodecki, criterion,
which was first introduced in Ref. [20]. This criterion, based
on the operation of partial transposition, is a simple and
powerful method to detect bipartite entanglement. If a bipartite
system ρAB is expanded in a chosen tensor product basis as
ρAB = ∑

ijkl ρij,kl |ij〉 〈kl|, its partial transpose with respect

to the first subsystem is defined as ρ
TA

AB = ∑
ijkl ρij,kl |kj〉 〈il|.

The PPT criterion says that if a state ρAB is separable, its
partial transpose is positive semidefinite, i.e., it has no negative
eigenvalues, or, in other words, one says the state is PPT.
This implies that if ρ

TA

AB has one or more negative eigenvalues
(the state is then called an NPT state), it must be entangled.
Throughout this work we will often use the term positive
meaning positive semidefinite.

The generalization of this criterion to the multipartite case,
as introduced in Ref. [18], is as follows: Similar to the
definition of a separable state with respect to the bipartition
A|BC, one can define a state ρ

ppt

A|BC to be PPT with respect
to that partition and use a similar definition for the other
bipartitions. In analogy to the definition of a biseparable state,
a PPT mixture of a three-party state is defined as a convex
combination of PPT states with respect to a specific bipartition,

ρ
pmix

ABC = p1ρ
ppt

A|BC + p2ρ
ppt

B|AC + p3ρ
ppt

C|AB. (3)

From the PPT criterion, we know that all separable states for
a fixed bipartition are contained in the set of all PPT states
for the same bipartition. This then implies that the set of PPT
mixtures contains the set of biseparable states. Consequently,
if a state is not a PPT mixture, it is genuinely multipartite
entangled. In Fig. 1, we can see a schematic representation of
the set of PPT mixtures and the set of biseparable states for
this three-particle case.

FIG. 1. (Color online) Here we see, for three particle states, a
scheme of the biseparable states with respect to the three possible
bipartitions, A|BC, B|AC, and C|AB (surrounded by solid blue
lines). Each of these is contained in the PPT states for each respective
bipartition (surrounded by dashed green lines). The larger solid
blue line enveloping the other solid blue lines represents the set of
biseparable states, and similarly, the larger dashed green line defines
the set of PPT mixtures. This scheme can be generalized for higher
numbers of particles.

The generalization to the N -partite case is straightforward.
A general biseparable state of N parties can be written as

ρbs =
∑

allbipart.

M|M

pM|Mρ
sep

M|M, (4)

where the states are separable with respect to partition M ⊂
{1, . . . ,N} and its complement M . The sum runs over all
possible bipartitions M|M of the N particles. Analogously,
a PPT mixture of N parties is defined by

ρpmix =
∑
M|M

pM|Mρ
ppt

M|M =
∑
M|M

PM|M, (5)

with operators PM|M̄ ≡ pMρ
ppt

M|M that are positive and PPT
with respect to M .

The motivation of using the concept of a PPT mixture is that
the problem of determining whether an arbitrary state is a PPT
mixture or not can be formulated in terms of a semidefinite
program (SDP) [27], which makes it an easy-to-implement
criterion to detect genuine multipartite entanglement. This
SDP reads as follows:

min − s

s.t. ρ =
∑
M|M

PM|M,

PM|M � s1, PM|M
TM � s1, for all M|M̄, (6)

where the notation PM|M � s1 means that PM|M − s1 is a
positive semidefinite matrix. If the result of the optimization
sopt is non-negative, then the state ρ is a PPT mixture.
Otherwise, it is genuinely multipartite entangled. Note that in
Ref. [18], the semidefinite program is written in the so-called
dual form, which can be interpreted as a search for appropriate
entanglement witnesses which are non-negative on all PPT
mixtures. However, both forms are equivalent and thus detect
the same states.
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In a standard computer, however, this SDP can only be
applied to generic states of up to five or six qubits [28].
In fact, it can be seen that the difficulty of this program
scales exponentially with the number of qubits. Note that the
number of different inequivalent bipartitions of a system of N

particles is given by 2N−1 − 1. For each of these bipartitions
the Hermitian matrix PM|M has 4N free parameters, which are
the variables of the semidefinite program (in fact, one of the
matrices is fixed because of the equality constraint, but all the
others are free).

We will see in the following that if we restrict ourselves to
permutationally invariant states, both the number of partitions
and the number of SDP variables scale only polynomially.
Furthermore, by an efficient decomposition of the matrices
which have full or some permutation invariance it is possible
to check the positivity conditions in terms of smaller blocks
(see Secs. II B and IV). This finally allows us to construct
a SDP able to detect genuine multipartite entanglement for
larger systems.

B. Permutationally invariant states

Many experiments that aim at creating genuine multipartite
entanglement are designed in such a way that the generated
state is invariant under particle interchange. Famous examples
are the GHZ and the Dicke states. Mathematically, for any
density matrix ρ a permutationally invariant (PI) density
matrix can be constructed via

ρ(1···N) = [ρ]PI = 1

N !

∑
π∈SN

V (π )ρV †(π ), (7)

where V (π ) is a representation of the permutation π ∈ SN

acting on the Hilbert space of N qubits. The brackets (1 · · · N )
should denote invariance under permutations between any of
the N qubits. We will sometimes employ the notation [·]PI

to explicitly refer to this operation in order to shorten the
expressions. It can be seen that Eq. (7) implies that

[ρ]PI = V (π )[ρ]PIV (π )† for all π ∈ SN. (8)

A natural basis to write permutationally invariant states is
given by the coupled spin basis, for which such states attain
a particular simple block diagonal form (e.g., [24,29]). In this
basis, the Hilbert space of N qubits is decomposed as

H = (C2)⊗N =
N/2⊕

j=jmin

Hj ⊗ Kj , (9)

with jmin ∈ {0,1/2} depending on whether N is even or odd.
Here, Hj are the spin Hilbert spaces of dimension 2j + 1, and
Kj are called the multiplicative spaces, whose dimension is
given by

dim(Kj ) =
(

N

N/2 − j

)
−

(
N

N/2 − j − 1

)
(10)

for j < N/2 and dim(KN/2) = 1. The advantage of this
decomposition is that any permutation V (π ) will only act
nontrivially on the multiplicative spaces; that is, they can be

Bj

BNN
2

Bj

Hj ⊗Kj

ρ(1...N) =

Bjmin

FIG. 2. (Color online) Due to the form given by Eq. (14), a PI
state has a block diagonal structure in a suitably ordered basis. Each
block Bj appears dim(Kj ) times in the diagonal.

written as

V (π ) =
N/2⊕

j=jmin

1 ⊗ Vj (π ), (11)

where Vj (π ) is an irreducible representation of SN acting on
Kj [30,31]. This will become important shortly. Finally, we
will denote the basis states by |j,m,αj 〉, where |j,m〉 ∈ Hj

and |αj 〉 ∈ Kj . These states |j,m,αj 〉 are eigenstates of J2 and
Jz, where J is the total angular momentum operator, while Jz

is the projection of J in the z direction, with

J2 |j,m,αj 〉 = h̄2j (j + 1) |j,m,αj 〉, (12)

Jz |j,m,αj 〉 = h̄m |j,m,αj 〉. (13)

Any permutationally invariant state ρ(1···N) can in this
formalism be written as (e.g., [24,29])

ρ(1···N) =
N/2⊕

j=jmin

pjρj ⊗ 1Kj

dim(Kj )
=

N/2⊕
j=jmin

Bj ⊗ 1Kj
, (14)

with states ρj of Hj and a probability distribution pj .
Complete knowledge of all probabilities pj and all states ρj

gives a complete characterization of ρ(1···N). Furthermore, we
defined

Bj ≡ pjρj

dim(Kj )
, (15)

which are the blocks that appear in the diagonal of the PI state
ρ(1···N). Each of these blocks Bj appears in the diagonal exactly
dim(Kj ) times, as shown in Fig. 2. From this structure, it is
straightforward to compute the number of parameters needed
to define a PI state given by

N/2∑
j=jmin

(2j + 1)2 =
(

N + 3
N

)
= O(N3), (16)

which is much smaller than the 4N − 1 parameters needed to
characterize a general state. Apart from the better scaling, this
block structure is also very important for the formulation of
the SDP. It will be shown in Sec. IV that all constraints of
the SDP can be translated into appropriate constraints of the
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blocks. For instance, ρ(1...N) � 0 is equivalent to Bj � 0 for
all j . This is the main reason of the polynomial scaling in the
end.

Before we continue we will show how to prove Eq. (14) and,
at the same time, a way to carry out the operation [·]PI without
computing the matrices V (π ). In general, this would be very
hard since, for an N -particle system, V (π ) has a dimension
of 4N and there are N ! different permutations that need to
be considered. Although we are always dealing with quantum
states in the derivation, this block structure appears for any
permutationally invariant operator. Starting with a general
density matrix

ρ =
∑

jj ′mm′
αj αj ′

ρ
αj αj ′
jj ′mm′ |j,m,αj 〉 〈j ′,m′,βj ′ | , (17)

we have

[ρ]PI =
∑

jj ′mm′
αj αj ′

ρ
αj αj ′
jj ′mm′

[|j,m,αj 〉 〈j ′,m′,βj ′ |]
PI

=
∑

ρ
αj αj ′
jj ′mm′ |j,m〉 〈j ′,m′|

⊗
∑
π

Vj (π ) |αj 〉 〈αj ′ |V†
j ′ (π )

N !

=
∑

ρ
αj ,αj ′
jj ′mm′ |j,m〉 〈j ′,m′| ⊗ 1Kj

δjj ′ tr(|αj 〉 〈αj ′ |)
dim(Kj )

=
∑
jmm′

⎛
⎝∑

αj

ρ
αj αj

jjmm′

dim(Kj )

⎞
⎠ |j,m〉 〈j,m′| ⊗ 1Kj

. (18)

In the first step, we used Eq. (11), while in the second we made
use of Schur’s lemma. Our proof of Eq. (14) is similar to what
is shown in Ref. [24], except that here we obtain explicitly the
entries of the blocks Bj from the entries of ρ. In order to see
clearly the meaning of the result obtained, we define

B
αj

j =
∑
mm′

ρ
αj αj

jjmm′ |j,m〉 〈j,m′| , (19)

such that the result simply reads

Bj =
∑
αj

B
αj

j

dim(Kj )
. (20)

This means that to calculate the blocks of ρ(1···N) one has to
take the average over the multiplicative spaces of the blocks
of ρ associated with the angular momentum j .

III. PPT MIXTURES OF PI STATES

A. Characterization of PI PPT mixtures

Here, two of the main analytical results of this work are
presented in the form of two observations. In the first one,
we derive a simplified equation which characterizes a PI PPT
mixture, the PPT mixture of a PI state. We show that without
losing generality we can restrict the sum over bipartitions only
to the ones with different numbers of particles on one side.
Furthermore, we can impose symmetries on the un-normalized
PPT states that need to be considered. The second observation

proves that the number of parameters necessary to characterize
a PI PPT mixture is of O(N7).

Observation 1. While Eq. (5) characterizes a general PPT
mixture, the equation that characterizes a PI PPT mixture can,
without loss of generality, be written as

ρ
pmix

(1···N) =
N ′/2∑
k = 1

∑
π∈SN

V (π )Q(1···k)|(k+1···N)V (π )†, (21)

where Q(1···k)|(k+1···N) is an un-normalized PPT state for the
partition 1 · · · k|k + 1 · · · N , which is additionally invariant
under permutations among the first k or the last N − k qubits.
We have N ′ ∈ {N,N − 1} if N is even or odd.

Proof. Let ρ(1···N) be a permutationally invariant state which
is a PPT mixture. Then, combining Eqs. (5) and (7) we can
write

ρ
pmix

(1···N) =
∑
M|M

1

N !

∑
V (π) ∈ SN

V (π )PM|MV (π )†. (22)

Now, let |M| denote the number of elements inside the
partition M . Then, for any bipartition M|M , with |M| = k,
there is always a permutation τM ∈ SN which maps M|M to
1 · · · k|k + 1 · · · N . We define

Q1···k|k+1···N =
∑
M|M :

|M| = k

V (τM )PM|MV (τM )†, (23)

which is a positive operator whose partial transpose of the
qubits 1 · · · k is also positive. This is true since

[
V (τM )PM|MV (τM )†

]T1···k = V (τM )P TM

M|MV (τM )† (24)

holds for each term in the decomposition and PM|M is PPT for
this bipartition. We can now simplify Eq. (22) via

ρ
pmix

(1···N)

=
∑
M|M

1

N !

∑
π ∈ SN

V
(
πτ−1

M τM

)
PM|MV

(
πτ−1

M τM

)†

=
∑
M|M

1

N !

∑
π ′ ∈ SN

V (π ′)V (τM )PM|MV (τM )†V (π ′)†

=
N ′/2∑
k = 1

1

N !

∑
π ′ ∈ SN

V (π ′)Q1···k|k+1···NV (π ′)†, (25)

where in the first step we defined the permutation π ′ as πτ−1
M .

Furthermore, Q1···k|k+1···N can, without loss of generality, be
chosen to be invariant under any permutation πk ∈ Sk of the
first k or any πk̄ ∈ Sk̄ of the last k̄ ≡ N − k qubits without
altering the property that it is PPT. This follows since we can
actively use the symmetrization as∑

π ∈ SN

V (π )Q1···k|k+1···NV (π )†

= 1

k!

∑
π ∈ SN

πk ∈ Sk

V
(
ππ−1

k πk

)
Q1···k|k+1···NV

(
ππ−1

k πk

)†
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= 1

k!

∑
π ′ ∈ SN

πk ∈ Sk

V (π ′)V (πk)Q1···k|k+1···NV (πk)†V (π ′)†

=
∑

π ∈ SN

V (π )Q(1···k)|k+1···NV (π )†, (26)

where we used the notation

Q(1···k)|k+1···N = 1

k!

∑
pk ∈ Sk

V (πk)Q1···k|k+1···NV (πk)† (27)

and defined the permutation π ′ as ππk . Note that since the
partial transpose acts only on the first k particles, this state is
still PPT. Analogously, we can also symmetrize Q(1···k)|k+1···N
for permutations of the last N − k particles to obtain Eq. (21).
This concludes the proof.

Observation 2. The number of parameters needed to
characterize a permutationally invariant PPT mixture is of
O(N7), where N is the number of qubits.

Proof. This scaling is due to the fact that Eq. (21) exhibits
two simplifications when compared to Eq. (5): The first
one is that the number of bipartitions that needs to be
considered is only N ′/2, and the second is that Q(1···k)|(k+1···N)

is permutationally invariant within each side of its respective
bipartition.

More specifically, if σα
(1···k) and σ

β

(k+1···N) are operator basis
elements for permutationally invariant operators of k and N −
k, respectively, any operator Q(1···k)|(k+1···N) can be written as

Q(1···k)|(k+1···N) =
∑
αβ

cαβσα
(1···k) ⊗ σ

β

(k+1···N). (28)

As mentioned in Sec. II B any permutationally invariant
operator on k qubits can be parametrized by O(k3) parameters.
Hence, the operator given by Eq. (28) has about O[(N − k)3k3]
parameters, which at most can be O(N6) since k can be roughly
N/2. This, together with the fact that one has to consider about
N/2 bipartitions, leads to an overall number of parameters
to describe a PI PPT mixture of O(N7). This finishes this
observation.

B. Necessity and sufficiency for PI three-qubit states

Next, we show that the method of PPT mixtures is not
only necessary but also sufficient for biseparability of a
permutationally invariant three-qubit system. Note that this
result does not extend to systems of more particles where
explicit counterexamples are known [32,33].

Observation 3. A permutationally invariant three-qubit state
is biseparable if and only if it is a PPT mixture.

Proof. Any biseparable state is also a PPT mixture as
explained in the Sec. II A. Thus we are left to show that a
PPT mixture of a three-qubit permutationally invariant state is
indeed biseparable.

For that we can, without loss of generality, assume the
special form as given by Observation 1. Since we only have
nontrivial bipartitions of one vs two particles, we obtain the
following form: ρ

pmix

(ABC) = [QA|(BC)]PI, or, more explicitly,

ρ
pmix

(ABC) = 1
3 (ρA|(BC) + VABρA|(BC)V

†
AB + VACρA|(BC)V

†
AC),

(29)

where VAB,VAC refer to appropriate permutations. Here
ρA|(BC) stands for a PPT state with respect to partition A|BC,
which additionally remains invariant under the exchange of
system B and C. The structure of permutationally invariant
states implies that the two qubits BC couple to a spin-1
system, given by the symmetric subspace Sym(BC) spanned
by |11〉 , |ψ+〉 = (|01〉 + 10))/

√
2, |00〉, and the spin-0 anti-

symmetric part, |ψ−〉 = (|01〉 − |10〉)/√2. Thus this state (as
well as its partial transposition with respect to A) can be
decomposed into two parts as

ρA|(BC) = qσA|Sym(BC) + (1 − q)ωA ⊗ |ψ−〉 〈ψ−| , (30)

with σA|Sym(BC) being PPT. Since the symmetric subspace is
three-dimensional, this state is effectively a qubit-qutrit system
for which PPT is equivalent to separability [34]. Hence the state
of Eq. (30) is separable, and consequently, the PI PPT mixture
is biseparable.

This observation complements the results of Ref. [25],
where an analog result was shown for states with a different
symmetry, namely, graph-diagonal states of three and four
qubits.

IV. DETAILS OF THE SDP

Via the simplified form of a PPT mixture of a generic PI
state the corresponding SDP can now be formulated as

min − s

s.t. ρ(1···N) =
N ′/2∑
k = 1

[Q(1···k)|(k+1···N)]PI
,

Q(1···k)|(k+1···N) � s1,
Q

T1...k

(1···k)|(k+1···N) � s1,
for all k. (31)

Apart from the polynomial scaling of the number of parameters
involved in the SDP (cf. Observation 2), it is also crucial
to guarantee that the effort needed to verify the constraints
scales also polynomially. For this, it is very important that
the parameters are organized in blocks because if they were
spread throughout the matrix in an unstructured way, checking
its positivity would still be exponentially hard. Thus, in order
not to deal with matrices of size 4N we want to write the
SDP constraints as constraints on smaller blocks that constitute
the matrices involved in the program. It can be seen from
Eq. (28) that the matrices Q(1···k)|(k+1···N), although not fully
permutationally invariant, must also have a block structure in a
suitably chosen basis. We know from Sec. II B that the operator
basis elements σα

(1···k) and σ
β

(k+1···N) have the block structure

σα
(1···k) =

k/2⊕
j=jkmin

Cα
jk

⊗ 1Kjk
, (32)

σ
β

(k+1···N) =
k̄/2⊕

j=jk̄min

D
β

jk̄
⊗ 1Kjk̄

. (33)

From Eq. (28) it then follows

Q(1···k)|(k+1···N)

=
∑
α,β

ck
αβ

⊕
jk,jk̄

(
Cα

jk
⊗ D

β

jk̄

)
⊗

(
1Kjk

⊗ 1Kjk̄

)

∼=
⊕
jk,jk̄

Bk
jk,jk̄

⊗
(
1Kjk

⊗Kjk̄

)
, (34)
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where we defined Bk
jk,jk̄

= ∑
α,β ck

αβCα
jk

⊗ D
β

jk̄
. The structure

of Eq. (34) is similar to Eq. (14), which shows that, in a suitably
ordered basis, the operator Q(1···k)|(k+1···N) is also block diago-
nal. Each block Bk

jk,jk̄
has the dimension (2jk + 1)(2jk̄ + 1) and

appears exactly dim(Kjk
) dim(Kjk̄

) times in the main diagonal.
In this way, the SDP needs to store only the different blocks
and keep track of how many times each block appears.

The task now is to define the SDP in terms of these blocks
Bk

jk,jk̄
, which constitute Q(1···k)|(k+1···N), and the corresponding

blocks Bj of the given PI state ρ(1···N). This task is direct
for the matrix inequality constraints, which translate to the
corresponding matrix inequalities

Bk
jk,jk̄

� s1, (Bm
jk,jk̄

)T1···k � s1 (35)

for all blocks. Note that the operation of partial transposition
is easy to implement, again due to the tensor product structure
of Eq. (28), because

Q
T1···k
(1···k)|(k+1···N) =

∑
αβ

cαβ [σα
(1···k)]

T ⊗ σ
β

(k+1···N), (36)

where T denotes the usual transposition.
The implementation of the equality constraint, however,

requires more care. We know that
[
Q(1···k)|(k+1···N)

]
PI

is
block diagonal in the coupled spin basis of all N particles
|j,m,αj 〉, as the original PI state, but the basis in which
each Q(1···k)|(k+1···N) is block diagonal is a different one.
In fact, it is diagonal in the basis |jk,mk,αjk

; jk̄,mk̄,αjk̄
〉 =

|jk,mk,αjk
〉 ⊗ |j ′̄

k
,m′̄

k
,αjk̄

〉. In general, the basis transformation
between two spins jk,jk̄ to a combined total spin j is given by
the Clebsch-Gordan coefficients

|j,m〉 =
∑

−jk � mk � jk

−jk̄ � mk̄ � jk̄

〈jk,mk; jk̄,mk̄|j,m〉 |jk,mk; jk̄,mk̄〉 .

(37)

This transformation holds for each spin, irrespective of the
multiplicative spaces. However, via the multiplicative spaces
one keeps track of how many spins jk of system 1 · · · k and how
many spins jk̄ of system k + 1 · · · N couple with each other.
To compute the resulting blocks Bj of

∑
k [Q(1···k)|(k+1···N)]PI

the procedure is hence as follows.
(i) From blocks Bk

jkjk̄
of Q(1···k)|(k+1···N), typically given in

the basis |jk,mk; jk̄,mk̄〉, one first computes their contribution
to each total spin j , using |j,m〉, via the transformation of
Eq. (37). This result is denoted as B

k,j

jkjk̄
. Note that one gets

only a nontrivial matrix if the two individual spins can at all
form a total spin j , i.e., |jk − jk̄| � j � jk + jk̄.

(ii) Afterwards, one performs the average over all possibil-
ities, more precisely,

B
j

k =
∑
jkjk̄

dim(Kjk
) dim(Kjk̄

)

dim(Kj )
B

k,j

jkjk̄
. (38)

Here dim(Kjk
) dim(Kjk̄

) is the number of spins jk,jk̄ (which
couple to a spin j ) in the original operator.

This way, after summing over k, the right-hand side of the
equality constraint of Eq. (31) is computed. Due to its sym-
metry, Q(1···k)|(k+1···N) has a polynomial number of parameters,
so the basis transformation requires the computation of only

a polynomial number of Clebsch-Gordan coefficients. This
discussion leads to the final observation of this work.

Observation 4. The SDP to detect genuine multipartite
entanglement of PI states of N qubits via the concept of PPT
mixtures can be formulated in terms of O(N3) matrices whose
size is at most O(N2).

Since the number of different blocks of a general PI operator
on k parties is O(k), each operator Q(1···k)|(k+1···N) has about
O(N2) different blocks. Since we need roughly N/2 of these
operators for a PI PPT mixture, we have of O(N3) operators
Bk

jk,jk̄
in total. For each of these operators we need to check

two matrix inequalities. Furthermore, the biggest of the blocks
is the one with k = N ′/2 and jk = N ′/4,jk̄ = (2N − N ′)/4;
hence the maximal dimension is O(N2).

V. EXAMPLES

In this section, we present some examples for the applica-
tion of the SDP, illustrating the strength of the PPT mixtures.
Our first example is the calculation of the white-noise tolerance
for Dicke states, which we compare to the method of Ref. [13].
In our second example, we consider a mixtures of a GHZ state,
a W state, and white noise and compare the detection range
with the ones of Refs. [12,14], which were the best known
results so far for this class of states. In both cases, we achieve
significantly improved results. However, since our method is
based on a numerical approach, it is limited by the memory of
the computer, and we could only run it for states of at most ten
qubits with the first prototype of the program. Note that we did
not further optimize the algorithm for these special kinds of
states. In contrast the criteria of Refs. [12,14] are analytic and
can therefore be applied to arbitrary qubit numbers. Further
criteria from the approach of PPT mixtures, which similarly
rely on analytic estimates, will be discussed elsewhere [26].

Example 1. Dicke states have first been studied in the
context of light emission from a cloud of atoms [35] and have
been prepared in many experiments [36,37]. The symmetric
N -qubit Dicke state with k excitations is defined as the
superposition of all basis states with k excitations,

|DN,k〉 = 1√(
N

k

)
∑
π∈SN

V (π ) |1〉⊗k ⊗ |0〉⊗N−k , (39)

and is therefore a permutationally invariant state. For example,
the four-qubit Dicke state with two excitations is given
by |D4,2〉 = (|0011〉 + |0101〉 + |0110〉 + |1001〉 + |1010〉 +
|1100〉)/√6.

We computed the white-noise tolerance for Dicke states
of up to ten qubits and up to N/2 excitations, comparing
it to the criterion of Ref. [13]. From Fig. 3 we see that the
PPT mixture criterion is always more robust to noise, and the
difference is more significant for a larger number of qubits
and excitations. The improvement reaches values larger than
40%, which should prove itself useful for current Dicke state
experiments.

Example 2. Other well-known states which are also invari-
ant under permutations are the GHZ and W states. The GHZ
state is defined as

|GHZN 〉 = 1√
2

(|0〉⊗N + |1〉⊗N
)
, (40)

012305-6



GENUINE MULTIPARTICLE ENTANGLEMENT OF . . . PHYSICAL REVIEW A 88, 012305 (2013)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3  4  5  6  7  8  9  10

W
hi

te
 n

oi
se

 to
le

ra
nc

e

N

White noise tolerance: N-qubit Dicke states with k excitations |DN,k〉
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FIG. 3. Comparison between the PPT mixture criterion (solid
symbols) and the criterion of Huber et al. [13] (open symbols) for the
white-noise tolerance for Dicke states |DN,k〉. We show the white-
noise tolerances for N up to ten qubits and k up to N/2. The PPT
mixture criterion is more robust to white noise, and in some cases,
the difference of the white-noise tolerance between both criteria is
very significant, reaching values larger than 40%.

while the W state is the Dicke state with one excitation,

|WN 〉 = 1√
N

(|10 · · · 0〉 + |01 · · · 0〉 + · · · + |0 · · · 01〉) .

(41)
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FIG. 4. (Color online) Here, we show which three-qubit states
(lower triangular) as defined by Eq. (42) are detected by the PPT
mixture criterion as genuinely multipartite entangled (area outside
the solid blue line). We compare it to the criteria presented in Refs.
[12,14], which consist of two inequalities, one optimized for the
GHZ state and the other for the W state (dashed red lines). The
PPT mixture criterion represents a significant improvement and is
optimal for three-qubit PI states, so the states inside the solid line are
biseparable.
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FIG. 5. (Color online) The same as Fig. 4, but for eight-qubit
states. The PPT mixture criterion represents a very significant
improvement, but note that here we cannot prove that the PPT mixture
criterion is necessary and sufficient for biseparability.

In this example, we consider the following N -qubit states:

ρ(p1,p2) = p1ρGHZN
+ p2ρWN

+ (1 − p1 − p2)
1

2N
, (42)

with ρGHZN
= |GHZN 〉 〈GHZN |, ρWN

= |WN 〉 〈WN |. These
states are a convex combination of a GHZ state, a W state,
and white noise.

Such states can be represented by a point in a two-
dimensional plane whose coordinates are given by p1 and
p2, as shown in Figs. 4 and 5. Of course, only certain pairs
of p1,p2 correspond to valid quantum states; hence, only the
lower triangle shown in Figs. 4 and 5 describe actual quantum
states of this class. In Figs. 4 and 5, which correspond to three
and eight qubits, respectively, we furthermore show the set of
states which is detected by the PPT mixture criterion compared
to the method developed in Refs. [12,14]. In both cases the set
of states detected by the PPT mixtures is much larger than the
one verified by the aforementioned criteria, and this difference
grows with the number of qubits. In Fig. 4, in fact, the PPT
mixtures criterion is optimal (cf. Sec. III B), so the states that
have a PPT mixture are biseparable.

VI. CONCLUSIONS

In this paper we tailored the detection of genuine multi-
partite entanglement via PPT mixtures for permutationally in-
variant states. In contrast to a generic N -qubit state, where the
question of characterizing PPT mixtures scales exponentially
with the number of particles, our optimization for this special
class of states only requires a polynomial scaling of O(N7).
This was possible by deriving a more restricted but still general
form of a PPT mixture using the additional symmetry of the
state. Via this method, we were able to analyze more rigorously
the entanglement for system sizes where the original numerical
PPT mixture method would fail.
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In addition, we have shown that the criterion of PPT
mixtures completely solves the question of genuine multi-
partite entanglement for permutationally invariant three-qubit
states. This furthermore supports the conjecture, motivated by
Ref. [25], that PPT mixtures are necessary and sufficient for
biseparability of three qubits. We leave this open for further
discussion.

On more general grounds, we believe that the development
of new tools or optimization of existing analysis tools for
larger-scale systems is a mandatory step for a well-grounded
investigation of the properties of systems with many particles
and its experimental implementation. This should help close
the gap between methods for small-system playgrounds and
the really interesting system sizes that could deserve the term
quantum computer at some time.
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