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Hyperentanglement, defined as the entanglement in several degrees of freedom (DOFs) of a quantum system,
has attracted much attention recently. Here we investigate the possibility of concentrating the two-photon four-
qubit systems in partially hyperentangled states in both the spatial mode and the polarization DOFs with
linear optics. We first introduce our parameter-splitting method to concentrate the systems in the partially
hyperentangled states with known parameters, including partially hyperentangled Bell states and cluster states.
Subsequently, we present another two nonlocal hyperentanglement concentration protocols (hyper-ECPs) for the
systems in partially hyperentangled unknown states, resorting to the Schmidt projection method. It will be shown
that our parameter-splitting method is very efficient for the concentration of the quantum systems in partially
entangled states with known parameters, resorting to linear-optical elements only. All these four hyper-ECPs
are feasible with current technology and they may be useful in long-distance quantum communication based on
hyperentanglement as they require only linear optical elements.
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I. INTRODUCTION

Entanglement, a unique phenomenon in quantum mechan-
ics theory, has largely improved the methods of manipulating
and transforming information in quantum information process-
ing and quantum computing [1]. The entangled photon systems
can act as the quantum channels in some typical long-distance
quantum communication proposals, such as quantum key
distribution [2], quantum teleportation [3], quantum dense
coding [4,5], quantum secret sharing [6,7], and so on. An
entangled photon pair is usually produced locally, so the
environment noise is inevitable for it in its distribution process
among the parties in quantum communication, which will
decrease its entanglement. The photon signals can only be
transmitted no more than several hundreds of kilometers in
an optical fiber or a free space with current technology, and
quantum repeaters are required to connect the two neighboring
nodes in a long-distance quantum communication network.
In the storage of a quantum state in a quantum repeater,
the entanglement of an entangled photon system will also
be decreased by decoherence. The fidelity and the security
of long-distance quantum communication protocols may be
decreased with the decrescence of the entanglement in photon
systems.

Entanglement purification and entanglement concentration
are two passive ways for depressing the noise effect on
entangled systems, with which some high-fidelity nonlocal
entangled systems can be obtained from a set of less-entangled
systems. Entanglement purification is used to distill a subset of
high-fidelity nonlocal entangled systems from a set of those in
a mixed state with less entanglement [8–16], while entangle-
ment concentration is used to distill some nonlocal maximally
entangled systems from a set of systems in a partially entangled
pure state. In 1996, Bennett et al. [17] introduced the first
entanglement concentration protocol (ECP) for two-photon
systems by using the Schmidt projection method and collective
measurements. Since this pioneering work, many interesting
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ECPs have been proposed for photon systems [18–27]. They
can be divided into two groups. In the first group, the ECPs
[17–19,22] require that the two remote users, say Alice and
Bob, do not know the parameters about the partially entangled
pure state of the photon systems. In the second group, the
ECPs [23–27] require that Alice and Bob know the parameters
accurately. The latter have a higher efficiency than that in the
former in theory.

Hyperentanglement, defined as the entanglement in several
degrees of freedom (DOFs) of a quantum system, has attracted
much attention for quantum information recently. For example,
it has been used to assist the polarization photonic Bell-state
analysis [28–32]. In 2003, Walborn et al. [32] presented a
complete Bell-state analysis in the coincidence basis using
hyperentangled states. In 2002, Simon and Pan [11] presented
a polarization photonic entanglement purification protocol
(EPP) for a parameter down-conversion (PDC) source with
linear optics, resorting to spatial-polarization hyperentangle-
ment. In 2005, Barreiro et al. [33] experimentally prepared
hyperentangled photon pairs in polarization, spatial mode,
and time energy DOFs with spontaneous parametric down-
conversion photons. In 2008, Sheng et al. [13] presented an
efficient EPP for a PDC source with nonlinear optics, resorting
to the spatial-polarization hyperentanglement. Subsequently,
some deterministic EPPs [14–16] were proposed with hyper-
entanglement. In 2008, Barreiro et al. [34] beat the channel
capacity limit of superdense coding with linear optics, resort-
ing to polarization-orbital-angular-momentum hyperentangle-
ment. And some hyperentangled Bell-state analysis protocols
[35–38] were proposed to increase the channel capacity of
quantum communication recently. In 2007, Wei et al. [38]
divided the 16 hyperentangled Bell states into seven groups
with linear optics. In 2012, an interesting quantum repeater
protocol based on spatial-polarization hyperentanglement was
proposed [39]. In 2013, Graham et al. [40] experimentally
implemented direct characterization of quantum dynamics
assisted by hyperentanglement.

In this article, we investigate the possibility of concentrating
the two-photon four-qubit systems in the nonlocal partially
hyperentangled states in both the spatial mode and the
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polarization DOFs with linear-optical elements. First, we
introduce two feasible nonlocal spatial-polarization hyper-
entanglement concentration protocols (hyper-ECPs) for the
systems in partially hyperentangled states with known param-
eters (including hyperentangled Bell-class states and cluster-
class states), resorting to our parameter-splitting method.
Subsequently, we present another two hyper-ECPs for the
partially hyperentangled photon systems in unknown states,
resorting to the Schmidt projection method, a conventional
way for entanglement concentration. These two hyper-ECPs
can be accomplished with two copies of unknown states and
parity-check measurements. The parity-check measurement
on the polarization DOF is constructed with polarizing beam
splitters and single-photon detectors, and the parity-check
measurement on spatial-mode DOF is constructed with the
Hong-Ou-Mandel (HOM) effect [41] of a 50:50 beam splitter
and single-photon detectors. It will be shown that the hyper-
ECPs with our parameter-splitting method are far more
efficient for the concentration of the quantum systems in
partially entangled states with known parameters than those
with the Schmidt projection method.

This paper is organized as follows: In Sec. II, we present two
hyper-ECPs for the two-photon four-qubit systems in known
pure states with our parameter-splitting method, including the
one used for the systems in a known partially hyperentangled
Bell state, which is discussed in Sec. II A, and the other
used for those in a known partially hyperentangled cluster
state, discussed in Sec. II B. In Sec. III, we discuss the
hyperentanglement concentration for the two-photon four-
qubit systems in unknown partially entangled pure states with
linear optics. Some discussions and a summary are given in
Sec. IV. In Appendix A, a hyper-ECP for an arbitrary unknown
hyperentangled cluster-class state is discussed. In Appendix B,
the entanglement purification of a mixed hyperentangled Bell
state is given. The parameter-splitting-based entanglement
concentration for a known partially entangled state in one
DOF is discussed in Appendix C.

II. HYPER-ECPS WITH PARAMETER-SPLITTING
METHOD

In this section, we present two hyper-ECPs for two-photon
four-qubit systems in known nonlocal hyperentangled spatial-
polarization pure states based on our parameter-splitting
method with linear optical elements. One hyper-ECP is
used for two-photon four-qubit systems in a known partially
hyperentangled Bell state and the other is used for those in
a known partially hyperentangled cluster state. In both these
hyper-ECPs, Alice and Bob obtain a subset of two-photon four-
qubit systems in maximally hyperentangled states by splitting
the parameters of the initial nonlocal partially hyperentangled
states with linear-optical elements only.

A. Hyper-ECP for two-photon four-qubit systems in a partially
hyperentangled Bell state

Let us assume that the initial nonlocal hyperentangled
Bell-class state in both the spatial mode and the polarization

DOFs is

|ϕ0〉AB = (α|H 〉A|H 〉B + β|V 〉A|V 〉B)

⊗ (γ |a1〉|b1〉 + δ|a2〉|b2〉). (1)

Here the subscripts A and B represent the two photons
kept by the two remote users, say Alice and Bob. |H 〉 and
|V 〉 represent the horizontal and the vertical polarizations of
photons, respectively. |a1〉 (|b1〉) and |a2〉 (|b2〉) are the two
spatial modes of the photon A (B). α, β, γ , and δ are four real
parameters that are known to Alice and Bob, and they satisfy
the relation,

|α|2 + |β|2 = |γ |2 + |δ|2 = 1. (2)

For describing the principle of our hyper-ECP explicitly and
simply, we assume that |α| > |β| and |γ | < |δ| below. The
principle of our hyper-ECP in other cases is the same as this
one with or without a little modification.

The principle of our hyper-ECP for a partially hyperentan-
gled Bell state is shown in Fig. 1(a). It can be implemented
with some local unitary operations on the photon A in both the
spatial mode and the polarization DOFs performed by Alice.
Bob performs no operations in this hyper-ECP. In detail, first,
Alice performs a unitary operation on the spatial mode a2 by
using an unbalanced BS (i.e., UBS1) [42] with the reflection
coefficient R1 = γ /δ, shown in Fig. 1(b), and the partially
hyperentangled Bell-class state |ϕ0〉AB is changed to be |ϕ1〉AB .
Here

|ϕ1〉AB = (α|H 〉A|H 〉B + β|V 〉A|V 〉B) ⊗ [γ (|a1〉|b1〉
+ |a2〉|b2〉) +

√
|δ|2 − |γ |2|a3〉|b2〉]. (3)

That is, Alice splits the parameters of the hyperentangled
Bell-class state in the spatial-mode DOF with UBS1. One can
see that the spatial-mode state of the two-photon system AB

becomes a maximally entangled one if the photon A does not
emit from the spatial mode a3.

Second, Alice transforms the polarization-mode state of
the two-photon system AB into a maximally entangled one by
splitting the parameters of the hyperentangled Bell-class state
in the polarization DOF, if the photon A does not emit from
the spatial mode a3. As shown in Fig. 1(a), Alice performs
the same polarization unitary operations on the two spatial
modes a1 and a2. The wave plate Rθ is used to rotate the
horizontal polarization |H 〉 with an angle θ = arccos(β/α),
that is, |H 〉 → cosθ |H 〉 + sinθ |V 〉. After the photon A coming
from the two spatial modes a1 and a2 passes through PBSs (i.e.,
PBS1 and PBS2) and Rθ , the state of the system is transformed
from |ϕ1〉AB into |ϕ2〉AB . Here

|ϕ2〉AB = [β(|H 〉A|H 〉B + |V 〉A|V 〉B)

+
√

|α|2 − |β|2|V ′〉A|H 〉B]

⊗ γ (|a1〉|b1〉 + |a2〉|b2〉)
+ (α|H 〉A|H 〉B + β|V 〉A|V 〉B)

⊗
√

|δ|2 − |γ |2|a3〉|b2〉. (4)

Here |V ′〉 presents the vertical polarization of the photon after
the operation Rθ .

Third, when photon A passes through PBS3 (PBS4), DL,
and PBS5 (PBS6), the state of the two-photon system is
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FIG. 1. (Color online) (a) Schematic diagram of our hyper-ECP
for a partially hyperentangled Bell state with known parameters.
(b) Schematic diagram of an unbalanced BS (UBS). BS represents
a balanced 50:50 beam splitter. ω represents a phase shift which
decides the reflection coefficient and the transmission coefficient of
the unbalanced BS. a1 and a2 represent the two original spatial modes
of the photon A. a′

1 and a′
2 are another two spatial modes of the photon

A. UBS1 represents an unbalanced beam splitter with the reflection
coefficient R1 = γ /δ. Rθ represents a wave plate which can rotate
the horizontal polarization with an angle θ = arccos(β/α). PBS i

(i = 1,2, . . . ,6) represents a polarizing beam splitter, which transmits
the photon in the horizontal polarization |H 〉 and reflects the photon
in the vertical polarization |V 〉, respectively. DL denotes a time-delay
device which is used to make the two wave packets reach the
last PBS (PBS5 or PBS6) in each Mach-Zehnder interferometer
simultaneously. D1, D2, and D3 represent three single-photon
detectors.

transformed from |ϕ2〉AB into |ϕ3〉AB . Here

|ϕ3〉AB = βγ (|H 〉|H 〉 + |V 〉|V 〉)AB(|a1〉|b1〉 + |a2〉|b2〉)
+ γ

√
|α|2 − |β|2|V 〉A|H 〉B(|a′

1〉|b1〉 + |a′
2〉|b2〉)

+
√

|δ|2 − |γ |2(α|H 〉|H 〉 + β|V 〉|V 〉)AB |a3〉|b2〉.
(5)

From Eq. (5), one can see that the state of the two-photon
system AB becomes a maximally hyperentangled Bell state
|ϕf 〉AB if the photon A emits from the spatial modes a1 and
a2. Here

|ϕf 〉AB = 1
2 (|H 〉|H 〉 + |V 〉|V 〉)AB(|a1〉|b1〉 + |a2〉|b2〉). (6)

If the photon A emits from the spatial mode a′
1, a′

2, or a3,
Alice and Bob cannot obtain a maximally hyperentangled Bell
state |ϕf 〉AB , which means this hyper-ECP fails. In theory,
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FIG. 2. (Color online) The success probability of our hyper-ECP
for each two-photon four-qubit system in a partially hyperentangled
Bell-class state with known parameters.

Alice can judge whether this hyper-ECP succeeds or not,
according to the spatial mode of the photon A.

It is not difficult to calculate the success probability of our
hyper-ECP for a hyperentangled Bell-class state. If the photon
A does not emit from the spatial mode a′

1, a′
2, and a3, our

hyper-ECP succeeds, which takes place with the probability
of P1 = 4|βγ |2. Otherwise, the photon A is detected by the
single-photon detectors and is destroyed, and our hyper-ECP
fails. That is, the total success probability of our hyper-ECP is
P1 = 4|βγ |2, shown in Fig. 2.

In a practical application of our hyper-ECP, there are
two ways for Alice and Bob, the two parties in quantum
communication to judge whether this hyper-ECP succeeds
or not. On one hand, Alice can judge that this hyper-ECP
fails if one of the three detectors D1, D2, and D3 is clicked
by the photon A. On the other hand, if the efficiency of
the single-photon detectors Di (i = 1,2,3) is 100%, Alice
can also judge that this hyper-ECP succeeds if there are no
single-photon detectors clicked. At present, the efficiency of
a single-photon detector is lower than 100%. That is, the
case that there is a photon which should be detected by the
single-photon detectors but not detected because of detection
inefficiency, can be mistaken as a successful event if Alice
judges whether this hyper-ECP succeeds or not with only
the single-photon detectors shown in Fig. 1. Fortunately, this
mistaken case can be eliminated by postselection, as the same
as the entanglement purification protocols [10–12,14,16] and
the entanglement concentration protocols [18–21] in only one
DOF with linear-optical elements. That is, this hyper-ECP
succeeds if Alice detects the photon A emitting from either
the spatial modes a1 or a2, when Alice and Bob use the photon
pair AB to complete their task in quantum communication.
Although the photon pair AB are detected in this time, the
task of quantum communication is also accomplished.

B. Hyper-ECP for two-photon four-qubit systems in a partially
hyperentangled cluster state

Suppose that the initial two-photon four-qubit partially
hyperentangled cluster-class state shared by two remote users
Alice and Bob is

|ψ0〉AB = α|H 〉A|H 〉B |a1〉|b1〉 + β|V 〉A|V 〉B |a1〉|b1〉
+ γ |H 〉A|H 〉B |a2〉|b2〉 − δ|V 〉A|V 〉B |a2〉|b2〉.

(7)
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FIG. 3. (Color online) Schematic diagram of our hyper-ECP
for partially entangled two-photon four-qubit cluster-class states
with known parameters. UBS2 and UBS3 represent two unbalanced
beam splitters with the reflection coefficients R2 = α/γ and R3 =
(αδ)/(γβ), respectively. R′

θ ′ represents a wave plate which can rotate
the horizontal polarization with an angle θ ′ = arccos(δ/γ ). DL1

(DL2) denotes a time-delay device which is used to make the two wave
packets reach the last PBS (PBS5 or PBS6) in each Mach-Zehnder
interferometer simultaneously.

The four parameters α, β, γ , and δ are known to Alice and
Bob, and they satisfy the relation,

|α|2 + |β|2 + |γ |2 + |δ|2 = 1. (8)

We assume |γ | > |α| > |β| > |δ| below for describing the
principle of our hyper-ECP explicitly.

The principle of our hyper-ECP for a partially hyperentan-
gled two-photon four-qubit cluster-class state is shown in
Fig. 3, which is also implemented with linear-optical elements
only, by splitting the parameters of the cluster-class state
|ψ0〉AB . This hyper-ECP can also be accomplished with local
unitary operations on photon A in both the spatial-mode and
the polarization DOFs, and it includes three steps, as shown in
Fig. 3.

In the first step, only a spatial-mode unitary operation is
performed on the photon A from the spatial mode a2 by using
an unbalanced BS (UBS2) with the reflection coefficient R2 =
α/γ . The partially entangled two-photon four-qubit cluster
state |ψ0〉AB is transformed into |ψ1〉AB in this step. Here

|ψ0〉AB = α|a1〉|b1〉
(

|H 〉A|H 〉B + β

α
|V 〉A|V 〉B

)

+ γ |a2〉|b2〉
(

|H 〉A|H 〉B − δ

γ
|V 〉A|V 〉B

)
,

|ψ1〉AB = α

[
|a1〉|b1〉

(
|H 〉A|H 〉B + β

α
|V 〉A|V 〉B

)

+ |a2〉|b2〉
(

|H 〉A|H 〉B − δ

γ
|V 〉A|V 〉B

)]

+
√

|γ |2 − |α|2|a3〉|b2〉
×

(
|H 〉A|H 〉B − δ

γ
|V 〉A|V 〉B

)
. (9)

In the second step, Alice first performs a unitary operation
with PBS1 on the photon A emitting from the spatial mode a1

and then Alice performs a unitary operation on the photon A

coming from the vertical polarization path of the spatial mode
a1, by using an unbalanced BS (UBS3) with the reflection
coefficient R3 = (αδ)/(γβ). These two operations transform
the partially entangled state |ψ1〉AB into |ψ2〉AB . Here,

|ψ2〉AB = α

[
|H 〉A|H 〉B(|a1〉|b1〉 + |a2〉|b2〉)

+ δ

γ
|V 〉A|V 〉B(|a1〉|b1〉 − |a2〉|b2〉

]

+α

√∣∣∣∣βα
∣∣∣∣
2

−
∣∣∣∣ δ

γ

∣∣∣∣
2

|V 〉A|V 〉B |a4〉|b1〉

+
√

|γ |2 − |α|2 |a3〉|b2〉
×

(
|H 〉A|H 〉B − δ

γ
|V 〉A|V 〉B

)
. (10)

The last step is used to perform unitary operations on the
photon A in the polarization modes. As shown in Fig. 3, the
polarization unitary operations performed on the photon A by
Alice are the same ones for the two spatial modes a1 and a2,
in which R′

θ ′ contributes a rotation angle θ ′ = arccos(δ/γ ) on
the horizontal polarization of photon A. After photon A passes
through R′

θ ′ and PBS, the state |ψ2〉AB is changed to be |ψ3〉AB .
Here

|ψ3〉AB = αδ

γ
[|H 〉A|H 〉B(|a1〉|b1〉 + |a2〉|b2〉)

+ |V 〉A|V 〉B(|a1〉|b1〉 − |a2〉|b2〉]

+α

√
1 −

∣∣∣∣ δ

γ

∣∣∣∣
2

|V 〉A|H 〉B(|a′
1〉|b1〉 + |a′

2〉|b2〉)

+α

√∣∣∣∣βα
∣∣∣∣
2

−
∣∣∣∣ δ

γ

∣∣∣∣
2

|V 〉A|V 〉B |a4〉|b1〉

+
√

|γ |2 − |α|2 |a3〉|b2〉(|H 〉A|H 〉B
− δ

γ
|V 〉A|V 〉B). (11)

From Eq. (11), one can see that the state of the two-photon
system AB becomes a maximally hyperentangled cluster state
|ψf 〉AB if photon A emits from the spatial modes a1 and a2.
Here

|ψf 〉AB = 1
2 [|H 〉A|H 〉B(|a1〉|b1〉 + |a2〉|b2〉)
+ |V 〉A|V 〉B(|a1〉|b1〉 − |a2〉|b2〉)]. (12)

If the photon A emits from the spatial mode a′
1, a′

2, a3, or
a4, Alice and Bob cannot obtain a maximally hyperentangled
cluster state |ψf 〉AB , which means this hyper-ECP fails. In
theory, Alice can judge whether this hyper-ECP succeeds or
not, according to the spatial modes of the photon A. As the
same as that in our hyper-ECP for a partially hyperentangled
Bell state, Alice and Bob can also judge whether this hyper-
ECP succeeds or fails by postselection if the efficiencies of
the single-photon detectors are lower than 100% in a practical
application.
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FIG. 4. (Color online) The success probability of our hyper-ECP
for each two-photon four-qubit system in a partially hyperentangled
cluster-class state with known parameters.

It is not difficult to calculate the success probability of
our hyper-ECP for a hyper-entangled two-photon cluster-class
state. If one of the four detectors D1, D2, D3, and D4 clicks, at
least one DOF of the partially entangled state is projected into a
product state, which means that this hyper-ECP fails. If none of
the four detectors D1, D2, D3, and D4 clicks in principle, the
partially entangled cluster-class state |ψ0〉AB is transformed
into the maximally entangled two-photon four-qubit cluster
state |ψf 〉AB with a success probability of P2 = 4|αδ/γ |2,
shown in Fig. 4.

III. HYPER-ECP FOR TWO-PHOTON FOUR-QUBIT
SYSTEMS IN AN UNKNOWN HYPERENTANGLED

PURE STATE

In this section, we will discuss the hyper-ECPs for partially
entangled two-photon four-qubit pure states in both the
spatial mode and the polarization DOFs with their parameters
unknown to the two remote users Alice and Bob, including
partially hyperentangled Bell states and cluster states. In this
time, our parameter-splitting method does not work as the
parameters are unknown to Alice and Bob. However, these
hyper-ECPs can be accomplished with the Schmidt projection
method, although they are more complex than those [17–19]
for the photon systems in only partially entangled polarization
states.

A. Hyper-ECP for two-photon four-qubit systems in an
unknown hyperentangled Bell-class state

Suppose that there are two identical two-photon sys-
tems AB and CD in a partially hyperentangled Bell-class
state,

|φ0〉AB = (α|H 〉A|H 〉B + β|V 〉A|V 〉B)

⊗ (γ |a1〉|b1〉 + δ|a2〉|b2〉),
|φ0〉CD = (α|H 〉C |H 〉D + β|V 〉C |V 〉D)

⊗ (γ |c1〉|d1〉 + δ|c2〉|d2〉). (13)

Here subscripts A and B represent the two photons in
a partially hyperentangled state |φ0〉AB , and the subscripts
C and D represent another two photons in the partially
hyperentangled state |φ0〉CD . i1 and i2 are the two spatial

FIG. 5. (Color online) Schematic diagram of our hyper-ECP
for partially hyperentangled Bell states with unknown parameters.
(a) Operations performed by Alice. (b) Operations performed by
Bob. R90 represents a half-wave plate which is used to perform a
polarization bit-flip operation X = |H 〉〈V | + |V 〉〈H |. R45 represents
a half-wave plate which is used to perform a Hadamard operation on
the polarization DOF of photons.

modes of the photon i (i = A,B,C,D). The photons A and
C belong to Alice, and the photons B and D belong to Bob.
The four parameters α, β, γ , and δ are unknown to Alice
and Bob, and they satisfy the relation |α|2 + |β|2 = |γ |2 +
|δ|2 = 1.

The principle of our hyper-ECP for partially hyperentan-
gled Bell-class states with unknown parameters is shown in
Fig. 5. The initial state of the four-photon system ABCD can
be rewritten as follows:

|�0〉 = |φ0〉AB ⊗ |φ0〉CD

= (α2|H 〉A|H 〉B |H 〉C |H 〉D + αβ|V 〉A|V 〉B |H 〉C |H 〉D
+αβ|H 〉A|H 〉B |V 〉C |V 〉D + β2|V 〉A|V 〉B |V 〉C |V 〉D)

⊗ (γ 2|a1〉|b1〉|c1〉|d1〉 + γ δ|a2〉|b2〉|c1〉|d1〉
+ γ δ|a1〉|b1〉|c2〉|d2〉 + δ2|a2〉|b2〉|c2〉|d2〉). (14)

After Alice and Bob flip the polarizations of photons C and D

on both the two spatial modes with half wave plates (R90), the
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state of the four-photon system becomes

|�1〉 = (α2|H 〉A|H 〉B |V 〉C |V 〉D + αβ|V 〉A|V 〉B |V 〉C |V 〉D
+αβ|H 〉A|H 〉B |H 〉C |H 〉D + β2|V 〉A|V 〉B |H 〉C |H 〉D)

⊗ (γ 2|a1〉|b1〉|c1〉|d1〉 + γ δ|a2〉|b2〉|c1〉|d1〉
+γ δ|a1〉|b1〉|c2〉|d2〉 + δ2|a2〉|b2〉|c2〉|d2〉). (15)

Subsequently, Alice puts the photons from the spatial modes
a1 and c2 into PBS1, and those emitting from a2 and c1 into
PBS2. Bob puts the photons emitting from the spatial modes b1

and d1 into BS2. Here PBSs in Fig. 5(a) are used to complete a
parity-check measurement on the polarization DOF of the two
photons, and BS in Fig. 5(b) is used to complete a parity-check
measurement on the spatial-mode DOF of the two photons
with the HOM effect. In detail, if the two photons A and C

have the same polarizations |H 〉A|H 〉C or |V 〉A|V 〉C (each
of them called an even-parity state in the polarization DOF),
there is one and only one photon which will be detected by the
single-photon detectors shown in Fig. 5(a) in principle after
the two photons pass through the PBSs (PBS1 and PBS2).
Otherwise, there are none or two photons which will be
detected by the detectors in principle if the two photons have
different polarization states (called the odd-parity polarization
states). If the two photons B and D have different spatial-mode
states (the odd-parity states), there is one and only one photon
which will be detected by the single-photon detectors shown
in Fig. 5(b) in principle.

These parity-check measurements by PBSs and BSs divide
the states of the four-photon system into two groups, based
on both the spatial-mode and the polarization DOFs. Alice
and Bob pick up the even-parity terms of the polarization
DOF of the photon pair AC in Alice’s hand with the same
parameter and the odd-parity terms of the spatial-mode DOF
of the photon pair CD in Bob’s hand with the same parameter
(these instances will lead the fact that both Alice and Bob
will have only one detector clicked). That is, the state of the
four-photon system with the selected terms becomes

|�2〉 = 1
2 (|V 〉A|V 〉B |V 〉C |V 〉D + |H 〉A|H 〉B |H 〉C |H 〉D)

⊗(|a2〉|b2〉|c1〉|d1〉 + |a1〉|b1〉|c2〉|d2〉). (16)

In the other cases, this hyper-ECP fails.
At last, both Alice and Bob perform Hadamard operations

on the spatial-mode and the polarization DOFs of the photons
C and D with a half-wave plate R45 and a BS, respectively.
The selected terms shown in Eq. (16) are transformed into

|�3〉 = 1
4 [(|V 〉|V 〉 + |H 〉|H 〉)AB(|V 〉|V 〉 + |H 〉|H 〉)CD

+ (|H 〉|H 〉 − |V 〉|V 〉)AB(|H 〉|V 〉 + |V 〉|H 〉)CD]

⊗ [(|a2〉|b2〉 + |a1〉|b1〉)(|c1〉|d1〉 + |c2〉|d2〉)
− (|a1〉|b1〉 − |a2〉|b2〉)(|c1〉|d2〉 + |c2〉|d1〉)]. (17)

If the outcomes of the two clicked detectors are in the
even-parity polarization modes and the even-parity spatial
modes, the state of photon pair AB is projected into the max-
imally Bell hyperentangled state |ϕf 〉AB = 1

2 (|H 〉A|H 〉B +
|V 〉A|V 〉B)(|a1〉|b1〉 + |a2〉|b2〉). If it is an odd-parity outcome
in the measurement on the photon pair CD in the polarization
(spatial-mode) DOF, a phase-flip operation σ

p
z = |H 〉〈H | −

|V 〉〈V | (σ s
z = |b1〉〈b1| − |b2〉〈b2|) on the photon B is required

to obtain the state |ϕf 〉AB .

FIG. 6. (Color online) Success probability of our hyper-ECP for
a pair of two-photon systems in a partially hyperentangled Bell state
with unknown parameters. The relations of the parameters of the
partially hyperentangled Bell state are chosen as |α| = |γ | and |β| =
|δ|.

In principle, if both Alice and Bob have only one detector
clicked, the hyper-ECP succeeds with the probability P3 =
4|αβγ δ|2 (shown in Fig. 6 for the cases with |α| = |γ | and
|β| = |δ|). Otherwise, the hyper-ECP fails. In a practical
application of this hyper-ECP, Alice and Bob can also judge
whether this hyper-ECP succeeds or fails by postselection if
the efficiencies of the single-photon detectors are not 100%.

B. Hyper-ECP for two-photon four-qubit systems in an
unknown hyperentangled cluster-class state

We assume that there are two identical two-photon four-
qubit systems in the partially Bell-type hyperentangled cluster-
class states,

|0〉AB = α|H 〉A|H 〉B(γ |a1〉|b1〉 + δ|a2〉|b2〉)
+β|V 〉A|V 〉B(γ |a1〉|b1〉 − δ|a2〉|b2〉),

|0〉CD = α|H 〉C |H 〉D(γ |c1〉|d1〉 + δ|c2〉|d2〉)
+β|V 〉C |V 〉D(γ |c1〉|d1〉 − δ|c2〉|d2〉). (18)

Here the subscripts A, B, C, and D represent four photons.
The two photons A and C belong to Alice, and the two photons
B and D belong to Bob. The four parameters α, β, γ , and δ

are unknown to Alice and Bob, and they satisfy the relation,

|α|2 + |β|2 = |γ |2 + |δ|2 = 1. (19)

It is suitable to implement this hyper-ECP for an unknown
partially hyperentangled two-photon four-qubit cluster-class
state with the quantum circuit shown in Fig. 5. Alice
and Bob perform the polarization parity-check measurement
and the spatial-mode parity-check measurement on the two
photon pairs AC and BD, respectively. The even-parity
terms of the polarization DOF of the photon pair in Al-
ice’s hand and the odd-parity terms of the spatial-mode
DOF of the photon pair in Bob’s hand are picked up.
After the detections and the local phase-flip operations,
the state of the two-photon system AB becomes |ϕf 〉 =
1
2 (|H 〉A|H 〉B + |V 〉A|V 〉B) ⊗ (|a1〉|b1〉 + |a2〉|b2〉) which is a
maximally hyperentangled Bell state. This maximally hy-
perentangled Bell state can be transformed into a non-
local maximally entangled two-photon four-qubit cluster
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FIG. 7. Schematic diagram of the operation for transforming
a maximally hyperentangled Bell state into a maximally hyper-
entangled two-photon cluster state. HWP represents a half-wave
plate which is used to perform a polarization phase-flip operation
Up = |H 〉〈H | − |V 〉〈V | on the photon when it emits from the spatial
mode a2.

state |ψf 〉AB = 1
2 (|H 〉A|H 〉B |a1〉|b1〉 + |V 〉A|V 〉B |a1〉|b1〉 +

|H 〉A|H 〉B |a2〉|b2〉 − |V 〉A|V 〉B |a2〉|b2〉) with the operation
shown in Fig. 7.

Up to now, we have discussed the hyper-ECP for a partially
hyperentangled Bell-type two-photon four-qubit cluster-class
state and its success probability is P4 = 4|αβγ δ|2 with only
linear-optical elements and single-photon detectors, the same
as that in the hyper-ECP for a hyperentangled Bell-class state
with unknown parameters. The hyperentanglement concentra-
tion of two-photon four-qubit systems in an arbitrary unknown
partially hyperentangled cluster-class state is more complex
than that in a partially hyperentangled Bell-type two-photon
four-qubit cluster-class state, as discussed in Appendix A.
In a practical application, Alice and Bob can first transmit
a hyperentangled Bell state over a quantum channel and
concentrate it with the hyper-ECP discussed in Sec. III A, and
then they transform a nonlocal maximally hyperentangled Bell
state into a nonlocal maximally hyperentangled two-photon
four-qubit cluster state. This modification can reduce the
resource needed.

IV. DISCUSSION AND SUMMARY

We have proposed four hyper-ECPs for two classes of two-
photon four-qubit states partially entangled in both the spatial-
mode and the polarization DOFs of two-photon systems in
two kinds of conditions with linear-optical elements. The two
classes of two-photon states are hyperentangled Bell states and
cluster states, respectively, and the two kinds of conditions
discussed are the two-photon states with known parameters
and those with unknown parameters, respectively.

In the first kind of condition about the two-photon four-
qubit states with their parameters known to the two remote
legitimate users, only one of the two parties is required
to perform local operations in our hyper-ECPs. Here the
unbalanced BS and the half wave plates for rotating the
horizontal polarization are required to decrease the parameters
of the terms with large probabilities until they are equal to
the parameters of the terms with the smallest probability.
We call this the parameter-splitting method for entanglement
concentration. With single-photon detectors, the parties in
quantum communication can read out whether the hyper-ECPs
succeed or not in principle. If none of the single-photon
detectors clicks, the two hyper-ECPs succeed. The success
probabilities of these two hyper-ECPs are shown in Fig. 2
and Fig. 4, respectively. It shows that the success probability
of the hyper-ECP for a partially hyperentangled Bell state is

determined by the two smallest parameters in the two DOFs,
and the success probability of the hyper-ECP for a partially
entangled two-photon cluster state is correlated to the relation
of three parameters of the partially hyperentangled state.

In the second kind of condition about the two-photon
four-qubit states with their parameters unknown to the two
legitimate users, both the users are required to perform some
quantum operations on their photons, and two copies of the
unknown partially entangled states are required. In these two
hyper-ECPs, the polarization parity-check measurement and
the spatial-mode parity-check measurement are performed
with some PBSs and BSs, respectively. In these two hyper-
ECPs, two copies of photon pairs in the unknown state
are required for each round of concentration, and the two
legitimate users can make their parity-check measurements
synchronously. For the concentration of a partially entangled
two-photon four-qubit cluster state, an auxiliary step is re-
quired to transform a nonlocal maximally hyperentangled Bell
state into a nonlocal maximally entangled two-photon cluster
state with a linear-optical element. These two hyper-ECPs
succeed when both Alice and Bob have one single-photon
detector clicked, and local phase-flip operations are needed
if the outcomes of the two single-photon detectors are not in
even-parity polarization modes and even-parity spatial modes.
We have discussed the success probabilities of these two
hyper-ECPs for some special states shown in Fig. 6. It shows
that the success probabilities of the two hyper-ECPs change
with the parameters of the partially hyperentangled states.

In a practical quantum communication, Alice and Bob can
obtain the information about the parameters of a nonlocal
partially hyperentangled pure state if they measure a sufficient
number of sample photon pairs. It is not difficult to find
that the two hyper-ECPs with our parameter-splitting method
are more efficient and practical than those with the Schmidt
projection method if there are large numbers of quantum data
needed to be exchanged between the two parties in quantum
communication. First, the former can be used to concentrate
each of the two-photon four-qubit systems, while the latter
require two copies of the two-photon four-qubit systems in the
same partially entangled pure state. Second, the efficiency of
the former is more than two times that of the latter. Third, the
quantum circuits in the former are far simpler than those in
the latter. Contrarily, if there are a small quantity of quantum
data needed to be exchanged between the two parties, the
hyper-ECPs with the Schmidt projection method may be more
practical than those with our parameter-splitting method as
they do not require the two parties to measure the samples for
obtaining the accurate information about the parameters of the
partially hyperentangled pure state.

On one hand, although we have introduced our parameter-
splitting method for the hyperentanglement concentration of
two-photon four-qubit systems in nonlocal partially hyper-
entangled pure states with known parameters, it is obviously
suitable for all the entanglement concentration on photon
systems in nonlocal partially entangled pure states with known
parameters, including those with one DOF and those with
several DOFs, no matter what the form of the state is and
what the number of the particles in the system is. The similar
tasks can be accomplished with linear optics only. On the other
hand, this way may be suitable for atom systems, electron-spin
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systems, and others if the parties in quantum communication
can construct the elements similar to the UBSs and PBSs in
photon systems. It is a general way for efficient entanglement
concentration. If we use our parameter-splitting method for
the concentration of photonic polarization entanglement, it
is far simpler than the ECPs existing for photon systems in
a less-entangled polarization state with known parameters,
including those based on entanglement swapping [23], a
collective unitary evolution [24], or additional single photons
[25–27].

In our four hyper-ECPs, we assume the efficiency of the
linear-optical elements, such as PBSs, BSs, wave plates, and
half-wave plates, to be perfect. That is, there is no photon loss
in these linear-optical elements. Moreover, the efficiency of the
single-photon detectors is assumed to be 100%. In a practical
application of these hyper-ECPs, they do not work in an ideal
condition. The nonideal elements and detectors will decrease
the success probabilities of these hyper-ECPs. In this time,
the two parties can obtain maximally hyperentangled states by
postselection yet. In detail, by picking up the cases in which
there is a photon emitting from each of the output ports a1 (a2)
and b1 (b2), the two parties can make their hyper-ECP work
in a practical condition, as the same as the entanglement
purification protocols [10–12,14,16] and the entanglement
concentration protocols [18–21] in only one DOF with linear
optical elements.

In summary, we have proposed four hyper-ECPs for two
classes of two-photon four-qubit states entangled in two DOFs
in two kinds of conditions. With these four hyper-ECPs, the
parties in quantum communication can concentrate nonlocal
partially hyperentangled Bell states and nonlocal partially
entangled two-photon cluster states with their parameters
known or unknown to the two remote users. As hyperentangled
states can increase the channel capacity of long-distance
quantum communication processing, our hyper-ECPs for two-
photon states entangled in two DOFs may be very useful in
long-distance quantum communication in the future.

The task of entanglement concentration is to distill some
quantum systems in a nonlocal maximally entangled state
from those in a nonlocal partially entangled pure state for
two remote users [17]. The goal of this work is focused on
the nonlocal hyperentanglement concentration of two-photon
four-qubit systems in a partially hyperentangled pure state.
However, if the two-photon four-qubit systems are in a
mixed hyperentangled state, it is more complex for the two
remote users Alice and Bob to obtain some quantum systems
in a hyperentangled state with a higher fidelity than the
original one, as discussed in Appendix B. Of course, this
is the goal of entanglement purification [8]. For a general
hyperentanglement purification, nonlinearity is required [43].
As a simple example of our parameter-splitting method for the
entanglement concentration of photon systems in one DOF, we
discuss the concentration for polarization entangled states and
spatial-mode entangled states independently in Appendix C.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China under Grant No. 11174039 and NECT-
11-0031.

APPENDIX A: HYPER-ECP FOR TWO-PHOTON
FOUR-QUBIT SYSTEMS IN AN ARBITRARY UNKNOWN

HYPERENTANGLED CLUSTER-CLASS STATE

We assume that there are four identical two-photon systems
in an arbitrary partially hyperentangled cluster state,

|0〉AB = α|H 〉A|H 〉B |a1〉|b1〉 + β|V 〉A|V 〉B |a1〉|b1〉
+ γ |H 〉A|H 〉B |a2〉|b2〉 − δ|V 〉A|V 〉B |a2〉|b2〉,

|0〉CD = α|H 〉C |H 〉D|c1〉|d1〉 + β|V 〉C |V 〉D|c1〉|d1〉
+ γ |H 〉C |H 〉D|c2〉|d2〉 − δ|V 〉C |V 〉D|c2〉|d2〉,

|0〉A′B ′ = α|H 〉A′ |H 〉B ′ |a′
1〉|b′

1〉 + β|V 〉A′ |V 〉B ′ |a′
1〉|b′

1〉
+ γ |H 〉A′ |H 〉B ′ |a′

2〉|b′
2〉 − δ|V 〉A′ |V 〉B ′ |a′

2〉|b′
2〉,

|0〉C ′D′ = α|H 〉C ′ |H 〉D′ |c′
1〉|d ′

1〉 + β|V 〉C ′ |V 〉D′ |c′
1〉|d ′

1〉
+ γ |H 〉C ′ |H 〉D′ |c′

2〉|d ′
2〉 − δ|V 〉C ′ |V 〉D′ |c′

2〉|d ′
2〉.

(A1)

Here the subscripts AB, CD, A′B ′, and C ′D′ represent four
photon pairs. The four photons A, C, A′, and C ′ belong to Al-
ice, and the four photons B, D, B ′, and D′ belong to Bob. The
four parameters α, β, γ , and δ are unknown to Alice and Bob,
and they satisfy the relation |α|2 + |β|2 + |γ |2 + |δ|2 = 1.

The principle of our hyper-ECP for an arbitrary partially
hyperentangled two-photon four-qubit cluster state with un-
known parameters includes three steps. Let us describe them
in detail below.

First, Alice and Bob divide the four photon pairs into two
groups, that is, AB and CD in one group, and A′B ′ and C ′D′
in the other group. Alice and Bob perform the same operations
on these two groups. The quantum circuit shown in Fig. 5
without all the half-wave plates R90 is used to select the terms
with the same parameter, resorting to its parity-check effect.
The even-parity terms of the polarization DOF of photon pairs
in Alice’s hand and the odd-parity terms of the spatial-mode
DOF of photon pairs in Bob’s hand are picked up. After the
detections on CD (C ′D′) and the local phase-flip operations
on the photon B (B ′), the states of the photon pairs AB and
A′B ′ become

|1〉AB = |αγ |√
2(|αγ |2 + |βδ|2)

(|a1〉|b1〉 + |a2〉|b2〉)

⊗
(

|H 〉A|H 〉B − βδ

αγ
|V 〉A|V 〉B

)
,

(A2)
|1〉A′B ′ = |αγ |√

2(|αγ |2 + |βδ|2)
(|a′

1〉|b′
1〉 + |a′

2〉|b′
2〉)

⊗
(

|H 〉A′ |H 〉B ′ − βδ

αγ
|V 〉A′ |V 〉B ′

)
.

Now, the spatial modes of the two-photon systems are
in a maximally entangled state, and the next step is to let
the polarization modes become a maximally entangled one.
This task can be completed with the quantum circuit shown
in Fig. 5. The polarization parity-check measurement is
performed on the photon pair AA′ in Alice’s hand, and the
spatial-mode parity-check measurement is performed on the
photon pair BB ′ in Bob’s hand. Then the even-parity terms
of the polarization DOF of photon pairs in Alice’s hand and
the odd-parity terms of the spatial-mode DOF of photon pairs
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in Bob’s hand are picked up. After the detections on A′B ′
and the local phase-flip operations on the photon B, the state
of the photon pair AB becomes |ϕf 〉AB = 1

2 (|H 〉A|H 〉B +
|V 〉A|V 〉B)(|a1〉|b1〉 + |a2〉|b2〉) which is a maximally
hyperentangled Bell state. This maximally hyperentangled
Bell state can be transformed into a maximally entangled
two-photon cluster state |ψf 〉AB = 1

2 (|H 〉A|H 〉B |a1〉|b1〉 +
|V 〉A|V 〉B |a1〉|b1〉 + |H 〉A|H 〉B |a2〉|b2〉 − |V 〉A|V 〉B |a2〉|b2〉)
with the operation shown in Fig. 7.

Up to now, we have transformed an arbitrary partially
entangled two-photon cluster state into a maximally hyper-
entangled two-photon cluster state with the success probability
P4 = 4|αβγ δ|2

2(|αγ |2+|δβ|2) by exploiting some linear-optical elements
only. The principle of the first two steps of our hyper-ECP
for partially hyperentangled two-photon cluster states is the
same as that in the hyper-ECP for partially hyperentangled
Bell states, and an arbitrary partially entangled two-photon
cluster state can be changed to be a maximally hyperentangled
Bell one. In the third step, the maximally hyperentangled Bell
state is transformed into a maximally entangled two-photon
cluster state with a linear-optical element.

In this hyper-ECP, one can see that four photon pairs
are required for concentrating a hyperentangled two-photon
four-qubit cluster-class state with four arbitrary unknown
parameters. On one hand, it is not efficient, compared with
the hyper-ECP for a partially hyperentangled Bell state as
the latter requires only two pairs in a practical application.
Moreover, this is, in principle, the necessary condition for
the hyperentanglement concentration of an arbitrary unknown
two-photon four-qubit cluster state because there are three
independent parameters which are unknown to Alice and Bob,
while there are only two independent parameters which are
unknown to Alice and Bob in the hyperentanglement concen-
tration of an unknown partially hyperentangled Bell state. On
the other hand, it is possible to prepare a nonlocal maximally
hyperentangled cluster-class state with a nonlocal maximally
hyperentangled Bell state using a linear-optical element shown
in Fig. 7. Therefore, in a practical application in quantum
communication, the hyper-ECP for the hyperentangled Bell
state is sufficient for long-distance quantum communication
with hyperentangled two-photon four-qubit states. After the
parties obtain a nonlocal maximally hyperentangled Bell
state, they need only transform it into a nonlocal maximally
hyperentangled cluster state with linear-optical elements.

APPENDIX B: ENTANGLEMENT PURIFICATION FOR A
SPATIAL-POLARIZATION MIXED HYPERENTANGLED

BELL STATE

We assume that there are two identical two-photon four-
qubit systems in a mixed hyperentangled state,

ρAB = [F1|φ+
AB〉P 〈φ+

AB | + (1 − F1)|ψ+
AB〉P 〈ψ+

AB |]
⊗ |φ+

AB〉S〈φ+
AB |,

ρCD = [F1|φ+
CD〉P 〈φ+

CD| + (1 − F1)|ψ+
CD〉P 〈ψ+

CD|]
⊗ |φ+

CD〉S〈φ+
CD|. (B1)

Here the subscripts AB and CD represent two photon pairs.
The two photons A and C belong to Alice, and the two photons
B and D belong to Bob. The subscripts P and S represent the

polarization and the spatial-mode DOFs, respectively. The four
states |φ+〉P , |ψ+〉P , |φ+〉S , and |ψ+〉S are defined as

|φ+〉P = 1√
2

(|HH 〉 + |V V 〉),

|ψ+〉P = 1√
2

(|HV 〉 + |V H 〉),
(B2)

|φ+〉S = 1√
2

(|a1b1〉 + |a2b2〉),

|ψ+〉S = 1√
2

(|a1b2〉 + |a2b1〉).

The state of the four-photon system ABCD can be described
as

ρ = ρAB ⊗ ρCD. (B3)

This mixed hyperentangled Bell state can be viewed as the
mixture of four maximally hyperentangled Bell states, the
same as the conventional entanglement purification protocols
for photon pairs [8–16]. That is, it is the mixture of the four
pure states in the polarization DOF: |φ+

AB〉P ⊗ |φ+
CD〉P with the

probability F 2
1 , |φ+

AB〉P ⊗ |ψ+
CD〉P with the probability F1(1 −

F1), |ψ+
AB〉P ⊗ |φ+

CD〉P with the probability F1(1 − F1), and
|ψ+

AB〉P ⊗ |ψ+
CD〉P with the probability (1 − F1)2. The state of

the system in the spatial-mode DOF is |φ+
AB〉S ⊗ |φ+

CD〉S .
In order to implement this hyper-EPP, Alice and Bob have

to perform the same operations on the two photon pairs AC

and BD, shown in Fig. 8. That is, Alice (Bob) performs the
polarization parity-check measurements and the spatial-mode
parity-check measurements on the photon pair AC (BD) first
and then detects the photon C (D). If both Alice and Bob detect
one and only one photon with their single-photon detectors,
the state of the two-photon system AB becomes

ρf = [F ′
1|φ+〉P 〈φ+| + (1 − F ′

1)|ψ+〉P 〈ψ+|]AB

⊗ |φ+〉S〈φ+|AB. (B4)

Here F ′
1 = F 2

1 /[F 2
1 + (1 − F1)2]. If F1 > 1/2, F ′

1 > F1. That
is, the fidelity of the maximally hyperentangled Bell state

FIG. 8. (Color online) Schematic diagram of our hyperentangle-
ment purification protocol (hyper-EPP) for a mixed hyperentangled
Bell state with polarization bit-flip errors. Bob performs the same
operations as Alice by replacing the photons A and C with the photons
B and D, respectively.
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|ϕf 〉AB = 1
2 (|H 〉A|H 〉B + |V 〉A|V 〉B)(|a1〉|b1〉 + |a2〉|b2〉) in-

creases after a round of entanglement purification if F1 > 1/2.
In a practical application, Alice and Bob should resort to
postselection for judging whether there is one and only one
photon detected by each of them or not, similar to the
conventional EPPs in the polarization DOF [8–13].

Our hyper-EPP is used to purify the mixed hyperentangled
Bell state with polarization bit-flip errors. The polarization
phase-flip error can be transformed into the polarization
bit-flip error with local operations [8–13]. The spatial-mode
entanglement is robust against bit-flip errors because it is
hard for a photon to permeate into another fiber [11,12]. The
phase-flip error of the spatial-mode DOF can be depressed with
current technology [11,12]. If there are both the polarization
bit-flip error and the spatial-mode bit-flip error in a mixed
hyperentangled Bell state, the present hyper-EPP cannot be
implemented with linear optics, which is limited by the ability
of linear optics for purifying only one qubit error. In this time,
we should use nonlinear optics to implement the hyper-EPP for
a mixed hyperentangled Bell state with both the polarization
bit-flip error and the spatial-mode bit-flip error [43].

APPENDIX C: PARAMETER-SPLITTING-BASED
ENTANGLEMENT CONCENTRATION OF PHOTON

SYSTEMS IN A KNOWN PARTIALLY ENTANGLED STATE
IN ONE DOF

In this section, we will describe the ECPs for a partially
entangled polarization Bell state and a partially entangled
spatial-mode Bell state independently based on our parameter-
splitting method in detail.

1. Parameter-splitting-based entanglement concentration
of photon systems in a known partially entangled

polarization state

Let us assume that the initial partially entangled Bell-class
state in the polarization DOF is

|ϕ0〉AB = α|H 〉A|H 〉B + β|V 〉A|V 〉B. (C1)

Here the subscripts A and B represent the two photons shared
by the two remoter users Alice and Bob, respectively. α and β

are two real parameters that are known to Alice and Bob, and
they satisfy the relation |α|2 + |β|2 = 1 and |α| > |β|.

The principle of the ECP for a partially entangled polariza-
tion Bell state is shown in Fig. 9, which can be implemented

FIG. 9. (Color online) Schematic diagram of our parameter-
splitting-based ECP for a partially entangled Bell state with known
parameters in the polarization DOF. Rθ ′′ represents a wave plate which
can rotate the horizontal polarization with an angle θ ′′ = arccos(β/α).
D represents a single-photon detector.

by performing local unitary operations on photon A in its
polarization DOF. Alice performs the polarization unitary
operation Rθ ′′ on photon A, which rotates the horizontal
polarization |H 〉 with an angle θ ′′ = arccos(β/α), that is,
|H 〉 → cosθ ′′|H 〉 + sinθ ′′|V 〉. After the photon A passes
through PBS and Rθ ′′ , the state of the system is transformed
from |ϕ0〉AB into |ϕ1〉AB . Here

|ϕ1〉AB = 1√
2

[β(|H 〉A|H 〉B + |V 〉A|V 〉B)

+
√

|α|2 − |β|2|V ′〉A|H 〉B]. (C2)

Here |V ′〉 presents the vertical polarization of the photon after
the operation R′′

θ , and the photon will emit from the spatial
mode a′ and it will be detected by the single-photon detector
D in principle. If the detector D does not click, the state |ϕ1〉AB

becomes a maximally entangled one. That is, the state of the
two-photon system AB becomes

|φ+〉AB = 1√
2

(|H 〉|H 〉 + |V 〉|V 〉)AB. (C3)

This is just the maximally entangled polarization Bell state of
a two-photon system. If the detector D clicks, the polarization
state |ϕ1〉AB is projected into the product state |V ′〉A|H 〉B .
Certainly, photon A is destroyed, and the entanglement
concentration fails in this time.

Now we have implemented the parameter-splitting-based
ECP for a partially entangled polarization Bell state with
known parameters. If the detector D does not click, our
ECP succeeds, which takes place with the probability of
Pp = 2|β|2. If the detector D clicks, the photon A is destroyed
and our ECP fails.

2. Parameter-splitting-based entanglement concentration
of photon systems in a known partially entangled

spatial-mode state

Let us assume that the initial partially entangled Bell-class
state in the spatial-mode DOF is

|ϕ0〉AB = α|a1〉|b1〉 + β|a2〉|b2〉. (C4)

Here the subscripts A and B represent the two photons shared
by Alice and Bob. α and β are two real parameters that are
known to Alice and Bob, and they satisfy the relation |α|2 +
|β|2 = 1 and |α| > |β|.

The principle of the ECP for a partially entangled spatial-
mode Bell state is shown in Fig. 10. It can be implemented

FIG. 10. (Color online) Schematic diagram of our parameter-
splitting-based ECP for a partially entangled Bell state with known
parameters in the spatial-mode DOF. UBS represents an unbalanced
beam splitter with the reflection coefficient R = β/α.
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by performing local unitary operations on photon A in the
spatial-mode DOF. Alice performs a unitary operation on the
spatial mode a1 by using an unbalanced BS [42] with the reflec-
tion coefficient R = β/α, shown in Fig. 1(b), and the partially
entangled spatial-mode Bell state |ϕ0〉AB is changed to be
|ϕ1〉AB . Here

|ϕ1〉AB = β(|a1〉|b1〉 + |a2〉|b2〉)
+

√
|α|2 − |β|2|a3〉|b1〉. (C5)

The state of the two-photon system AB becomes a maximally
entangled one if the detector D does not click. That is, the state

of the two-photon system AB becomes

|ϕ2〉AB = 1√
2

(|a1〉|b1〉 + |a2〉|b2〉). (C6)

If the detector D clicks, the state of the system is projected into
a product state |a3〉|b2〉. In this time, the photon A is destroyed,
and the entanglement concentration fails.

It is not difficult to calculate the success probability of our
ECP for a partially entangled spatial-mode Bell state. If the
detector D does not click, our ECP succeeds, which takes place
with the probability of Ps = 2|β|2. If the detector D clicks, the
photon A is destroyed and our ECP fails.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
2000).

[2] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.
Phys. 74, 145 (2002).

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
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