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Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer
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Sources of entangled photon pairs are a key component in both fundamental tests of quantum theory and
practical applications such as quantum key distribution and quantum computing. In this work, we describe
and characterize a source of polarization entangled photon pairs based on two spontaneous parametric down-
conversion crystals in a Sagnac interferometer. Our source is compact and produces high-quality entangled states
in a very flexible manner. The wavelengths of the photon pairs (around 810 and 1550 nm), the phase between
orthogonal components of the entangled state, and the tangle of the state are all independently adjustable. In
addition to presenting basic characterization data, we present experimental violations of Clauser-Horne-Shimony-
Holt and Leggett inequalities, as well as an instance of the “beautiful” Bell inequality, which has not previously
been tested experimentally.
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I. INTRODUCTION

Over the last century quantum theory has fundamentally
changed our understanding of the universe and continues to
offer new insights into nature. Schrödinger described entan-
glement as “the characteristic trait of quantum mechanics”
[1]. As such, it is not surprising that sources of entangled
particles are a key resource in experiments that probe aspects
of quantum theory [2]. They are also fundamental building
blocks for practical applications of quantum information
theory, such as quantum key distribution [3] and linear optical
quantum computing [4]. Sources of entangled photon pairs
based on spontaneous parametric down-conversion (SPDC)
in nonlinear crystals [5] are now widely used, and several
high-performance entanglement sources have been based on
a nonlinear crystal in a Sagnac interferometer thanks to
this type of interferometer’s intrinsic phase stability [6,7].
However, due to problems arising from chromatic dispersion
in polarization optics, such sources are challenging to build if
the members of the entangled pairs are generated at widely
different wavelengths. One way to overcome this problem
is to use periscopes instead [8]. Here we resort to another
approach, which is based on a Sagnac interferometer that
includes two SPDC crystals. In addition to being compact
and highly flexible in terms of the states it can produce, an
interesting added feature is that the quality of entanglement
(the tangle) can be varied in a controlled manner. Our source
has proved suitable for fundamental tests of quantum theory,
some of which have not been performed before, and would
also be well suited to applications requiring transmission of
entangled photons through both optical fiber and free space,
e.g., for hybrid quantum networks.

II. SOURCE DESIGN

Figure 1 shows the design of our entanglement source.
Depending on the experiment, light from a 532-nm pulsed
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or continuous-wave laser is linearly polarized before being
rotated to an equal superposition of horizontal and vertical
polarizations using a λ

2 waveplate. Pump light is then split into
two paths by a polarizing beam splitter (PBS). In the clockwise
(CW) branch of the interferometer, horizontally polarized
pump light first encounters a periodically poled lithium niobate
(PPLN) crystal that is oriented to satisfy the phase matching
conditions for SPDC with vertically polarized pump light.
The pump light will thus pass through this crystal without
interaction because the phase matching conditions are not met
at this polarization. The second PPLN crystal encountered
by pump light in this path is oriented to down-convert
horizontally polarized pump light, so pairs of horizontally
polarized photons at nondegenerate wavelengths of 810 and
1550 nm are now produced. These pairs are transmitted
through the PBS and exit the source. The counterclockwise
(CCW) path is similar, except that vertically polarized pairs are
produced in the second crystal encountered and then reflected
into the same output mode as the horizontal pairs from the CW
path. The pump intensity is adjusted so that single photon-pair
events dominate detection statistics, as evidenced by the results
shown below. Since pump light travels through both arms of
the interferometer in a coherent superposition, recombining
both arms on the PBS produces the entangled state:

|�φ〉 = 1√
2

(|HH 〉 + eiφ|V V 〉). (1)

The phase, φ, is controlled using a Babinet-Soleil phase
compensator (BSC) placed in front of the interferometer,
which allows changing of the phase between the horizontally
and vertically polarized components of the pump laser. For the
data collected for this article, φ was chosen to be close to zero
so that the resulting state had a high fidelity with a |�+〉 Bell
state.

After the pump light is filtered out, photon pairs are
separated according to wavelength by a dichroic mirror and
sent to wavelength specific qubit analyzers consisting of a
λ
4 waveplate, a λ

2 waveplate, a PBS, and wavelength specific
detectors, as shown in Fig. 1. These analyzers allow arbitrary
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FIG. 1. (Color online) Polarization entanglement source with qubit analyzers. Entangled states produced by the source are split according
to wavelength on a dichroic mirror and distributed to analyzers A and B, which are each composed of a λ

4 waveplate (QWP), λ

2 waveplate
(HWP), polarizing beam splitter (PBS), and wavelength specific single-photon detectors (Si APD and InGaAs APD). See text for details.

projection measurements to be made on each of the photons.
A free running silicon avalanche photodiode (Si APD) is
used in the 810-nm photon analyzer, A. Its output is used to
trigger an Indium Galium Arsenide (InGaAs) APD used in the
1550-nm analyzer, B. Detection signals are collected using a
time-to-digital converter (TDC) so that coincidences between
detection events can be recorded. Using approximately 2 mW
of pump power, signal photon detections occur at a rate
of approximately 20 KHz and coincidences at a rate of
approximately 500 Hz. The dark count rate for the Si APD
is approximately 40 Hz, and the InGaAs APD has a dark
count rate of 5 × 10−5/ns.

III. VISIBILITY AND QUANTUM STATE TOMOGRAPHY

Two-photon interference visibilities were assessed by per-
forming two sets of measurements using the continuous-wave
pump laser. In the first measurement, analyzer A (810 nm)
projected onto |H 〉 while analyzer B (1550 nm) projected
onto states represented on the great circle around the Bloch
sphere that includes |H 〉, |V 〉, |+〉, and |−〉. In the second
measurement, analyzer A projected onto |+〉 and analyzer B

projected onto states represented on the great circle including
|R〉, |L〉, |+〉, and |−〉. Here, |+〉 and |−〉 denote ±45◦ linear
polarization and |R〉 and |L〉 denote right and left circular
polarization, respectively. Fitting the measured coincidence
rates to sinusoidal functions with visibilities V1 and V2, we
find V1 = (99.1 ± 0.7)% and V2 = (97.4 ± 0.9)%, both being
close to the maximum value of 100%.

Table I shows data of a typical density matrix resulting from
maximum likelihood quantum state tomography (QST) [9]
with a tangle [10] of T = 0.905.

IV. CONTROLLING TANGLE

In order for the entangled state produced by this source
to be of high quality (i.e., to have a tangle close to 1),
the spectra produced by the two SPDC crystals must match
as closely as possible. Imperfectly overlapping spectra yield
information that reveals in which crystal a given pair of

photons was created, thus reducing the tangle of the state.
The crystals used were made by the same manufacturer but
at different times and therefore have slightly different poling
periods if they are at the same temperature. By maintaining
the SPDC crystals at slightly different temperatures we can
select the phase-matching conditions such that the spectra of
the |HH 〉 and |V V 〉 photon pairs are nearly indistinguishable.
This changes the phase φ of the state in Eq. (1), which we
compensate for using the BSC. It is also possible to deliberately
mismatch the spectra in a controlled way, allowing this source
to produce states with an arbitrary degree of entanglement.
This is done by adjusting the temperature of one PPLN crystal
relative to the other, thus altering the spectrum of photons
it produces and reducing the spectral overlap between pairs
produced by the two SPDC crystals.

Figure 2 shows two signal spectra, one gathered from the
|HH 〉 PPLN crystal at T = 165.2 ◦C and the other gathered
from the |V V 〉 PPLN crystal at T = 165.70 ◦C. For these
temperatures the two spectra have incomplete overlap O [see
Eq. (2)], and the tangle T of the photon pairs produced is small
but nonzero. Note that the data presented in this section have

TABLE I. Typical density matrix: real and imaginary parts of the
density matrix generated by maximum likelihood QST performed
when the spectral overlap between SPDC crystals was optimized.
The tangle is T = 0.905.

〈HH | 〈HV | 〈V H | 〈V V |
Re {ρ}
|HH 〉 0.5085 0.0085 −0.0151 0.4773
|HV 〉 0.0085 0.0028 −0.0006 0.0145
|V H 〉 −0.0151 −0.0006 0.0038 −0.0075
|V V 〉 0.4773 0.0145 −0.0075 0.4848
Im {ρ}
|HH 〉 0.0000 0.0028 −0.0027 −0.0337
|HV 〉 −0.0028 0.0000 0.0028 0.0036
|V H 〉 0.0027 −0.0028 0.0000 −0.0045
|V V 〉 0.0337 −0.0036 0.0045 0.0000
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FIG. 2. (Color online) Single-photon spectra for two crystals
at different temperatures. This plot shows single-photon spectra
gathered for ∼810-nm signal photons from the entanglement source’s
|V V 〉 PPLN crystal at T = 165.70 ◦C and from the |HH 〉 PPLN
crystal at T = 165.20 ◦C.

been taken with the pulsed pump; all other data have been
taken with the continuous-wave laser.

To see how tangle is related to spectral overlap, we then
varied the temperature of the PPLN crystal that down-converts
pump light in the CW path of our entanglement source while
the other SPDC crystal’s temperature was held constant. This
shifted the spectrum of the |HH 〉 component of the state
relative to the |V V 〉 component, resulting in different degrees
of spectral overlap, O, which we calculate as

O =
∫ √

SHH (λ)
√

SV V (λ)dλ, (2)

where SHH (λ) is the the signal spectral density as a function of
wavelength λ for the SPDC crystal producing |HH 〉 photons
pairs and SV V (λ) is the signal spectral density of the SPDC
crystal producing |V V 〉 photon pairs.

We measured the spectrum of the signal photons from the
|V V 〉 SPDC crystal, which was kept at a constant temperature
of T = 165.70 ◦C using a temperature controlled oven that is
stable to ±0.01 ◦C. We also measured spectra of signal photons
from the |HH 〉 SPDC crystal at several different temperatures.
At each of these temperatures we also performed QST on the
resulting bipartite states to find density matrices and associated
tangles for each temperature, as shown in Fig. 3. Tangle and
overlap versus crystal temperature are shown in Fig. 4.

V. TESTS OF CLAUSER-HORNE-SHIMONY-HOLT BELL,
“BEAUTIFUL” BELL, AND LEGGETT INEQUALITIES

A. Bell inequalities

To assess the nonclassical properties of the states produced
by our source we first tested the Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality [12]. A violation of this inequality
demonstrates that local hidden variable (LHV) models are not
adequate to describe the behavior of the states the source is
producing and demonstrates the presence of entanglement. In
the CHSH inequality, Alice and Bob each measure in one
of two bases, chosen uniformly and at random. For each
combination of bases, âi = {ai,a

⊥
i } and b̂j = {bj ,b

⊥
j }, Alice
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FIG. 3. (Color online) Density matrices for different tempera-
tures. This plot depicts the real components of the density matrices
shown from each data point in Fig. 4, ordered columnwise by crystal
temperature. Full density matrices for each point are detailed in the
Supplemental Material [11].

and Bob measure the correlation coefficient:

E(âi ,b̂j ) = P (ai,bj ) + P (a⊥
i ,b⊥

j ) − P (a⊥
i ,bj ) − P (ai,b

⊥
j ),

(3)

where

P (ai,bj ) = C(ai,bj )

C(ai,bj ) + C(a⊥
i ,bj ) + C(ai,b

⊥
j ) + C(a⊥

i ,b⊥
j )

,

and C(ai,bj ) is the number of “coincidence” detections
observed when Alice and Bob projectively measure along basis
vectors ai and bj , respectively. One optimal set of bases for
testing the CHSH Bell inequality with a |�+〉 state is shown
in Fig. 5. We then calculate the Bell S parameter as

S = E(â1,b̂1) − E(â1,b̂2) + E(â2,b̂1) + E(â2,b̂2). (4)

LHV models predict that S must fall within the range −2 �
S � 2. Measurements made with our source (again using
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FIG. 4. (Color online) Tangle vs spectral overlap. This plot shows
tangles derived from density matrices (detailed in the Supplemental
Material [11]) measured via QST, TQST, as the spectral overlap was
changed by varying the temperature of the |HH 〉 PPLN crystal. The
|V V 〉 crystal’s temperature was kept constant. Also shown is the
overlap, O, of the measured spectra.

the continuous-wave laser) produced a value of S = 2.757 ±
0.008. The uncertainty is based on Poissonian statistics.
We note that QST yielded a density matrix with a tangle
of T = 0.884 immediately before this measurement. Based
on this we would expect a maximum S parameter value
of Smax = 2

√
1 + T = 2.75, which is consistent with the

measured value.
In the CHSH Bell inequality two particles, each with a

Hilbert space of dimension m = 2, are distributed to Alice and
Bob. Alice makes projective measurements onto four states in
n = 2 bases. For an optimal violation of the bound given by
the inequality, Alice chooses bases that are mutually unbiased
and Bob makes projective measurements onto all mn = 4
possible intermediate states (see [14] for a precise definition).
An interesting question is if (and how) Bell inequalities can be
constructed that (1) make use of higher-dimension states or a
larger number of measurements made by Alice and (2) require
similarly symmetric projection measurements for maximum
violation. The “beautiful” Bell family of inequalities [13]
was proposed by H. Bechmann-Pasquinucci and N. Gisin in
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2

FIG. 5. (Color online) CHSH measurement bases. An optimal
set of measurement bases for testing the CHSH Bell inequality when
using a |�+〉 state is shown here on the equator of the Bloch sphere.
Only one vector for each basis is shown. The orthogonal vector
associated with each basis is rotated by π from the vector shown.
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FIG. 6. (Color online) Beautiful Bell measurement bases. Alice
measures in three mutually unbiased bases {â0,â1,â2} and Bob
measures in bases {b̂0,b̂1,b̂2,b̂3} [15]. Only one basis vector (e.g.,
a1 from â1 = {a1,a

⊥
1 }) from each basis is shown.

2003 [14] and expanded upon by Gisin in 2008 [15] in response
to these questions. The authors proposed a general form of Bell
inequalities, parametrized by m and n, for which the CHSH
Bell inequality is the specific case in which m = 2 and n = 2.
The next simplest (and only) inequality in the beautiful Bell
family that we can evaluate with a source of entangled qubits
is the m = 3, n = 2 case. This inequality differs from the
CHSH Bell inequality in that Alice measures in three bases,
each spanned by two orthogonal states. Some reflection yields
mn = 23 = 8 intermediate states that Bob needs to projectively
measure onto [14]. The optimal measurement bases for the
m = 3, n = 2 case are shown in Fig. 6—note their highly
symmetric distribution around the Bloch sphere.

The (2,3) beautiful Bell inequality reads

S
2,3
BB = E(â0,b̂0) + E(â0,b̂1) − E(â0,b̂2) − E(â0,b̂3)

+E(â1,b̂0) − E(â1,b̂1) + E(â1,b̂2) − E(â1,b̂3)

+E(â2,b̂0) − E(â2,b̂1) − E(â2,b̂2) + E(â2,b̂3).

Here âi and b̂j are measurement bases used by analyzers A and
B, respectively, and E(âi ,b̂j ) are correlation coefficients. LHV
models predict that this inequality is bounded by S

2,3
BB � 6,

while quantum theory predicts a bound of S
2,3
BB � 4

√
3 =

6.928. A minimal violation of the beautiful Bell inequality
requires an entanglement visibility of roughly 87%.

We measured a value of S
2,3
BB = 6.67 ± 0.08 (derived from

measurement results detailed in the Supplemental Material
[11]), equivalent to a violation of LHV models by over eight
standard deviations. We are not aware of any previously
published experimental violation of the m = 3, n = 2 (or
higher dimension) beautiful Bell inequality.

B. Leggett inequality

The Leggett model [16] differs from deterministic LHV
models in that it permits some nonlocal interactions and
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makes probabilistic predictions about outcomes of individual
measurements. The Leggett model is interesting because
experiments that rule out the LHV models do not automatically
rule out nonlocal hidden variable (NLHV) models such as the
Leggett model. This model was first experimentally tested in
2007 [17]. We tested the 2008 version of the Leggett inequality
proposed and first violated by Branciard et al. [18], who
defined

L3(ϕ) ≡ 1

3

3∑
i=1

|E(âi ,b̂i) + E(âi ,b̂
′
i)|. (5)

Here, E(â,b̂) is the correlation function resulting when Alice
and Bob measure in pairs of bases separated by angle ϕ, as
shown in Fig. 7. The bound provided by the Leggett model for
L3 is

L3(ϕ) � 2 − 2

3
| sin

ϕ

2
|. (6)

Figure 8 shows the results we obtained for several different
values of ϕ. Each measured point is above the dot-dashed (red)
line, which corresponds to the bound of the Leggett model
[Eq. (6)] and is therefore a violation of the model. The maximal
violation occurs at ϕ = 40◦. At this setting, the measured value
is L3 = 1.82 ± 0.02, while the Leggett model is bounded by
1.772 (see the Supplemental Material [11] for measurement
settings and results for this data point). To our knowledge,
this is the first time that the Leggett inequality of the form
in [18] has been violated with photon pairs at nondegenerate
wavelengths. Our result confirms that the specific class of

-10 0 10 20 30 40 50 60 70 80

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

ϕ (degrees)

L3

FIG. 8. (Color online) Leggett inequality measurement results.
Experimentally measured values for L3(ϕ) are shown vs ϕ. Points
with uncertainty bars are experimentally measured values for L3(ϕ).
The dot-dashed (red) line is the upper bound for the Leggett model.
Each experimental data point above this line is a violation of the
Leggett inequality. The solid (blue) line shows predicted L3 values
based on a density matrix measured via QST (tangle T = 0.905). The
dashed (blue) line is the expected L3 value for a perfect |�+〉 state.

NLHV models described by Leggett is not compatible with
experimental observations.

VI. CONCLUSION

We have demonstrated a compact and highly flexible source
of entangled photon pairs at widely different wavelengths
that features high visibility and adjustable tangle. Our source
has proved useful for several fundamental tests of quantum
theory, namely, violations of Bell and Leggett inequalities. It
is interesting to note that these tests, which require testing
specific inequalities, are not the only way to refute local or
certain nonlocal theories that attempt to explain the origin
of quantum correlations. Using the same source, we recently
arrived at the same conclusion based on a more general
approach [19]. More precisely, we ruled out all alternative
theories to quantum mechanics, within a causal structure
compatible with relativity theory, that improve on quantum
mechanical predictions about the outcomes of measurements
on maximally entangled particles by more than 16.5%. In
particular, this rules out local and nonlocal hidden variable
theories à la Bell and Leggett, respectively.
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