
PHYSICAL REVIEW A 88, 012131 (2013)

Exploring the geometry of qutrit state space using symmetric informationally complete probabilities

Gelo Noel M. Tabia1,2,* and D. M. Appleby1,3,†
1Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5

2Department of Physics and Astronomy and Institute for Quantum Computing, University of Waterloo, 200 University Avenue West,
Waterloo, Ontario, Canada N2L 3G1

3Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University,
Marais Street, Stellenbosch 7600, South Africa

(Received 1 May 2013; published 31 July 2013)

We examine the geometric structure of qutrit state space by identifying the outcome probabilities of symmetric
informationally complete (SIC) measurements with quantum states. We categorize the infinitely many qutrit SICs
into eight SIC families corresponding to independent orbits of the extended Clifford group. Every SIC can be
uniquely identified from a set of geometric invariants that we use to establish several properties of the convex
body of qutrits, which include a simple formula describing its extreme points, an expression for the rotation
between the probability vectors for distinct qutrit SICs, and a polar equation for its boundary states.
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I. INTRODUCTION

In quantum mechanics, the state of a physical system is
usually described by a density operator, which is a positive
semidefinite, Hermitian matrix with unit trace. For any pair of
Hermitian matrices A and B, define the Hilbert-Schmidt inner
product 〈A,B〉HS = Tr(AB). The space of Hermitian matrices
Herm(Hd ) on a Hilbert space Hd then forms a Euclidean
space. If we consider the set of density operators D(Hd ) as
a subset of Herm(Hd ), then we can think of d-dimensional
quantum states as points in a (d2 − 1)-dimensional convex set
C ⊂ Rd2

that is isomorphic toD(Hd ). We expect the geometric
features of the convex set C to reflect properties of density
operators. For example, the full geometry of C is well known
for d = 2; it is a solid three-dimensional ball called the Bloch
ball. The spherical boundary of the ball corresponds to pure
states, where orthogonal states get mapped onto antipodal
points, and interior points correspond to mixtures, each of
which can be decomposed into any convex combination of
pure states whose convex hull contains that point. We can also
compare how similar any two states ρ1 and ρ2 are by measuring
their Hilbert-Schmidt distance DHS(ρ1,ρ2) =

√
Tr(ρ1 − ρ2)2.

Little, however, is known of the same convex geometry for
quantum states in higher dimensions. Much effort has been
made in uncovering the rich, intricate structure of C for d = 3
by examining the various two- and three-dimensional sections
obtained from the generalized Bloch representation for qutrits
[1–5] but many details of its overall structure remain unknown.

In this paper, we analyze the geometric features of qutrits
in terms of the probabilities for a special measurement called
a symmetric informationally complete (SIC) measurement
[6–12]. A SIC measurement maps each density operator into
a unique probability vector, which represents one way of
specifying an isomorphism of D(Hd ) onto a subset of Rd2

.
This particular mapping allows us to characterize quantum
states as a proper subset of the probability simplex, where the
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restriction is imposed mainly by a special version of the Born
rule.

We find that the SIC probabilities provide us with a novel
way of characterizing properties of qutrits, particularly with
respect to the flat geometry induced by the Euclidean metric
defined on the simplex. Here we present three main results:

(i) The extreme points representing pure states for qutrits are
obtained from a simple formula that picks out a submanifold
of points lying on a certain sphere.

(ii) The probability vectors obtained for any pair of
SICs are related by a rotation with a very simple form,
which we construct explicitly. It may be worthwhile to note
that the rotation does not necessarily arise from a unitary
transformation between the SICs involved (except when the
SICs are unitarily equivalent).

(iii) The boundary points are described using a polar
equation that gives their radial distances from the uniform
distribution, which represents the maximally mixed state. This
is different from existing methods that analyze the geometry of
qutrits by studying the boundary of various two-dimensional
sections [1,4,5].

The motivation for such a study is twofold. First, the
geometry of quantum states is interesting in its own right
and a better understanding of it may have important reper-
cussions for various applications of quantum information
processing. Secondly, Fuchs and Schack advocate a framework
for reformulating quantum mechanics directly in terms of
probabilities without mentioning Hilbert space at all [13].
A better understanding of the structure of SIC probabilities
may prove useful in identifying the basic axioms needed
for reconstructing quantum theory exclusively in terms of
probabilities.

II. PROPERTIES OF WEYL-HEISENBERG QUTRIT SICS

One way to represent quantum states in terms of proba-
bilities is to express density operators in terms of d2 linearly
independent projectors �i = |ψi〉〈ψi | such that

|〈ψi |ψj 〉|2 = dδij + 1

d + 1
. (1)
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When each projection is scaled by 1
d

, we get a measure-
ment called a symmetric informationally complete positive
operator-valued measurement (SIC-POVM), a topic of con-
siderable interest in the quantum physics community. In this
paper, the set {�i}d2

i=1 is called a SIC for short.
The one-to-one correspondence between the outcome prob-

abilities p(i) of a SIC-POVM and density operators is given
by [14]

ρ =
d2∑
i=1

[
(d + 1)p(i) − 1

d

]
�i. (2)

Thus, the SIC probability vectors �p provide an equivalent
description of quantum states, which we call the SIC represen-
tation. It follows that we can always choose the coordinates
of C such that �p ∈ C for all �p associated with a quantum state
according to Eq. (2). The relation between the Hilbert-Schmidt
inner product for a pair of density operators ρ1 and ρ2, and the
scalar product of their respective probability vectors �p1 and �p2

is given by

Tr(ρ1ρ2) = d(d + 1) �p1 · �p2 − 1. (3)

All SICs constructed to date have a certain group covariance
property. Let G be a group of d2 elements and let g �→ Ug be a
projective representation of G on Hd . Let |ψ〉 ∈ Hd . If the set
of vectors Ug|ψ〉 generates a SIC S, we say that S is covariant
with respect to G. The seed vector |ψ〉 for S is called a fiducial
vector.

In almost all known cases, the unitaries that produce SICs
belong to the Weyl-Heisenberg group. Let {|j 〉}d−1

j=0 be an
orthonormal basis for Hd . The Weyl-Heisenberg group is
generated by the shift X and phase Z operators,

X|j 〉 = |j + 1 mod d〉, Z|j 〉 = ωj |j 〉, (4)

where ω = ei(2π/d). We can act with powers of X and Z on a
SIC fiducial |ψ〉 so that the resulting vectors

|ψmn〉 = XmZn|ψ〉, m,n = 0,1, . . . ,d − 1, (5)

satisfy Eq. (1). In that case, the projectors associated with
|ψmn〉 form a SIC, which we call a Weyl-Heisenberg SIC.

The operators X and Z generate the group

W (d) = {ωαXmZn| α,m,n = 0,1, . . . ,d − 1}, (6)

which we call the Weyl-Heisenberg group. Note that W (d) is
of order d3. However, two unitaries which differ only by a
phase generate the same SIC projector, so the SIC itself only
contains d2 elements.

The normalizer of the Weyl-Heisenberg group is called
the Clifford group C(d) [9,15–17], which is itself a unitary
subgroup in dimension d. If U ∈ C(d) is a Clifford unitary
operator and W (d) is the Weyl-Heisenberg group then

UW (d)U † = W (d). (7)

If the set of antiunitary operators that map W (d) to itself are
included, we get the extended Clifford group.

In d = 3, we have

X =

⎛
⎜⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎠, Z =

⎛
⎜⎝

1 0 0

0 ω 0

0 0 ω2

⎞
⎟⎠. (8)

As a matter of convention, we label the Weyl-Heisenberg SIC
projectors �i with index i = dm + n + 1, so we have i =
1,2, . . . ,9 for qutrit SICs. For example, �6 is the SIC projector
corresponding to |ψ6〉 = XZ2|ψ〉.

Every Weyl-Heisenberg SIC in d = 3 can be obtained by
acting with an (extended) Clifford (anti)unitary on a SIC with
fiducial vector

|ψt 〉 = 1√
2

⎛
⎜⎝

0

1

−e2it

⎞
⎟⎠, t ∈

[
0,

π

6

]
. (9)

Fiducials corresponding to distinct values of t in the range
[0, π

6 ] generate distinct orbits of the extended Clifford group.
In Ref. [9] it is shown that there are three types of orbits of
the extended Clifford group in d = 3 for which |ψt 〉 is in the
orbit: the infinitely many generic ones for t ∈ (0, π

6 ) and two
exceptional ones for the end points t = 0 and t = π

6 .
In the generic case, each extended Clifford orbit consists of

eight SICs generated by the fiducial vectors:

∣∣ψ (0±)
t

〉 = 1√
2

⎛
⎜⎝

0

e∓it

−e±it

⎞
⎟⎠,

(10)

∣∣ψ (η±)
t

〉 =
√

2

3

⎛
⎜⎝

ωη sin t

sin
(
t ± 2π

3

)
sin

(
t ∓ 2π

3

)
⎞
⎟⎠,

where η = 1,2,3.
For t = π

6 , there are four distinct SICs whose fiducials can
be chosen as

∣∣ψ (0)
π/6

〉 = 1√
2

⎛
⎜⎝

0

1

1

⎞
⎟⎠,

∣∣ψ (1)
π/6

〉 = 1√
6

⎛
⎜⎝

ω

1

−2

⎞
⎟⎠,

(11)

∣∣ψ (2)
π/6

〉 = 1√
6

⎛
⎜⎝

ω2

1

−2

⎞
⎟⎠,

∣∣ψ (3)
π/6

〉 = 1√
6

⎛
⎜⎝

1

1

−2

⎞
⎟⎠.

For t = 0, the fiducial generating the unique SIC can be
chosen as

|ψ0〉 = 1√
2

⎛
⎜⎝

0

1

−1

⎞
⎟⎠. (12)

It is worth mentioning here that the SICs of Eq. (10) are
inequivalent with respect to Clifford unitaries; however, some
of the SICs for different values of t are still related by a
unitary operator that is not a member of the Clifford group.
Specifically, Zhu [18] has shown that the SICs for t , π

9 − t ,
and π

9 + t are, in fact, unitarily equivalent to each other, with
the unitary transformation relating them being

U = diag(1,u,u2), u = e−i(2π/9), (13)

which is not a Clifford unitary. Moreover, there are no other
unitary equivalences. This means that every pair of SICs on
any two different orbits corresponding to t ∈ [0, π

18 ] are not
equivalent.
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Associated with each value of t are two sets of closely
related geometric quantities. The first set consists of the traces
of the product of three SIC projectors called triple products
Tijk ,

Tijk = Tr(�i�j�k). (14)

It is shown in Ref. [19] that two SICs are unitarily equivalent if
and only if the triple products are the same, up to permutation.
The other set consists of the structure coefficients Sijk that
describe multiplication between SIC projectors,

�i�j =
∑

k

Sijk�k. (15)

It is straightforward to show that the structure coefficients can
be obtained from the triple products in the following way:

Sijk = 1

d

[
(d + 1)Tijk − dδij + 1

d + 1

]
. (16)

In Sec. III, we shall see that the real parts T̃ijk = Re[Tijk] and
S̃ijk = Re[Sijk] of the triple products and structure coefficients,
respectively, are adequate for describing probability vectors
corresponding to quantum states.

It is easy to compute Sijk when some of the indices are
identical:

Siii = 1, Sijj = Sjij = 1
4 , Sjji = 0. (17)

It is also straightforward to compute S̃ijk for i �= j �= k using
Eq. (14) and Eq. (16). Taking only the real parts, the distinct
nonzero values are − 1

4 and 3 other values we denote as xt ,yt ,

and zt :

xt = −1

6

(
cos 6t + 1

2

)
,

yt = −1

6

[
cos

(
6t + 2π

3

)
+ 1

2

]
≡ xπ

9 +t , (18)

zt = −1

6

[
cos

(
6t − 2π

3

)
+ 1

2

]
≡ xπ

9 −t .

It can be seen that SICs with parameter values t, π
9 − t ,

and π
9 + t have the same values of x,y, and z, up to a

permutation—confirming the fact mentioned earlier, that such
SICs are unitarily equivalent.

Hughston [20] has shown that the SIC vectors of the single
SIC for t = 0 can be obtained from the inflection points of
a family of cubic elliptic curves on the complex projective
plane known as the Hesse pencil (see also Bengtsson [21].)
There are 8 SICs with parameter value t = π

9 that are unitarily
equivalent to the single SIC for t = 0, and we call these 9 SICs
the Hesse SICs. The particular SIC specified by Eq. (12) shall
be called the canonical Hesse SIC.

For the canonical Hesse SIC, Eq. (18) gives

x0 = − 1
4 , y0 = z0 = 0. (19)

It is the simplicity of these numbers that leads to an elegant
characterization of qutrit pure states in Sec. III.

There are some simple rules for finding the index triples
corresponding to the values − 1

4 ,xt ,yt , and zt , which we
describe next.

To each qutrit SIC-family |ψ (η±)
t 〉(η = 0,1,2,3) in Eq. (10)

we assign an index generator Gη± that helps us choose the

TABLE I. Structure coefficient index generators for qutrit SICs.
The rules for choosing the index triples (ijk) for each distinct value
of S̃ijk are described in the main text.

G0+ =
⎡
⎣ 1 2 3

4 5 6
7 8 9

⎤
⎦, G0− =

⎡
⎣ 1 3 2

4 6 5
7 9 8

⎤
⎦

G1+ =
⎡
⎣ 1 5 9

2 6 7
3 4 8

⎤
⎦, G1− =

⎡
⎣ 1 9 5

2 7 6
3 8 4

⎤
⎦

G2+ =
⎡
⎣ 1 6 8

2 4 9
3 5 7

⎤
⎦, G2− =

⎡
⎣ 1 8 6

2 9 4
3 7 5

⎤
⎦

G3+ =
⎡
⎣ 1 4 7

2 5 8
3 6 9

⎤
⎦, G3− =

⎡
⎣ 1 7 4

2 8 5
3 9 6

⎤
⎦

index triples (ijk) for each distinct value of S̃ijk . They are
listed in Table I. To illustrate what the rules are, let us take the
SIC |ψ (2+)

t 〉 as a specific example.
For S̃ijk = − 1

4 , take the index triples on the same row.
Looking at G2+ in Table I, we see that the relevant set of (ijk)
for |ψ (2+)

t 〉 is

{(168),(249),(357)}
and all permutations of indices for each (ijk).

For S̃ijk = xt , take the index triples belonging to the same
column, or those on entirely different rows and columns. Thus,
the relevant set of (ijk) from G2+ is

{(123),(645),(897),(147),(693),(825),(195),(627),(843)}
and all permutations of indices for each (ijk).

For S̃ijk = yt , take the index triples such that the first two
indices belong to the same column, and the last one is in
a different row and belongs to the succeeding column when
counting in a cyclic manner. By succeeding we mean that
“column 2 is after column 1,” “column 3 is after column 2,”
and “column 1 is after column 3.” Thus, the relevant set of
(ijk) from G2+ is

{(125),(647),(893),(236),(458),(971),(314),(569),(782)}
and all permutations of indices for each (ijk).

For S̃ijk = zt , we have a similar rule as in yt but take the
last index from the preceding column. Thus, the relevant set
(ijk) from G2+ is

{(127),(643),(895),(238),(451),(976),(319),(562),(784)}
and all permutations of indices for each (ijk).

Any other index triple (ijk) not specified above has S̃ijk =
0.

We do not need them in this paper but it is possible to
construct similar, though somewhat more complicated, rules
for getting the imaginary parts of Sijk .

III. PURE STATES IN THE SIC REPRESENTATION

Since quantum state space is a compact convex body C in
Rd2

, the Krein-Milman theorem [22] states that it is equal to
the convex hull of its extreme points, which are the pure states.
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It is therefore natural to ask what the conditions are on SIC
probability vectors �p such that they correspond to pure states.
In terms of density operators, a pure state is represented by a
rank-1 projector, ρ2 = ρ. A remarkable theorem [23,24] states
that for a Hermitian operator ρ = ρ†, an equivalent condition
for defining a pure state is given by

Tr(ρ2) = Tr(ρ3) = 1. (20)

Using the SIC representation of ρ given by Eq. (2), Eq. (20)
becomes [25] ∑

i

p(i)2 = 2

d(d + 1)
, (21)

∑
i,j,k

Tijkp(i)p(j )p(k) = d + 7

(d + 1)3
. (22)

Since the right-hand side of Eq. (22) is real, and since
the imaginary parts of the triple products are completely
antisymmetric, we have∑

i,j,k

Tijkp(i)p(j )p(k) =
∑
i,j,k

T̃ijkp(i)p(j )p(k), (23)

so we may consider just the real parts T̃ijk . We obtain an
equivalent expression for Eq. (22) in terms of the structure
coefficients:∑

i,j,k

S̃ijkp(i)p(j )p(k) = 4

d(d + 1)2
. (24)

Specializing to the case d = 3, the pure states are described
by probability vectors �p that satisfy∑

i

p(i)2 = 1

6
, (25)

∑
i,j,k

S̃ijkp(i)p(j )p(k) = 1

12
. (26)

Using the results in Sec. II, we find that the pure states for the
canonical Hesse SIC are given by∑

i

p(i)2 = 1

6
, (27)

∑
i

p(i)3 = 1

2

∑
(ijk)∈Q

p(i)p(j )p(k), (28)

where Q is the set of index triples (ijk) corresponding to the
lines drawn in Fig. 1, where permutations of the indices i,j,k

are counted separately. Interestingly, Fig. 1 coincides with
a combinatorial object called a finite affine plane of order 3
[which can also be identified with the unique 2-(9,3,1)-design]
[26]. It contains nine points and 12 lines, and the index triples
in Q correspond to any three points on the same line.

The pure states for any other qutrit SIC are located on the
same sphere given by Eq. (25) but with a different set of values
for S̃ijk in Eq. (24). If we substitute the values in Eq. (17) into
Eq. (24), we obtain

1

2

∑
i

p(i)3 +
∑

i �=j �=k

S̃ijkp(i)p(j )p(k) = 0. (29)

987

654

321

FIG. 1. The 12 lines of a finite affine plane over the Galois field
GF(3) representing the index triples (ijk) ∈ Q in Eq. (28). The indices
are depicted as nine points and each line contains three points as
marked.

IV. ORTHOGONAL TRANSFORMATIONS BETWEEN
PROBABILITY VECTORS OF DISTINCT SICS

In this section, we will show that, in any dimension, the
probability vectors corresponding to two different SICs are
related by an orthogonal transformation, a fact known from
Ref. [27]. We will then go on to show that in dimension three,
the orthogonal transformation takes a remarkably simple form.

In arbitrary dimension d, consider a pair of distinct SICs
with elements �′

i and �j . In the vector space of operators,
�′

i and �j correspond to the vertices of two identical regular
simplices, which means they must be related by an orthogonal
transformation. Formally, because a SIC forms a Hermitian
basis in the space of operators, we can write

�′
i =

∑
j

Rij�j . (30)

Since every SIC element has unit trace, taking the trace on
both sides of Eq. (30) gives us∑

j

Rij = 1. (31)

Multiplying the left-hand side of Eq. (30) by �′
j and the right-

hand side by
∑

l Rjl�l , we have

Tr(�′
i�

′
j ) =

∑
k,l

RikRjl

(
dδkl + 1

d + 1

)
,

(32)
⇒ δij =

∑
k

RikRjk.

which confirms that Rij is indeed an orthogonal matrix. Using
Eq. (32), it is now straightforward to show that

p′(i) =
∑

j

Rijp(j ). (33)

Let �i be the canonical Hesse SIC and let �
(η±)
i (t) be the

SIC generated by the fiducial vector |ψ (η±)
t 〉. Let

Qi = 1
3 (4�i − I ) (34)

be the dual basis to �i [so Tr(Qi�j ) = δij ]. Then the
orthogonal matrix which takes �i onto �

(η±)
i (t) is

R
(η±)
ij (t) = Tr

[
�

(η±)
i (t)Qj

]
. (35)
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It turns out that the matrices R(η±)(t) have a very simple form.
In the standard two-line notation, define the permutations

p(0+) =
(

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

)
,

p(0−) =
(

1 2 3 4 5 6 7 8 9

1 3 2 4 6 5 7 9 8

)
,

p(1+) =
(

1 2 3 4 5 6 7 8 9

1 5 9 2 6 7 3 4 8

)
,

p(1−) =
(

1 2 3 4 5 6 7 8 9

1 9 5 2 7 6 3 8 4

)
,

(36)

p(2+) =
(

1 2 3 4 5 6 7 8 9

1 6 8 2 4 9 3 5 7

)
,

p(2−) =
(

1 2 3 4 5 6 7 8 9

1 8 6 2 9 4 3 7 5

)
,

p(3+) =
(

1 2 3 4 5 6 7 8 9

1 4 7 2 5 8 3 6 9

)
,

p(3−) =
(

1 2 3 4 5 6 7 8 9

1 7 4 2 8 5 3 9 6

)
.

Let P (η±) be the permutation matrix corresponding to p(η±),
with matrix elements

P
(η±)
ij = δj,p(η±)(i). (37)

Also define

a(t) = 1

3
(1 + 2 cos 2t), (38)

A(t) =

⎛
⎜⎝

a(t) a
(
t − π

3

)
a

(
t + π

3

)
a

(
t + π

3

)
a(t) a

(
t − π

3

)
a

(
t − π

3

)
a

(
t + π

3

)
a(t)

⎞
⎟⎠ , (39)

R(t) =

⎛
⎜⎝

A(t) 0 0

0 A(t) 0

0 0 A(t)

⎞
⎟⎠. (40)

It is then straightforward, though somewhat tedious, to verify
that

R(η±)(t) = [P (η±)]−1R(t)P (η±). (41)

Since R(t) = I ⊗ A(t), it follows that

Det
[
R(η±)(t)

] = Det[R(t)] = {Det[A(t)]}3. (42)

Because A(t) is a circulant matrix, its eigenvalues are given by

λ� = a(t) + ω�a

(
t − π

3

)
+ ω−�a

(
t + π

3

)
= e2it� (43)

for � = −1,0,1. This implies that Det
[
A(t)

] = 1. Thus,
Det

[
R(η±)(t)

] = 1 and R(η±)(t) is, in fact, a rotation matrix.
It is easily seen that

R(t1)R(t2) = R(t1 + t2), R(0) = I. (44)

So the matrices R(t) form a one-parameter subgroup of the
orthogonal group.

V. THE BOUNDARY OF QUTRIT STATE SPACE

A concrete way to understand the geometry of qutrit state
space is to figure out what the convex body looks like. In
this regard, we want to consider not just the pure states but
all boundary points of the set. Some valuable insight into the
shape of the boundary is gained by looking at the distance of
the boundary states from the center of the space, the maximally
mixed state ρ = 1

d
I as a function of direction. Specifically, we

can write the SIC probabilities in the form

p(i) = 1

d2
+ rn(i), (45)

where �n is a direction vector with∑
i

n(i) = 0,
∑

i

n(i)2 = 1. (46)

Let r(�n) be the value of the r corresponding to the quantum
state on the boundary, which is given by Eq. (45). Here
we calculate this function for the canonical Hesse SIC. Put
differently, we are looking for the polar equation describing
its boundary states.

The boundary is determined using the following lemma:
Lemma 1. Let ρ be an arbitrary Hermitian operator on a

three-dimensional Hilbert space. Then
(i) ρ is a density operator if and only if

Tr(ρ) = 1, Tr(ρ2) � 1, 3 Tr(ρ2) − 2 Tr(ρ3) � 1;

(ii) ρ is a density operator for a boundary state if and only if

Tr(ρ) = 1, Tr(ρ2) � 1, 3 Tr(ρ2) − 2 Tr(ρ3) = 1;

(iii) ρ is a density operator for a pure quantum state if and
only if

Tr(ρ) = 1, Tr(ρ2) = 1, 3 Tr(ρ2) − 2 Tr(ρ3) = 1.

Proof. We begin by proving necessity. Suppose ρ is a
density matrix. It immediately follows that Tr(ρ) = 1 and
Tr(ρ2) � 1. To prove the remaining inequality, let α,β,1 −
α − β be the eigenvalues of ρ. We find

3 Tr(ρ2) − 2 Tr(ρ3) − 1 = −6αβ(1 − α − β) � 0. (47)

For ρ to be a boundary state at least one of its eigenvalues
must vanish, in which case

3 Tr(ρ2) − 2 Tr(ρ3) − 1 = 0. (48)

In addition, if ρ is a pure state then Tr(ρ2) = 1.
We now turn to the proof of sufficiency. Let ρ = ρ† be such

that

Tr(ρ) = 1, Tr(ρ2) � 1, 3 Tr(ρ2) − 2 Tr(ρ3) � 1. (49)

The first equality means that we can take the eigenvalues of ρ

to be α,β,1 − α − β. From Eq. (47) we get

αβ(1 − α − β) � 0. (50)

Thus, either (i) all eigenvalues are non-negative or (ii) exactly
two of them are negative. We can show that (ii) is impossible.
Assume the contrary to hold. Without loss of generality
α,β < 0, implying that 1 − α − β > 1, which in turn implies
Tr(ρ2) > 1, contrary to hypothesis. We conclude that ρ is
positive semidefinite, and consequently a density matrix.
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Next assume that

Tr(ρ) = 1, Tr(ρ2) � 1, 3 Tr(ρ2) − 2 Tr(ρ3) = 1. (51)

Then,

αβ(1 − α − β) = 0, (52)

implying that at least one of the eigenvalues must be zero. So
ρ is on the boundary of state space.

Finally assume

Tr(ρ) = 1, Tr(ρ2) = 1, 3 Tr(ρ2) − 2 Tr(ρ3) = 1. (53)

Using the argument above the eigenvalues are 0,α,1 − α. Since
Tr(ρ2) = 1 it must be that α = 0 or 1 and therefore ρ is a rank-1
projection operator. �

We can use the lemma for the quantum states associated
with the canonical Hesse SIC. To this end, recall its structure
coefficients in Eq. (19). We use these to calculate Tr(ρ2) and
Tr(ρ3) for ρ given by Eq. (2). We find that

Tr(ρ2) = 12
∑

i

p(i)2 − 1,

(54)
Tr(ρ3) = 1 + 24

∑
i

p(i)3 − 12
∑

(ijk)∈Q

p(i)p(j )p(k),

where Q is again the set of lines on the affine plane in Fig. 1.
Substituting Eq. (45) into the probabilities above, we obtain∑

i

p(i)2 = 1

9
+ r2,

∑
i

p(i)3 = 1

81
+ r2

3
+ r3

∑
i

n(i)3, (55)

∑
(ijk)∈Q

p(i)p(j )p(k) = 8

81
− r2

3
+ r3

∑
(ijk)∈Q

n(i)n(j )n(k).

Consequently, we can restate the conditions in Lemma 1 as
follows:

(i) ρ is a density operator if and only if

r2 � 1
18 , 4r3F (�n) − r2 + 1

54 � 0; (56)

(ii) ρ is a density operator on the boundary of the state space
if and only if

r2 � 1
18 , 4r3F (�n) − r2 + 1

54 = 0; (57)

(iii) ρ is a density operator for a pure state if and only if

r2 = 1

18
, F (�n) = 1√

2
; (58)

where

F (�n) =
∑

i

n(i)3 − 1

2

∑
(ijk)∈Q

n(i)n(j )n(k). (59)

Thus, the value of r(�n) giving the distance of a boundary state
from the completely mixed state along the direction of �n is the
smallest positive root of

4r3F (�n) − r2 + 1
54 = 0. (60)

To determine the bounds on F ≡ F (�n), we can write it in
terms of the eigenvalues of ρ by performing some algebra on

0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

F

α

FIG. 2. (Color online) A plot of F as a function of one of the
eigenvalues α for boundary states.

Eqs. (54) and (55). Denoting the eigenvalues of ρ by α, β, and
1 − α − β, we obtain

F =
√

3
(

2
9 − f1 + f2

)
(
f1 − 1

3

)3/2 , (61)

where 0 � α,β,1 − α − β � 1 and

f1 = α2 + β2 + (1 − α − β)2,
(62)

f2 = α3 + β3 + (1 − α − β)3.

From Eq. (61), it can easily be shown that

− 1√
2

� F � 1√
2
, (63)

where the upper (respectively, lower) bound is achieved when
two of the eigenvalues are identical and < 1

3 (respectively,
> 1

3 ). If all the eigenvalues are equal to 1
3 this corresponds

to the maximally mixed state, for which F is undefined. For
boundary states, at least one of the eigenvalues must be zero.
So the only case we need to consider for F is when β = 1 − α.
Figure 2 shows F as a function of α, provided that one of the
eigenvalues vanishes.

In terms of F , the desired root in Eq. (60) is given by

r =
{

1
12F

(
1 + g

ωσ + ωσ

g

)
ifF �= 0

1
3
√

6
ifF = 0,

(64)

where σ ≡ sgn(F ) and g is the cube root with the smallest
positive argument in

g3 = 1 − 4F 2 + 2F
√

4F 2 − 2. (65)

When F = ± 1√
2
, g = ei(π/3) and we get the bounds for r:

1

6
√

2
� r � 1

3
√

2
. (66)

A plot of r as a function of F is shown in Fig. 3.
Finally let us note that we can use this method to answer

other questions about the geometry of the set of qutrits. For
instance, it has been shown [28,29] that the eight-dimensional
ball r � 1

3
√

2
is truncated by the seven-dimensional faces of

the probability simplex. It is interesting to ask about the pure
states located on these faces. To answer this question, consider,
for example, the seven-dimensional face with center point �c
given by c(i) = 1

8 for i �= 9 and c(9) = 0. In this case, we can
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FIG. 3. (Color online) The radial distance r of boundary states
from the maximally mixed state, as a function of F = F (�n).

take probability vectors of the form

p(i) = 1
8 + sm(i), p(9) = m(9) = 0, (67)

where
8∑

i=1

m(i) = 0,

8∑
i=1

m(i)2 = 1. (68)

Going through a similar argument as the one above, we find
that the states on the face are given by s = 0, or

s2 � 1

24
, F ( �m) = 3

16s
[2 − �( �m)], (69)

where

�( �m) = [m(1) + m(5)]2 + [m(2) + m(4)]2

+ [m(3) + m(6)]2 + [m(7) + m(8)]2 (70)

and F is the same function defined in Eq. (59). In particular,
the pure states correspond to �m such that

F ( �m) = 3
√

6

8
[2 − �( �m)]. (71)

VI. SUMMARY AND OUTLOOK

With the recent revival of interest in addressing founda-
tional issues in quantum theory, we pose a simple yet intriguing
question: What is the shape of the set of quantum states
C ⊂ Rd2

? Our preliminary attempt to address this question
revolves around a description of quantum states in terms of
the outcome probabilities of a SIC-POVM. This particular
representation allows us to exploit the intrinsic symmetry of a
SIC in mapping density operators to probability vectors, which
we believe not only serves as a natural “coordinate system” for
studying the underlying geometry of quantum states, but also
provides us with an interpretation of quantum states in terms
of Bayesian probabilities [30].

In this work, we focused our attention on d = 3, which
is the simplest, nontrivial case to examine. We considered

the infinitely many Weyl-Heisenberg qutrit SICs, which are
classified into SIC families corresponding to orbits of the
Clifford group. Each SIC can be uniquely identified with
a set of complex numbers called triple products Tijk , the
trace of the product of three SIC elements, whose polar
angles are related to discrete geometric phases [31,32] and
to Bargmann invariants [33] in complex projective space, and
whose imaginary parts give SICs the structure of a Lie algebra
[19]. We also have structure coefficients Sijk , which are the
expansion coefficients when multiplying SIC projectors, and
whose real parts S̃ijk are especially convenient for describing
geometric properties of qutrits.

Using S̃ijk for the canonical Hesse SIC given by |ψ0〉
in Eq. (12), we discovered the most economical description
for SIC probability vectors associated with qutrit pure states,
which are given by Eqs. (27) and (28). Studying the prob-
abilities for the canonical Hesse SIC is sufficient because
we demonstrated that the probabilities for other qutrit SICs
are related to it by a nine-dimensional rotation that can be
expressed in terms of a single function—a(t) in Eq. (38).

The remarkable simplicity of Eq. (28) suggests that the
geometric structure of qutrits is largely determined by the
symmetries associated with a finite affine plane. For example,
observe that if we consider the indices as points in Fig. 1, the
permutations given in Eq. (36) are such that they preserve the
affine lines. Also, using the notion of maximal consistent sets in
Ref. [28], a set of probability vectors associated with the Hesse
configuration of vectors on a Hilbert space can be maximized
into a convex body that has the same largest inscribed sphere
and smallest containing sphere as qutrit state space, and also
shares some of its two-dimensional sections. Therefore, to gain
a proper understanding of the convex geometry of qutrits, it is
crucial to understand the full significance of Eq. (28).

We also described a polar equation for the qutrit boundary.
We found that the function F (�n) that yields the radial distance
of a boundary state in direction �n from the uniform distribution
is the same function that picks out the pure states for the
canonical Hesse SIC, i.e., F ( �p) = 0 for any �p on the sphere
containing pure states, which again highlights the important
role played by the finite affine plane of Fig. 1.

Lastly, it is our hope that the results presented here also
serve as evidence for the utility of the SIC representation in
matters regarding quantum foundations.
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