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Asymmetries of azimuthal photon distributions in nonlinear Compton scattering
in ultrashort intense laser pulses
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Nonlinear Compton scattering in ultrashort intense laser pulses is discussed with the focus on angular
distributions of the emitted photon energy. This is an observable which is easily accessible experimentally.
Asymmetries of the azimuthal distributions are predicted for both linear and circular polarization. We present a
systematic survey of the influence of the laser intensity, the carrier envelope phase, and the laser polarization on
the emission spectra for single-cycle and few-cycle laser pulses. For linear polarization, the dominant direction
of the emission changes from a perpendicular pattern with respect to the laser polarization at low-intensity to a
dominantly parallel emission for high-intensity laser pulses.

DOI: 10.1103/PhysRevA.88.012127 PACS number(s): 12.20.Ds, 32.80.Wr, 41.60.−m

I. INTRODUCTION

The development of novel bright short-pulsed x-ray radia-
tion sources is an important issue with respect to applications
in materials research, dynamics investigations, and biological
structure ranging up to medical application [1]. At the heart of
these table-top x-ray sources is the inverse Compton process,
where optical laser photons are scattered off relativistic
electrons, possibly laser accelerated ones [2], and Doppler
up-shifted to the x-ray regime. While quasimonochromatic
x rays may be achieved using long laser pulses at rather
low intensities, pulsed broadband x-ray sources can be de-
veloped with high-intensity short pulse lasers, on the contrary.
Besides the application-oriented research, the laser-particle
interaction also offers a rich variety of interesting perspectives
for fundamental physics of particle dynamics and radiation
processes in strong electromagnetic fields, both experimentally
and theoretically [3]. For instance, the formation of QED
avalanches at ultrahigh laser intensities is related to the
emission of high-energy photons off ultrarelativistic electrons
and subsequent pair production induced by those very photons
[4,5].

Here we focus on the nonlinear Compton scattering process,
where photons from an intense laser pulse (L) scatter off
a relativistic free electron (e), emitting a single nonlaser
photon γ ′ in the reaction e + L → e′ + γ ′ + L. Multiphoton
interactions due to the large photon density in the laser
pulse give rise to nonlinear effects such as the emission
of high harmonics and the intensity-dependent redshift of
the scattered radiation [3]. Each of the harmonics shows a
characteristic multipole pattern, which in fact was used for
an experimental identification of the higher harmonics [6,7].
Nonlinear strong-field effects for Compton scattering, and also
for the related process of pair production, have been observed
in the SLAC E-144 experiment [8,9]. The detailed theoretical
and experimental knowledge of the radiation spectra might
allow us to use the emitted photon radiation as a diagnostics
tool to measure, e.g., the laser intensity [10], or to determine the
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carrier envelope phase of the laser pulse [11], or the parameters
of the electron beam [12].

The theoretical investigations of nonlinear Compton scat-
tering started shortly after the invention of the laser in a
series of seminal papers [13–19] (see also [20] for a complete
overview of the literature as well as the reviews [3,21]). While
these early papers paved the way for further investigations,
they mostly specified monochromatic infinite plane waves to
model the laser field since at that time long picosecond and
nanosecond laser pulses were common. However, nowadays
the use of ultrashort, femtosecond laser pulses has become
standard due to the development of chirped pulse amplification
which allows us to reach new high-intensity frontiers with
lasers such as ELI [22] envisaging intensities as high as
1024 W/cm2 in pulses of 10 fs. Even shorter pulse lengths
will become available with the petawatt field synthesizer
(PFS) [23], producing high intensities with pulse lengths of the
order of 5 fs, which corresponds to less than two laser cycles.
The generation of ultrashort intense laser pulses, containing
only 1.5 optical cycles, has been reported in [24].

In such short laser pulses, the Compton spectra are
drastically altered [25–29] as compared to the previously
common treatment by means of infinitely long plane waves.
Important effects are the ponderomotive broadening of the
harmonics and the appearance of substructures, anisotropies
in the angular spectra, as well as the relevance of the carrier
envelope phase [30,31]. For instance, it has been shown that
the value of the carrier envelope phase determines the angular
region of emission [11]. Due to the large bandwidth of the
emitted radiation it is in general not possible to distinguish
individual harmonics in strong pulsed fields. Therefore, in
this paper, we discuss energy-integrated angular spectra in
ultrashort intense laser pulses. We give a systematic survey
of the influence of the laser pulse parameters on the angular
spectra, focusing on asymmetries in azimuthal distributions of
the emitted energy.

Our paper is organized as follows: After a concise pre-
sentation of the Volkov states and the basic framework, we
derive the analytical expressions for the differential emission
probability and energy distribution in Sec. II. In Sec. III we
present a comprehensive numerical study of the azimuthal
spectra in ultrashort laser pulses and the dependence of the
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photon energy distributions on the laser pulse parameters. In
Sec. IV we discuss the total amount of emitted energy in
relation to the primary energy flux in the laser pulse. The
conclusions are drawn in Sec. V. In Appendix A we briefly
discuss the classical framework, that is Thomson scattering,
for the angular photon spectra. We find that the total emitted
energy is proportional to the integrated primary energy flux in
the laser pulse. In Appendix B we derive the nonrelativistic
and ultrarelativistic limits of the azimuthal cross sections for
Compton scattering of a polarized photon in perturbative QED.
It is shown that, in the ultrarelativistic case, the emission is
azimuthally symmetric in the leading order.

II. SCATTERING AMPLITUDE, PROBABILITY,
AND EMITTED ENERGY

To account for the strong laser pulse nonperturbatively, one
can work within the Furry picture and employ Volkov wave
functions as a basis for the perturbative expansion of the S ma-
trix. The Volkov states [32] are solutions of the Dirac equation
in the presence of the plane-wave background field1 Aμ,

[i �∂ − e �A(φ) − m]�(x) = 0. (1)

We consider here a laser pulse described by the transverse
(A · k ≡ Aμkμ = 0) vector potential

Aμ(φ) = A0g(φ)Re(εμ
+e−i(φ+φCE)), (2)

depending on the invariant phase φ = k · x with the laser
wave four-vector kμ = (ω,0,0, − ω). The polarization of
the background field is described by complex polarization
vectors ε

μ
± = δ

μ

1 cos ξ ± iδ
μ

2 sin ξ (the quantity δμ
ν denotes

the Kronecker symbol), with polarization parameter ξ . Here
ξ = 0,π/2 means linear polarization and ξ = π/4 denotes
circular polarization; all other values refer to an arbitrary
elliptic polarization. In (2), g(φ) denotes the pulse envelope.
The limit g → 1 refers to infinitely long plane-wave fields
(IPW), while a finite support of g(φ) describes a pulsed
plane wave (PPW) to be specified below. The relative phase
between the pulse envelope and the carrier wave is the carrier
envelope phase (CEP) φCE. The dimensionless laser amplitude
a0, which quantifies relativistic and multiphoton effects, is
defined as a0 = |e|A0/m, where A0 denotes the amplitude of
the vector potential (2), and e = −|e| = −√

4πα is the charge
of the electron with the fine structure constant α � 1/137. The
values of a0 are related to the peak laser intensity I and the laser
central wavelength λ via a2

0 = 7.3 × 10−19 I [W/cm2]λ2[μm].
The solutions of Eq. (1) are given by [33]

�pr (x) =
(

1 + e

2k ·p �k �A
)

exp

{
−ip · x − i

2k · p

×
∫ φ

0
dφ′(2ep ·A − e2A · A)

}
up, (3)

with the free spinor upr , normalized to ūprupr ′ = 2mδrr ′ .

1Natural units with h̄ = c = 1 are employed throughout this paper,
as well as the Feynman slash notation �p = γμpμ.

p, r p , r

k , λ

FIG. 1. First-order Feynman diagram for nonlinear one-photon
Compton scattering within the Furry picture. In strong-field QED,
the one-photon Compton scattering appears as the decay of a laser
dressed Volkov electron state (straight double lines) with momentum
p and spin quantum number r into another laser dressed electron with
momentum p′ and spin r ′ while emitting a photon (wavy line) with
momentum k′ in a polarization state λ′.

The Volkov states Eq. (3), which include the interaction
of the laser pulse with the electrons, are used as in and out
states for the electrons when calculating matrix elements. The
interaction with nonlaser photons is treated in perturbation
theory, depicted in the Feynman diagram in Fig. 1 for nonlinear
Compton scattering in a strong laser field, i.e., the emission
of a nonlaser mode photon off a Volkov electron. Thus,
nonlinear Compton scattering is a first-order process “above”
the nonperturbative interaction of the electron with the laser
field. The S matrix for the process is obtained by using the
corresponding Feynman rules [34] as

S = −ie

∫
d4x �̄p′r ′ (x) �ε′

λ′e
ik′ · x�pr (x). (4)

Performing the spatial integrations over the light-front vari-
ables2x⊥ and x− one arrives at

S = −ie(2π )4
∫

ds

2π
δ(4)(p′ + k′ − p − sk)M(s), (5)

M(s) = T0C0(s) + T+C+(s) + T−C−(s) + T2C2(s), (6)

with Dirac current structures

T0 = ūp′r ′ �ε′upr, (7)

T± = ūp′r ′(dp′ �ε±�k �ε′ + dp �ε′ �k �ε±)upr, (8)

T2 = dpdp′ (ε′ · k)ūp′r ′ �kupr , (9)

and dp(′) = ma0/(2k ·p(′)). The variable s in (5) parametrizes
the momentum transfer between the background laser field
and the electron by means of the momentum conservation
p + sk = p′ + k′. It might be interpreted as a net number
of laser photons absorbed by the electron only in the IPW
case due to the periodicity of the background field which
allows us to interpret the discrete Fourier components of the
classical background field as “quanta” with momentum kμ.

2The light-front components of a four-vector xμ are defined as x± =
x0 ± x3 and x⊥ = (x1,x2) with the scalar product x · y = (x+y− +
x−y+)/2 − x⊥ · y⊥. The four-dimensional volume element reads
d4x = dx+dx−d2x⊥/2. Note that k− = 2ω is the only nonvanishing
light-front component of the laser four-vector kμ and, therefore,
φ = ωx+.
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Thus, in the IPW case the energy resolved photon spectrum
consists of discrete harmonics, while in the PPW case a smooth
continuous spectrum emerges.

Evaluating the integral over s in (5) fixes the value s ≡
(k′ ·p)/(k · p′) as a function of the frequency and polar angle
of the emitted photon. This equation may be inverted to yield

ω′(s,ϑ) = sk ·p
(p + sk) · n′

= sωe2ζ

1 + eζ sinh ζ (1 − cos ϑ) + s ωeζ

m
(1 + cos ϑ)

,

(10)

with n′ = (1,n′), the unit vector n′ = (sin ϑ cos ϕ,

sin ϑ sin ϕ, cos ϑ), i.e., k′ = ω′n′, and the initial electron
rapidity ζ = Arcosh γ . The energy-momentum conservation
is reduced to the conservation of three light-front components
of momentum p+ = p′+ + k′+ and p⊥ = p′

⊥ + k′
⊥.

The integrals over the laser phase determining the amplitude
of the process are given by⎧⎪⎨
⎪⎩

C0(s)

C±(s)

C2(s)

⎫⎪⎬
⎪⎭ =

∫ ∞

−∞
dφ eisφ−if (φ)

×

⎧⎪⎨
⎪⎩

1

g(φ)e∓i(φ+φCE)

g2(φ)[1 + cos 2ξ cos 2(φ + φCE)]

⎫⎪⎬
⎪⎭ , (11)

with

f (φ) =
∫ φ

0
dφ′{g(φ′)Re [α+e−i(φ′+φCE)]

+βg(φ′)2[1 + cos 2ξ cos 2(φ′ + φCE)]} (12)

and the coefficients α± = dp(2ε± ·p) − dp′ (2ε± ·p′) and β =
d2

p(k ·p) − d2
p′ (k ·p′). The integral C0(s) needs a special

treatment as it is an integral over an infinite interval for a
pure phase factor due to the lacking pre-exponential pulse
envelope function g(φ). It contains contributions from the free
electron motion outside the laser pulse leading to a divergent
contribution at zero momentum transfer s = 0. For s > 0, C0

can be related to the well defined integrals C± and C2—which
are rendered finite by the appearance of the pre-exponential
pulse shape functions—by the principle of gauge invariance
[35,36]

sC0(s) = α+
2

C+(s) + α−
2

C−(s) + βC2(s). (13)

The differential emission probability, depending on momen-
tum as well as spin and polarization variables of the out states,
reads dWrr ′λ′ = |S|2d�/(2p+) with the Lorentz invariant
phase space element

d� = d3k′

(2π )32ω′
d2 p′⊥dp′+

(2π )32p′+ , (14)

where the final electron phase space is conveniently
parametrized in terms of light-front variables due to the
light-front momentum conservation. Integrating over the final-
electron variables with the momentum conservation in Eq. (5)

one gets

dWrr ′λ′ = αω′|M[s(ω′)]|2
16π2k ·p k ·p′ dω′ d�, (15)

where d� = dϕ d cos ϑ is the solid angle element related to
the emitted photon of energy ω′. For numerical calculations,
it is more convenient to employ s as the independent variable,
instead of ω′, since then the three phase space integrals
are independent from each other. The transformation of the
differentials reads dω′ = ω′

s

k · p′
k · p ds and the phase space of the

emitted photon is characterized by ϕ ∈ [−π,π ), ϑ ∈ [0,π ],
and s ∈ (0,∞).

We are not interested in the spin and polarization states, so
we average over the initial spin r and sum over the final state
spin and polarization variables, thus obtaining the differential
probability

w(s,ϑ,ϕ) ≡ 1

2

∑
r,r ′,λ′

dWrr ′λ′

dsd�
(16)

= αm2ω′(s)2

8π2(k ·p)2s

{
−2|C0|2 + a2

0

2

(
1 + u2

2(1 + u)

)
× [|C+|2 + |C−|2 + cos 2ξ (C+C∗

− + C−C∗
+)

−C0C
∗
2 − C2C

∗
0]

}
, (17)

with the invariant variable u = (k · k′)/(k ·p′). In this expres-
sion the azimuthal angle ϕ appears solely via the nonlinear
exponentials f (φ) of the functions Cn defined in (11).

We now derive the classical limit wcl of the differential
emission probability (17). Hereby the notion “classical” means
neglecting recoil due to photon emission. The classical limit
of the full quantum theoretical expression (17) is obtained in
the limit u → 0 by noting that the allowed range of values of
the variable u is 0 � u � 2sk ·p/m2, where the upper limit is
the electron recoil parameter. The classical expression for the
frequency ω′

cl(s) = sk · p/(n′ ·p) differs from ω′(s), defined
in (10), by ω′ = ω′

cl/(1 + u). The coefficients entering the
integrals Cn have the limits αcl

± = ma0ω
′
cln

′ · ε±/(k · p) and
βcl = m2a2

0ω
′
cln

′ · k/(2k ·p)2. The differential probability (17)
is related to the classical probability wcl via w = wcl/(1 + u)2

in the leading order of a series expansion in powers of small
values of u. The same leading order relation has been obtained
previously for the classical Thomson cross section and the
Compton cross section [37].

The energy E of the emitted radiation is given by the time
component of the momentum four-vector P μ of the radiation
field

P μ =
∫

ds d� k′μw(s,ϑ,ϕ). (18)

Note that the emitted energy E and also the corresponding az-
imuthal distribution dE/dϕ are not Lorentz invariant. Instead,
E transforms under Lorentz boosts as the time component of
the four-vector P μ, Ē = γ̂ (E + v̂ · P), where v̂ is the relative
velocity and γ̂ = (1 − v̂2)−1/2 is the corresponding Lorentz
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factor. On the contrary, the total probability

W =
∫

ds d�w(s,ϑ,ϕ) (19)

is a Lorentz invariant quantity.

III. NUMERICAL ANALYSIS

We focus on parameters which are accessible in various
laboratories. To be specific, one parameter set which may
allow for an experimental verification refers to an operating
setup at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
using the electron linear accelerator ELBE [38] in combination
with the short-pulse high-intensity laser DRACO [39]. For the
following numerical survey we specify head-on collisions of
an optical laser pulse (ω = 1.55 eV) with an electron beam
which has an energy corresponding to γ = 100.

For weak laser fields a0  1, the emission is dominantly
into a narrow cone with a typical opening angle ϑcone ∼ 1/γ ,
centered at the initial velocity u0. For larger laser strength a0 >

1, the radiation cone widens due to the intensity dependent
radiation pressure with a typical angle ϑcone ∼ a0/γ . In
particular, for a laser intensity of a0 = 2γ the mean emission
angle is ϑcone = π/2 [20].

In the following we use the pulse envelope function

g(φ) =
{

cos2
(

φ

2N

)
for φ ∈ [−πN,πN ] ,

0 elsewhere,
(20)

introduced in Eq. (2) and entering the coefficient functions
Cn, with compact support on the interval [−πN,πN ]. The
number of optical cycles of the laser pulse is N . We start our
analysis with the case N = 1, with only a single oscillation
of the laser field. In this sense, we use the notion single-cycle
laser pulse synonymously for N = 1. While such pulses are
beyond present technology and their experimental realization
may also be challenging in the future, the single-cycle pulses
are interesting from a theoretical point of view (see also,
e.g., [28,40]). Single-cycle laser pulses provide the clearest
view on the expected asymmetries and the significant physical
mechanism. Later on we also discuss longer pulses which

are more relevant for present and near-future experimental
verifications of these asymmetry effects.

A. Double differential angular distribution

We start our analysis by discussing the double differential
energy distribution

dE

d�
=

∫ ∞

0
ds ω′(s,ϑ) w(s,ϑ,ϕ). (21)

We have in mind a high-granular pixel photon detector
placed in the radiation cone that allows to measure angularly
resolved energy-integrated spectra. The quantity (21), as
energy-integrated emitted energy, does not suffer from the
possible problem of detector pile-ups, where two individual
photons are detected as a single photon of summed energy.
Such false detections may happen if the incident photon flux
is too large for the temporal resolution of the detector. It
provides, thus, an easily observable quantity to characterize
appropriately the Compton spectrum. The angular resolution
can be improved by increasing the distance of the detector from
the interaction point of the electron beam and the laser pulse.

Figure 2 exhibits a series of the distributions dE/d� as
contour plots. At low laser intensity a0  1, the shape of
the distribution is oriented perpendicularly to the polarization
vector, which is ex in our case. This is the usual dipole-type
emission. For increasing values of a0 > 1, the shape of
the spectrum flips and is oriented in the direction of the
polarization vector. This transition is characteristic for the
nonlinear interactions. The details of the spectra for field
strengths a0 > 1, i.e., whether it is an unidirectional emission
as in the central panel of Fig. 2 or a bipolar emission in
the direction of the laser polarization, depends strongly on
further pulse parameters. For ultrashort pulses this is mainly
dominated by the value of the CEP. These details are studied
in the next subsection using the azimuthal distributions.

In the right panel of Fig. 2 the corresponding angular
distribution is exhibited for a circularly polarized laser pulse
with a0 = 3. Also in this case, strong asymmetries arise.
The distribution peaks in the direction where the laser vector
potential (depicted as black curve) reaches its maximum value
and almost vanishes in the opposite direction. The assertion

FIG. 2. (Color online) Double differential angular photon energy distribution dE/d� for a single-cycle (N = 1) linearly polarized laser
pulse with φCE = 0 for a0 = 0.01 (left panel) and a0 = 3 (center panel). The arrows denote the direction of the linear laser polarization vector
ε. In the right panel, the result for circular polarization is shown for a0 = 3. In that case, the black curve depicts the amplitude of the laser
vector potential in the x-y plane.
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FIG. 3. (Color online) The normalized azimuthal distributions of emitted energy dE/dϕ for nonlinear Compton scattering as a function of
the azimuthal angle ϕ in a single-cycle laser pulse with N = 1 and φCE = 0 for linear polarization (ξ = 0) for various values of a0 = 0.01, 1,
and 3 (from left to right). In the rightmost panel, the laser vector potential Aμ is plotted as a function of the laser phase φ (note the inverted
axes). The maximum value of dE/dϕ is plotted below each panel. The calculations have been performed in the laboratory frame where the
angle ϑ was integrated over a cone with opening angle 3/γ around the initial electron momentum.

of the radiation having an opening angle ∼a0/γ for a0 > 1 is
clearly verified by the angular distributions in Fig. 2.

B. Azimuthal distributions

The information on the angular distribution of the emitted
energy can be condensed into the azimuthal distribution by
integrating over the polar angle via

dE

dϕ
=

∫ ∞

0
ds

∫ π

0
dϑ sin ϑ ω′(s,ϑ) w(s,ϑ,ϕ). (22)

For long pulses and IPW laser fields, the azimuthal spectra
show a characteristic multipole pattern for each harmonic,
which have been observed by choosing a single harmonic
using appropriate energy filters [6,7]. In the case of a short
intense laser pulse, the distinction of different harmonics is
not possible. We thus study, as in the previous subsection, the
energy-integrated spectrum. In the following, the azimuthal
distribution dE/dϕ of the emitted energy will be analyzed
systematically.

1. Dependence on the laser intensity

The differential azimuthal energy spectra dE/dϕ are
exhibited in Fig. 3 for a pulse length N = 1, i.e., for a
single-cycle laser pulse. At low laser intensity a0 = 0.01 (left
panel), the emission has a strong dipole pattern with the
preferred emission in the plane transverse to the polarization
of the laser, which here is chosen as the x axis, i.e.,
ϕ ∼0◦,180◦. Upon increasing the laser strength up to a0 = 1
and a0 = 3 (middle and right polar diagrams), the shape of
the spectrum develops towards an unidirectional emission in
the direction of the laser polarization. The azimuthal spectra
show the same qualitative behavior as the double differential
angular distributions discussed above. This is explained by
the behavior of the vector potential, depicted in the rightmost
panel of Fig. 3, which has a strong asymmetry and acquires
large values only in the direction ϕ = 0. The typical range
of values for the variable s scales as a3

0 [33], as depicted in
Fig. 4. However, due to the large asymmetry of the vector
potential, the value of a0, which refers to the peak value of
Aμ, is relevant only in the direction where the maximum

occurs, which is for ϕ = 0 in our case. That means in the
direction ϕ = 0 high-energetic photons with large values of
the variable s are emitted, while in the opposite direction
ϕ = π , only low-energy photons are emitted, see Fig. 4. Since
we are considering here the emitted energy, the emission of
high-energy photons with large values of the variable s is
weighted stronger than it would be the case for the emission
probability. Thus, the azimuthal distributions of the emitted
energy dE/dϕ are more sensitive to asymmetries of the
vector potential than the corresponding azimuthal emission
probabilities dW/dϕ.

In Fig. 5 the azimuthal spectrum dE/dϕ is exhibited in
polar plots for a circularly polarized single-cycle (N = 1) laser
pulse with ξ = π/4 and increasing values of a0 from left to
right, showing the asymmetry in strong laser pulses. This is due
to the fact that the vector potential has no azimuthal symmetry
for an ultrashort pulse since a distinguished direction is defined
by the maximum of the laser pulse vector potential. As in the
case of linear polarization, only in that direction where Aμ

reaches its maximum value, high frequency photons with large
values of the variable s are emitted. The behavior of the vector
potential in the azimuthal plane is depicted in the rightmost
panel of Fig. 5.

FIG. 4. (Color online) Contour plot of the energy resolved
spectrum dE/dϕds over the ϕ-s plane. The calculation is for N = 1,
a0 = 3, and φCE = 0. The typical range of values of s is of the order
of a3

0 .
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FIG. 5. (Color online) Azimuthal energy emission spectra as in Fig. 3 but for circular laser polarization with ξ = π/4. In the rightmost
panel, the values of the laser vector potential are plotted in the x-y plane. The direction ϕ = 0 is distinguished by the maximum of the vector
potential.

A weak short laser pulse with a0  1 does not show
strong asymmetry effects. This asymmetry is a combined
short-pulse intensity effect mainly due to the directional
emission of high harmonics with s � 1 (see Fig. 4). The
transition from a distribution which is peaked perpendicularly
to the laser polarization (see Fig. 3, left polar diagram) to a
distribution peaked in the direction of the laser polarization
vector (see Fig. 3, middle polar diagram) is characteristic for
increasing the value of a0 below unity to larger than unity.
The details of the shape of the distribution for a0 > 1, i.e.,
whether one observes a dipole-type pattern or an unidirectional
emission, depends on further pulse shape parameters. These
dependencies are studied in the following.

Note that the photon distribution is determined by the shape
and the symmetries of the laser vector potential, and not by
the electric field (see also the discussion in [41]) since the
Volkov wave functions (3) as well as the classical electron
velocity uμ in Eq. (A1) both depend directly on the laser vector
potential Aμ.

2. Dependence on the pulse length

The above discussion was for single-cycle laser pulses with
various strengths. Here we now present a systematic survey of
the pulse length dependence of the azimuthal emission spectra
for fixed values of a0. For low laser intensity a0  1, the
shape of the azimuthal distribution is independent of the pulse
length N . On the contrary, in strong laser pulses the shape of
the spectra strongly depends on the pulse length. While for
N = 1 the emission pattern in a strong laser pulse is highly
asymmetric for a linearly polarized laser pulse, it is expected
to become π periodic for long pulses, with the limit being the
result of an infinite plane wave, where the electron’s quiver
motion also becomes periodic. Increasing the pulse length
from N = 1 to 2 oscillations adds to the azimuthal spectrum
only in the direction ϕ = π since the vector potential at the
center of the pulse, responsible for the emission in the direction
ϕ = 0, remains almost unchanged, see left panel of Fig. 6.

Going further to N = 3, the results for the azimuthal spectra
show a considerable restoration of that left-right symmetry.
However, there is still a measurable difference of the order
of 12%. For even longer pulses, the symmetry restoration
proceeds further, such that for pulses longer than N = 5 the
differences are reduced to a level of below 1% and slowly

decreases further for even longer pulses. Thus, for long pulses
one observes a bipolar emission pattern in the direction of the
laser polarization.

Analogously, the strong azimuthal anisotropies must dis-
appear for longer laser pulses in the case of circular laser
polarization. For still rather short pulses with N = 3 the
azimuthal isotropy is recovered partly, see right panel of
Fig. 6. Interestingly, the maximum of the spectrum for N = 1
develops into the minimum for N = 3. For very long pulses
one recovers azimuthal isotropy.

3. Dependence on the carrier envelope phase

At low laser intensity a0  1, the shape of the azimuthal
distributions does not depend on the value of φCE. However, for
large values of a0, there is a strong dependence of the azimuthal
energy distribution on the CEP. For φCE = 0 the emission
probability has the strong unidirectional characteristics with
a maximum at ϕ = 0 since then the laser vector potential is
strongly antisymmetric and large values are achieved only in
the direction ϕ = 0. For N = 1, the shape of the spectrum
changes upon increasing φCE up to φCE = π/2 from the
unidirectional emission to a bipolar pattern for φCE = π/2
in the direction of the polarization three-vector ε = ex of the
laser, see upper left panel of Fig. 7. In the case of φCE = π/2,
the laser vector potential is symmetric with respect to ϕ = 0
and ϕ = π in the sense that the maximum value of the vector
potential in the left and right hemispheres has the same
value. This symmetry is translated to the left-right symmetry
of the azimuthal spectrum. Upon increasing φCE further up
to φCE = π , one finds an unidirectional emission with the
maximum at ϕ = π , i.e., the opposite direction as for φCE = 0,
reflecting the opposite sign of the vector potential in that case.

For N = 2, depicted in the lower left panel of Fig. 7,
the emission for φCE = 0 is not completely unidirectional,
as discussed in the previous subsection. However, there is
still a strong preference for emission in the direction ϕ = 0.
The symmetry is again restored upon increasing the value of
the carrier envelope phase up to φCE = π/2. This sensitive
dependence on the CEP φCE for a0 � 1 is the basis for an
experimental access to the CEP proposed in [11] for ultrastrong
laser pulses, although it was discussed there in terms of the
polar angle spectra.
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FIG. 6. (Color online) Pulse length dependence of the azimuthal distributions dE/dϕ for nonlinear Compton scattering for linear (circular)
polarization in the left (right) panel for a0 = 3 and φCE = 0. The line styles represent N = 1 (red solid), 2 (blue dashed), 3 (green dotted). The
behavior of the laser vector potential is depicted in the inset of the left panel for N = 1 and N = 2 in the same line style and color code as the
azimuthal distributions.

In the case of circular laser polarization, the shape of the
spectrum does not depend on the value of the CEP, but the
position of the maximum of the distribution does. This is
exhibited in the right panels of Fig. 7, where the different
curves represent the azimuthal spectra for various values
of φCE. The straight vertical lines mark the maxima of the
respective distributions and are equal to the value of the CEP.
Although the usual azimuthal symmetry, which is a typical

characteristic of a long circularly polarized laser pulse, is lost,
a new symmetry arises. In a short laser pulse, the Compton
spectrum depends only on the difference ϕ − φCE, replacing
the usual azimuthal symmetry. This effectively reduces one
degree of freedom of the parameter space since the coordinate
system may always be oriented such that it corresponds to
φCE = 0 in our parametrization of the laser pulse, i.e., the
maximum of the vector potential occurs for ϕ = 0.
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This symmetry can be deduced analytically from the
expressions (17) for the differential emission probability. In
general, any of the four-functions Cn entering w depends on the
CEP through their nonlinear phase factors f (φ) [cf. Eq. (12)].
Additional dependencies in the three-functions C± and C2

cancel from the expression (17) upon specifying circular
polarization, i.e., for cos 2ξ = 0. For the nonlinear phase f (φ)
of the Cn we find for head-on collisions [cf. Eq. (12)] that ϕ

and φCE appear solely in the combination

ε+ ·p′ e−iφCE = −ε+ · k′ e−iφCE = k′
x + ik′

y√
2

e−iφCE

= ω′ sin ϑ√
2

ei(ϕ−φCE), (23)

proving that the differential probability w depends only on the
difference ϕ − φCE and not on the individual values of ϕ and
φCE.

4. Dependence on the laser polarization

Hitherto we considered the extreme cases of linear (ξ = 0)
and circular (ξ = π/4) laser polarization. Now the impact of
intermediate elliptic polarizations on the azimuthal distribu-
tions is analyzed. The azimuthal emission spectra for a single-
cycle laser pulse N = 1 are exhibited for a0 = 3 and φCE =
π/4 in the left panel of Fig. 8 for various laser polarizations
ξ ranging from linear over elliptic to circular polarization.
Indeed, the azimuthal emission spectra show a characteristic
dependence on the polarization of the laser pulse, which
gradually develops from the narrow unidirectional emission on
the axis of polarization for linear polarization (black curve in
Fig. 8) to the directional emission into the preferential direction
ϕ = φCE = π/4 for circular polarization (blue curve in Fig. 8).
The peak position of the distribution is shifted monotonically
to the right with an increasing value of ξ and the shape of the
distribution gradually changes. For generically elliptic laser
polarization, the azimuthal distributions are very asymmetric.

For a two-cycle laser pulse, the polarization dependence
of the azimuthal emission spectra is depicted in the right
panel of Fig. 8. The two peaks at ϕ = 0 and ϕ = π for linear
polarization move towards each other upon increasing ξ . They

finally merge, yielding a single peak at ϕ = φCE for circular
polarization (ξ = π/4) as for N = 1.

C. Asymmetries of the azimuthal distributions

The differential information in the azimuthal distribution
dE/dϕ may be further condensed in the asymmetry A defined
as

A = E→ − E←
E→ + E←

, (24)

where

Elin
→ =

∫ π
2

− π
2

dϕ
dE

dϕ
, Elin

← =
∫ 3π

2

π
2

dϕ
dE

dϕ
(25)

denotes the energy emitted into the right (→) and left (←)
hemispheres, respectively, for linear polarization. For circular
polarization, we exploit the symmetry in the variable ϕ − φCE,

Ecirc
→ =

∫ π
2 +φCE

− π
2 +φCE

dϕ
dE

dϕ
, Ecirc

← =
∫ 3π

2 +φCE

π
2 +φCE

dϕ
dE

dϕ
(26)

by shifting the orientation of the hemispheres by the value of
the CEP. Results for the asymmetry A as a function of a0 are
exhibited in Fig. 9 (left panel). We use φCE = 0 which provides
the largest values of A. From the results in Fig. 9 it becomes
clear that a large asymmetry is possible only for short pulses,
e.g., for N = 1, where linear polarization provides larger
asymmetries than circular polarization. Increasing the pulse
length to N = 2 leads to a reduction of the asymmetry, e.g.,
for a0 = 4 and linear polarization A drops from 0.82 to 0.19.

Within the classical theory of Thomson scattering based on
electron trajectories, which we briefly discuss in Appendix A,
the shape of the angular Compton spectrum depends only on
the ratio a0/γ but not on the individual values a0 and γ [42].
This scaling behavior is violated within a quantum theoretical
framework due to the electron recoil. In principle, all results
up to now could have equally been obtained within this
classical framework. The classical predicted values dEcl/dϕ

are slightly larger (on the order of 1% relative deviation) than
the full quantum results. This can be understood by the small
but nonzero electron recoil for γ = 100 and the scaling of the
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FIG. 8. (Color online) Azimuthal emission spectra for a0 = 3, φCE = π/4, and various values of the laser polarization parameter starting
with linear polarization ξ/π = 0 (black curve, “lin.”) and increasing the value of ξ/π in steps of 0.05 up to ξ/π = 0.25 corresponding to
circular polarization (blue curve, “circ.”). The left (right) panel is for N = 1 (N = 2).
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emission probability presented below Eq. (17), which states
that in the quantum theory photons with less energy are emitted
due to the electron recoil dE ∼ ω′w ∼ dEcl/(1 + u)3.

For increasing center-of-mass energies s = (k + p)2 �
m2, the anisotropies are gradually reduced until one finds an
isotropic emission pattern despite the linear polarization of the
laser field. In Compton backscattering of optical photons, a
higher center-of-mass energy is related to a larger value of the
electron Lorentz factor γ by means of s � m2(1 + 4γω/m).
In the right panel of Fig. 9, the degradation of the asymmetry
with increasing values of γ is exhibited. For instance, for a
high-energy electron beam with γ = 105, which were used in
the SLAC E-144 experiment [9], the asymmetry has a value
of 0.46 for a0 = 1 as compared to 0.61 for the previously
discussed low-energy regime with γ = 100 accessible, e.g., at
the HZDR.

A similar reduced dependence on the azimuthal angle for
high center-of-mass energies is also found in perturbative
QED [43]. The corresponding expression for the emission
cross section of a polarized photon is presented in Appendix B.
As shown in Eq. (B6), the leading order in the ultrarelativistic
limit s � m2 is independent of the azimuthal angle ϕ. The
qualitative arguments that explain this behavior are as follows:
For s � m2, the center-of-mass frame, in which the momenta
of the outgoing electron and photon are back-to-back, moves
rapidly with respect to both the laboratory frame and the
frame where the electron is initially at rest. Transforming
back from the center-of-mass frame the scattering angle of
the emitted photon is boosted close to the forward scattering
direction to values ϑ � π − γ −1. Close to forward scattering
the coefficients of the nonlinear phase integrals are of the
order α+ = O(a0/γ ) and β = O(a2

0/γ
2), i.e., both are small

compared to unity. Thus, the emission of high frequency
photons with large values of the variable s, which are
responsible for the asymmetries in the azimuthal emission
patterns, are strongly suppressed.

IV. TOTAL EMITTED ENERGY

After having characterized the angular distribution of the
energy integrated photon intensity, we now briefly discuss
the total amount of energy E which is radiated off in the

nonlinear Compton process. For the situation considered
here, characterized by a0  γ , we find Ecl = 2γ 2σT � within
a classical framework for the emission of radiation (i.e.,
Thomson scattering, see Appendix A). The quantity σT =
665 mb denotes the Thomson cross section, which is related
to the classical electron radius re via σT = 8πr2

e /3, and
� = ∫

dx+ niT
i0(φ) is the primary energy flux, integrated

over the light-front time x+ with ni denoting the spatial
components of the laser propagation direction. The integrated
primary energy flux � corresponds to the total laser energy
irradiated onto a unit area during a single pulse. For the
laser vector potential Aμ given in (2), we find the energy
momentum tensor T μν = −kμkνA′ ·A′. (The prime denotes
the derivative with respect to the laser phase φ.) Evaluating
the derivative, the integrated energy flux can be written

as � = m2a2
0ω

2e2 �φeff with the effective pulse length �φeff =∫ ∞
−∞ dφ [(g2 + g′2) − cos 2ξ{(g2 − g′2) cos 2(φ + φCE) +

2g′g sin 2(φ + φCE)}]. For longer pulses (N > 5) it is suitable
to approximate the integrand as g2(φ), such that we find
�φeff � 3πN/4 for the specific pulse shape (20).

The emitted energy E is exhibited in Fig. 10 as a function
of γ for a0 = 0.1, 1, and 3 from bottom to top. For increasing
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FIG. 10. (Color online) Total emitted energy E as a function of
γ for various values of a0 = 0.1 (lower red curves), 1 (middle blue
curves), and 3 (upper green curves). The solid curves depict the
full quantum result while the dashed curves refer to the classical
approximation Ecl.
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values of γ , the total emitted energy stays below the classical
value Ecl, which is a quantum effect due to the electron recoil.
The deviations start to become relevant for γ between 103 and
104. It is found that for higher laser intensity, the full quantum
calculation deviates from the classical expression already for
lower values of γ . This is due to the emission of high harmonics
with large values of the variable s in that case. The relevant
recoil parameter is sk ·p/m2, which may be large even if one is
still in the low-energy regime, characterized by k ·p/m2  1.
This is in line with recently published results [44] on the total
emitted energy for ultrahigh laser intensity.

The total emitted energy is insensitive to the shape of the
pulse. The relevant quantity is the integrated flux of energy
in the laser pulse � ∝ a2

0N . This is in contrast to the cross
channel process of Breit-Wheeler type pair production, where
a strong enhancement of the emission probability in ultrashort
laser pulses was found near the threshold region [45,46].

V. DISCUSSION AND SUMMARY

We study Compton backscattering of an ultrashort intense
laser pulse off an electron beam. Nonlinear and multiphoton
effects are accounted for by working in the Furry picture with
laser dressed Volkov states. Compton backscattering of a laser
beam off an electron beam is interesting with respect to the
development of compact broadband pulsed x-ray radiation
sources, as outlined in the Introduction. A prerequisite of
technical design studies is a comprehensive understanding
of the elementary process. To characterize the backscattering
spectrum we analyze angular distributions which provide a
clear signal of nonlinear effects and show novel signatures in
ultrashort pulses. The angular distributions have the advantage
of not to be hampered by detector pile-ups as they represent
an energy integrated distribution which is experimentally
accessible in a calorimetric measurement.

It is shown that the energy integrated azimuthal spectra
show a strong dependence on both the laser polarization and
the value of the carrier envelope phase for ultrashort laser
pulses. The asymmetry for circular polarization is explained
by the preferred direction where the vector potential reaches its
maximum value which breaks the usual azimuthal symmetry.
The azimuthal distribution displays a symmetry with respect to
the difference of the azimuthal angle and the carrier envelope
phase for ultrashort circularly polarized laser pulses. This
replaces the general azimuthal symmetry of infinitely long
circularly polarized plane waves.

For non-phase-locked lasers one needs to perform single-
shot measurements in order see the asymmetries in the
azimuthal spectra. For an electron bunch charge of 77 pC with
γ factor γ = 100 interacting with a single-cycle laser pulse
with intensity 2 × 1018 W/cm2, we estimate the total number
of photons as 2.8 × 106 with a total amount of deposited
energy of 18 nJ in the detector. This assumes an optimal
overlap of the laser pulse and the electron bunch.

The total emitted energy is proportional to the integrated
primary energy flux in the laser pulse in the low-energy
regime and scales with the square of the primary electron
energy within a classical framework. At high laser intensity
we see deviations from the classical scaling behavior even in
the Thomson regime due to the emission of high harmonics,

for which the quantum recoil is relevant. The low-energy
Thomson regime is representative for head-on collisions of
optical laser beams and mildly relativistic electron beams. For
instance, the DRACO-ELBE constellation at the HZDR fulfils
this requirement. Although the asymmetries for single-cycle
pulses are presently out of reach of the DRACO-ELBE system
due to too long laser pulses, the transition from perpendicular
emission for low laser intensity to parallel emission with
respect to the laser polarization for high intensity could well
be tested experimentally as a clear signal for nonlinear effects
in Compton scattering.

Our calculations apply for a section of transverse laser beam
profile where the curvature of the wave fronts is negligible
since we rely on a plane-wave approximation. We restrict
our analysis to mildly intense laser pulses with intensity of
the order of 1019 W/cm2 which can be achieved in rather
large laser spots with sub-PW lasers, such that the effects of
the curvature of the laser fronts is negligible. Multiphoton
emission, e.g., via the two-photon Compton process [36], is
expected to provide only a minor contribution to the radiation
spectrum. These higher order tree level processes have been
shown to strongly modify the angular pattern of photon
emission if the electron recoil in single-photon emission
is large [47]. This is mainly relevant for the ultra-intense
relativistic quantum regime where a0 � 1 and the quantum
nonlinearity parameter χ � 1. For the presently considered
parameters γ = 100 and a0 < 10, χ is smaller than unity
and we do not expect significant modifications of the angular
pattern due to, e.g., two-photon emission.

Focusing on the azimuthal distribution means considering
the energy and polar angle integrated spectra. In particular,
the pile-ups prevent in present-day detector technology the
easy measurement of energy-differential spectra for large
incident photon fluxes, even if they are interesting with respect
to harmonics and their substructures. The energy integrated
quantities dE/d� and dE/dϕ are, in contrast, easily acces-
sible experimentally since they require an angularly resolved
calorimetric measurement of the energy distributions.

We mention that all numerical results presented are for a
particular temporal laser pulse shape. It is straightforward to
replace the employed function by other, possibly multiparam-
eter envelopes.

In summary we consider the nonlinear Compton process of
mildly relativistic electrons interacting with medium-intense
short and ultrashort laser pulses. As a key to the radiation
spectrum we propose the angular distributions which are
free of the notorious problem of pile-ups which may be
faced in energy differential spectra and provide clear signals
of nonlinear Compton scattering. The impact of the laser
intensity, the pulse length, and the carrier envelope phase
on the energy-integrated azimuthal distributions is studied
systematically. Measurements of the azimuthal and polar angle
distributions may serve as a useful tool to quantify both the
electron beam and the laser beam parameters.

The parameter space which we have considered is rep-
resentative for many lasers worldwide in the sub-PW regime,
i.e., for intensity parameters a0 < 10. The ultra-intense regime
deserves separate investigations. In contrast, our consideration
of ultrashort pulses with essentially one oscillation of the
electromagnetic field in a pulse is at the limit of present-day
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technological feasibility. The peculiarities, such as the strong
asymmetry of the azimuthal distribution for circularly po-
larized laser radiation or the strong one-side asymmetry
for linearly polarized laser radiation, disappears quickly for
more oscillations of the electromagnetic field. Therefore, such
measures are particularly suitable tools for the characterization
ultrashort pulses.
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APPENDIX A: CLASSICAL RADIATION:
THOMSON SCATTERING

In the classical picture, which is valid if the electron recoil
during the interaction is negligible [27], an ultrarelativistic
electron, moving in an external electromagnetic wave field,
emits radiation only into directions which are swept by the
instantaneous tangent vector to its trajectory, i.e., the spatial
part u of the four-velocity uμ(τ ) = dxμ/dτ = (γ,u), with
proper time τ . For plane-wave laser fields, the orbit reads
in terms of the laser vector potential Aμ,

uμ(τ ) = u
μ

0 − e

m
Aμ + kμ

(
e

m

u0 · A
k · u0

− e2

m2

A · A
2k · u0

)
. (A1)

The differential radiated power of an electron moving on an
arbitrary trajectory reads {cf. [48], Eq. (14.37)}

dE(t ′)
d�dt ′

= α

4π

∣∣n′ × [
(n′ − v) × dv

dt

]∣∣2

(1 − n′ · v)6

∣∣∣∣∣
ret

. (A2)

Integration over observation time t ′ and a change of the
integration variables retarded time t yields

dE

d�
= α

4π

∫
dt

∣∣n′ × [
(n′ − v) × dv

dt

]∣∣2

(1 − n′ · v)5
. (A3)

Now we replace the velocity v = dx/dt by the four-velocity
uμ and change the integration variable from t to the laser
phase φ via dt = dt

dτ
dτ
dφ

dφ = γ

k · u0
dφ. We have v = u/γ and

dv/dt = (u̇γ − uγ̇ )/γ 3, where the dot denotes the derivative
with respect to proper time τ . Using these relations we obtain

dE

d�
= α

4πk · u0

∫
dφ

|n′ × [(n′γ − u) × (u̇γ − uγ̇ )]|2
γ 2(n′ · u)5

.

(A4)

The evaluation of the square of the double cross product yields,
exploiting the relativistic constraints u · u = 1 and u̇ · u = 0,

the result

1

γ 2
|n′ × [(n′γ − u) × (u̇γ − uγ̇ )]|2

= −(n′ · u̇)2 − (n′ · u)2u̇2

= −
(

d

dτ
n′ · u uμ

)2

. (A5)

Thus, the radiated energy is given by the expression

dE

d�
= −αk · u0

4π

∫
dφ

(n′ · u)5

(
d

dφ
n′ · u uμ

)2

. (A6)

Using the trajectory as a function of the laser vector potential in
Eq. (A1) allows us to calculate the angular radiation spectrum.
Our result (A6) compares well to the result in [42]. However,
we provide a covariant expression in terms of the orbit uμ

in a plane wave (A1) and furthermore, we do not rely on the
approximation u ‖ n′ to simplify the expression for the emitted
energy distribution.

To calculate the total amount of radiated energy we may
either integrate (A6) over the full solid angle or alternatively
use the Larmor formula for the emitted power {cf. [48],
Eq. (14.24)}

dEcl

dt
= − 1

6π

e2

m2
ṗ · ṗ. (A7)

With the classical equations of motion for the electron ṗμ =
e
m

Fμνpν , where Fμν = ∂μAν − ∂νAμ is the electromagnetic
field strength tensor of the laser field, the emitted power can
be expressed as

dEcl

dt
= 1

6π

e4

m4
pμFμνF κ

ν pκ = 1

6π

e4

m4
pμT μνpν, (A8)

where the last step is valid for a null background field, as is used
here. Evaluating the energy momentum tensor for the vector
potential (2) one finds T μν = kμkνT 00/ω2. Thus, the emitted
power is proportional to the energy density of the background
field

dEcl

dt
= 1

6π

e4(k ·p)2

m4ω2
T 00. (A9)

The total energy emitted in such a process is the coordinate
time integral of (A9), which needs to be transformed into an
integral over the laser phase as above, yielding

Ecl = 8

3
πr2

e

k · u0

ω2

∫
dφ γ (φ)T 00(φ). (A10)

For head-on collisions with γ0 � 1, one finds γ (φ) � γ0[1 +
O(a0/γ0)2] indicating that for moderately intense lasers with
a0  γ0, the initial value γ 0 is the leading-order contribution
which can be taken out of the integral. Thus, the emitted
energy is proportional to the integrated energy flux of the
laser pulse �, and Ecl � 2γ 2

0 σT �. The next-to-leading order
gives a positive correction, whereas the quantum corrections,
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that scale with the quantum nonlinearity parameter χ , have a
negative sign [33].

APPENDIX B: PERTURBATIVE COMPTON SCATTERING
WITH LINEARLY POLARIZED PHOTONS

In perturbative QED, the cross section for Compton
scattering of unpolarized electrons and polarized photons reads
in the rest frame of the incoming electron [43]

dσ

d�
= r2

e

4

(
ω′

ω

)2 (
ω′

ω
+ ω

ω′ − 2 + 4(ε · ε′)2

)
, (B1)

where ε (ε′) denotes the polarization vector of the incoming
(outgoing) photon and

ω′ = ω

1 + ν(1 + cos ϑ)
(B2)

is the frequency of the outgoing photon as a function of
the scattering angle ϑ (note that in our convention forward
scattering is denoted by ϑ = π ); re = α/m is the classical
electron radius and ν = ω/m denotes the normalized laser
frequency such that the center-of-mass energy squared is
s = m2(1 + 2ν). Specifying ε = ex and summing over the
final photon polarizations we obtain

dσ

d�
= r2

e

2

(
ω′

ω

)2 (
ω′

ω
+ ω

ω′ − 2 cos2 ϕ sin2 ϑ

)
. (B3)

The integration over the polar angle ϑ yields the azimuthal
distribution

dσ

dϕ
= r2

e

2

(
log(1 + 2ν)

ν
+ 2

(1 + ν)

(1 + 2ν)2

− 4 cos2 ϕ

ν3
[(1 + ν) log(1 + 2ν) − 2ν]

)
. (B4)

The nonrelativistic (ν  1) and ultrarelativistic (ν � 1) limits
read

dσ

dϕ
= r2

e

2

[(
4 − 8

3
cos2 ϕ

)
− 2ν

(
4 − 8

3
cos2 ϕ

)]
+ O(ν2),

ν  1, (B5)

dσ

dϕ
= r2

e

2

[
1

ν

(
1

2
+ log 2ν

)

+ 1

ν2

(
1

2
+ 8 cos2 ϕ − 4 cos2 ϕ log 2ν

)]
+ O(ν−3),

ν � 1. (B6)

The leading-order term of the nonrelativistic limit of the
perturbative cross section gives the same azimuthal distri-
bution as in the general expression dW/dϕ (or dE/dϕ) for
weak short laser pulses, i.e., in the limit a0  1. On the
contrary, the leading order of the ultrarelativistic limit turns
out to be independent of the azimuthal angle ϕ; an azimuthal
dependence enters first at next-to-leading order.
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(2010).

[38] F. Gabriel, P. Gippner, E. Grosse, D. Janssen, P. Michel,
H. Prade, A. Schamlott, W. Seidel, A. Wolf, and R. Wünsch,
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