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Measuring the canonical phase with phase-space measurements
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We study measurements of single-mode phase observables with emphasis on the canonical phase. We focus on
the class of phase-shift covariant phase-space observables, which then yield the phase observables as the angle
margins after integrating over the radial part. We consider the possibility of measuring such observables by using
a double homodyne detector and its modification. We show that, in principle, the canonical phase distribution of
the signal state can be measured via double homodyne detection by first processing the state using a two-mode
unitary channel.
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I. INTRODUCTION

In quantum optics, the concept of phase for a single-mode
electromagnetic field has remained a somewhat controversial
topic. Alternative descriptions for phase observables have been
developed, and hundreds of articles and several monographs
have been written on the subject since Dirac’s famous paper [1]
published in 1927 (see, e.g., [2–7] and references therein). A
major reason for this variety of phase theories is that in trying
to define the phase of a quantum oscillator, one encounters
the restrictions of the conventional approach which identifies
observables with self-adjoint operators or, equivalently, their
spectral measures. In fact, it is well known that no spectral
measure satisfies all physically relevant conditions posed on
phase observables (see, e.g., [4,8]). This problem has been
overcome with the introduction of the more general concept of
observables as (normalized) positive operator valued measures
(POVMs).

A natural requirement for the description of a phase mea-
surement is covariance with respect to phase shifts. In other
words, the application of a phase shifter on the field prior to the
measurement should only shift the phase distribution without
changing its shape. Although there exists an infinite number of
phase-shift covariant POVMs, it is generally accepted that the
canonical phase measurement for the single-mode radiation
field is represented by the London phase distribution [9].
Hence, the canonical phase measurement is described by the
canonical phase observable Ecan,

Ecan(X) =
∞∑

m,n=0

1

2π

∫
X

ei(m−n)θdθ |m〉〈n|

= 1

2π

∫
X

|θ〉〈θ |dθ,

where X ⊆ [0,2π ), |m〉 are the number states, and |θ〉 =∑∞
m=0 eimθ |m〉 is the (formal) Susskind-Glogower phase state

[10]. We recall that the canonical phase measurement arises
as the limiting distribution of the Pegg-Barnett formalism
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[3]. Additionally, Ecan has been independently derived by
Helstrom [11] and Holevo [8] in the more general context
of quantum estimation theory.

The canonical phase has a number of properties which
makes it an optimal choice among other phase observables.
For instance, Ecan is pure, i.e., an extreme point of the
convex set of all POVMs [12]. Any other covariant phase
observable F is connected to the canonical phase via a quantum
channel � as F(X) = �∗(Ecan(X)) [13]. The canonical phase
is also (essentially) the only covariant phase observable which
generates number shifts [14]. Furthermore, Ecan and the
photon number N are noncoexistent, probabilistically, and
value-complementary observables [15]. Finally, the canonical
phase distribution of coherent states |α〉, α ∈ C, tends to a
Dirac δ distribution in the classical limit |α| → ∞ [14]. A list
of further properties of Ecan can be found, e.g., in [4] (p. 51).

The problem of finding a suitable realistic measurement
model for the canonical phase observable is the last big open
problem concerning the quantum description of the phase of
a single-mode electromagnetic field. Of course, Ecan (or any
observable of the field) can be “measured” indirectly or “sam-
pled” by first performing quantum state tomography and then
constructing the canonical phase distribution. However, such
an approach may hardly be regarded as a direct measurement
in the spirit of the quantum theory of measurement [16]. Some
suggestions for direct measurements of Ecan can be found in the
literature (see, e.g., [17]), but they have not led to experiments.

It seems that from the experimental point of view, the
most easily accessible phase observables are those arising
as the angle margins of certain translation covariant phase-
space observables. Such observables are often referred to as
phase-space phase observables, with the most familiar example
being the angle margin of the Husimi Q function of the field
[18]. A natural measurement scheme for these phase-space
measurements is then double homodyne detection (see, e.g.,
[19]), also known as eight-port homodyne detection, which has
also been demonstrated experimentally [20]. Even though the
phase-space phase observables seem like a natural choice for
measuring the phase of the electromagnetic field, they suffer
from certain drawbacks when compared with the canonical
phase. For instance, the phase-space phase observables are
not pure [21], and the canonical phase Ecan gives smaller
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(minimum) variance in large-amplitude coherent states than
any phase-space phase observable [14].

The purpose of this paper is to take a step in the direction
of obtaining a realistic measurement scheme for the canonical
phase. First, in Sec. II, we give the basic framework for our
study. We also present the minimal measurement models for
the canonical phase. By noting the practical shortcomings of
such models, we are led to introduce the class of phase-shift
covariant phase-space observables in Sec. III. We study the
marginal properties of these observables and present some
relevant examples, including cases which give the canonical
phase as the margin. In Sec. IV, we then study the double
homodyne detection scheme as a means of measuring phase-
space observables. We show that by modifying the setup by
adding an extra two-mode unitary coupling in front of the
apparatus, it is, in principle, possible to measure the canonical
phase of the signal field. The conclusions are presented in
Sec. V.

II. PRELIMINARIES

Throughout this paper, we consider a single-mode elec-
tromagnetic field as our physical system. The Hilbert space
of the system is therefore H 	 L2(R), and it is spanned by
the orthonormal basis consisting of the number states |n〉,
n ∈ N = {0,1,2, . . .}, which in the coordinate representation
are identified with the Hermite functions. We denote by
a∗, a, and N = a∗a the creation, annihilation, and number
operators, respectively, related to this basis. We denote by
L(H) and T (H) the sets of bounded and trace class operators,
respectively, on H. The states of the field are represented
by positive trace class operators ρ ∈ T (H) with unit trace,
i.e., density operators, and the observables are represented
by normalized positive operator valued measures (POVMs)
E : B(�) → L(H) on the Borel σ algebra of the topological
space � of possible measurement outcomes [22]. We say that
an observable is sharp if it is projection valued, that is, a
spectral measure. The measurement outcome probabilities are
given by the probability measures X 
→ tr[ρE(X)]. For our
purposes, the relevant measurement outcome spaces are the
torus T , which is identified with [0,2π ) with addition modulo
2π , the space of non-negative real numbers R+, and the phase
space C 	 R2 	 R+ × T .

It is a fundamental result of the quantum theory of mea-
surement that any observable has a measurement realization
in the form of a measurement dilation [23]. Indeed, given a
POVM E : B(�) → L(H), there exists a Hilbert space K, a
unit vector ξ ∈ K, a unitary operator U : H ⊗ K → H ⊗ K,
and a sharp observable Z : B(�) → L(K) such that

tr[ρE(X)] = tr[U (ρ ⊗ |ξ 〉〈ξ |)U ∗I ⊗ Z(X)] (1)

for all X ∈ B(�) and all states ρ. From the physical point of
view, this tells us that E can be measured by first preparing
a probe system into a pure state |ξ 〉〈ξ |, coupling the object
system with the probe via the unitary coupling U , and then
performing a measurement of the sharp pointer observable
Z on the probe system. The problem with constructing a
realistic measurement model for a given observable is therefore
twofold: first, one needs to find the mathematical components

which reproduce the probabilities (1), and, second, one needs
to find a way to realize these components in a laboratory.

We now turn our attention to the problem of covariant phase
observables.

Definition 1. An observable E : B([0,2π )) → L(H) is a
covariant phase observable if

eiθNE(�)e−iθN = E(� +̇ θ ) (2)

for all � ∈ B([0,2π )) and θ ∈ [0,2π ), where +̇ denotes
addition modulo 2π .

Condition (2) already sets the general structure of the
observables. Indeed, if E is a covariant phase observable, then
by the structure theorem for phase observables (see, e.g., [24])
there exists a unique positive semidefinite matrix (cmn)m,n∈N
with unit diagonal (i.e., cmm ≡ 1) such that

E(�) =
∞∑

m,n=0

cmn

1

2π

∫
�

eiθ(m−n)dθ |m〉〈n|

for all � ∈ B([0,2π )). We say that (cmn)m,n∈N is the phase
matrix associated to E. Clearly, the constant phase matrix
cmn ≡ 1 corresponds to the canonical phase Ecan.

Using the results of [25], it is possible to calculate
the minimal measurement models for an arbitrary phase
observable. The minimality here means that the auxiliary
space is, in some sense, as “small” as possible, meaning that
there are no unnecessary degrees of freedom present. In the
minimal measurement model for the canonical phase (up to
unitary equivalence), the Hilbert space of the probe is K =
L2([0,2π )), the pointer observable is the canonical spectral
measure T : B([0,2π )) → L(K), (T(�)ψ)(θ ) = χ�(θ )ψ(θ ),
where χ� is the characteristic function of �, and the unitary
coupling can be constructed by extending the map [U (|n〉 ⊗
ξ )](θ ) = 1√

2π
ψθ ⊗ e−iθn where ξ ∈ K is a fixed unit vector

determining the initial pure state of the probe and ψθ ∈ H are
unit vectors.

III. PHASE-SHIFT COVARIANT
PHASE-SPACE OBSERVABLES

A major practical problem with the minimal measurement
model is the realization of the pointer observable T. However,
things get much simpler if we instead consider T as the angle
margin of the canonical spectral measure M on C, i.e., M :
B(C) → L(K′) where K′ = L2(C) 	 L2(R+) ⊗ L2([0,2π ))
and [M(X × �)�](r,θ ) = χX×�(r,θ )�(r,θ ). This would then
correspond to interpreting T as the observable X 
→ I ⊗ T(X)
on the larger Hilbert space. In this case, L2(C) may be simply
realized as the Hilbert space of a two-mode field, whereas M,
and therefore T, can be measured by performing homodyne
detection on the two modes. The resulting system observable
is then a phase-space observable P : B(C) → L(H).

For any observable P : B(C) → L(H), we define the
angle and radial margins Pangle : B([0,2π )) → L(H) and Prad :
B(R+) → L(H) via

Pangle(�) = P(R+ × �), Prad(X) = P(X × [0,2π )).

Any phase observable E can be obtained as the angle margin
of a phase-space observable in a trivial manner. Namely, for
any probability measure μ : B(R+) → [0,1], the observable
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P : B(C) → L(H) for which P(X × �) = μ(X)E(�) is a
suitable choice. This observable has the additional property
that it transforms covariantly under the action of the phase
shifter unitary, i.e.,

eiθNP(X × �)e−iθN = μ(X)eiθNE(�)e−iθN

= μ(X)E(�+̇θ ) = P(X × (�+̇θ )).

We will now focus our attention on phase-space observables
having this symmetry property.

Definition 2. An observable P : B(C) → L(H) is a phase-
shift covariant phase-space observable if

eiθNP(X × �)e−iθN = P(X × (�+̇θ ))

for all X ∈ B(R+), � ∈ B([0,2π )), and θ ∈ [0,2π ).
The following proposition then gives the general structure

of such observables.
Proposition 1. An observable P : B(C) → L(H) is a

phase-shift covariant phase-space observable if and only if
there exists a probability measure μ : B(R+) → [0,1] and (a
weakly μ-measurable field of) vectors ηm(x) ∈ H satisfying
the condition ∫ ∞

0
‖ηm(x)‖2dμ(x) = 1

such that

P(X × �) =
∞∑

m,n=0

∫
X×�

〈e−imθηm(x)|e−inθηn(x)〉

× dθ

2π
dμ(x)|m〉〈n| (3)

for all X ∈ B(R+) and � ∈ B([0,2π )).
Proof. Consider a fixed set X ∈ B(R+). Since eiθNP(X ×

�)e−iθN = P(X × (�+̇θ )) for all � ∈ B([0,2π )), following
the proof of the structure theorem for covariant phase
observables [24], there exists a positive semidefinite matrix
(cmn(X))m,n∈N such that

P(X × �) =
∞∑

m,n=0

cmn(X)
1

2π

∫
�

ei(m−n)θ dθ |m〉〈n|.

Now, for all m,n ∈ N, the map X 
→ cmn(X) is a complex
measure which is absolutely continuous with respect to the
probability measure

X 
→ μ(X) =
∞∑

n=0

λn〈n|P(X × [0,2π ))|n〉

=
∞∑

n=0

λncnn(X),

where λn > 0 for all n and
∑

n λn = 1. It follows from [26]
that there exist vectors ηm(x) ∈ H such that

cmn(X) =
∫

X

〈ηm(x)|ηn(x)〉dμ(x). (4)

Hence, Eq. (3) holds. The converse claim is clearly true. �
Using Prop. 1, we can now determine the angle and radial

margins of any phase-shift covariant phase-space observable.

Indeed, by setting X = R+ in Eq. (3), we obtain

Pangle(�) =
∞∑

m,n=0

cmn

1

2π

∫
�

eiθ(m−n) dθ |m〉〈n|,

where the phase matrix elements are given by

cmn =
∫ ∞

0
〈ηm(x)|ηn(x)〉dμ(x).

Similarly, the radial margin is seen to be

Prad(X) =
∞∑

m=0

cmm(X)|m〉〈m|,

where cmm(X) is as in Eq. (4).
The map (X,m) 
→ cmm(X) is a Markov kernel onB(R+) ×

N, and the observable Prad can therefore be viewed as a
smeared number observable. More generally, we say that an
observable F : B(�) → L(H) is a smeared number observable
if there exists a Markov kernel m : B(�) × N → [0,1] such
that

F(X) =
∞∑

n=0

m(X,n)|n〉〈n|

for all X ∈ B(�). The next proposition shows that among
phase-space observables, the ones possessing the property
of phase-shift covariance are, in a sense, archetypes of joint
observables for phase and smeared photon number.

Proposition 2. Let F : B(R+) → L(H) be a smeared
number observable and let E : B([0,2π )) → L(H) be a covari-
ant phase observable. Then, E and F have a joint observable if
and only if they have a joint observable which is a phase-shift
covariant phase-space observable.

Proof. Assume that E and F have a joint observable
M : B(C) → L(H) and define the biobservable P′ : B(R+) ×
B([0,2π )) → L(H) via

P′(X,�) = 1

2π

∫
e−iθNM(X × (�+̇θ ))eiθNdθ, (5)

where the integral is understood in the weak∗ sense. By
[27, Theorem 6.1.5], P′ extends to a unique observable
P : B(C) → L(H) which is clearly phase-shift covariant. By
setting � = [0,2π ) (respectively, X = R+) in Eq. (5) and
using the phase-shift invariance of F (respectively, phase-
shift covariance of E), we see that Prad = F (respectively,
Pangle = E). Hence, E and F have a joint observable which is
a phase-shift covariant phase-space observable. The converse
statement is trivial. �

We note that the canonical phase observable is obtained
as the angle margin of a phase-shift covariant phase-space
observable if and only if

〈ηm|ηn〉 =
∫ ∞

0
〈ηm(x)|ηn(x)〉dμ(x) = 1

for all m,n ∈ N. In particular, we must have 〈η0|ηn〉 = 1
for all n ∈ N and, since ηn is a unit vector, this implies
that ηn = η0 for all n ∈ N. But in such a case the radial
margin is the trivial observable Prad(X) = c00(X)I . This is
no surprise, since the canonical phase observable is in this
sense exclusive: any observable which is jointly measurable
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with the canonical phase is necessarily a postprocessing of it
(for a proof, see Appendix). This means that given such an
observable F : B(�) → L(H), there exists a (weak) Markov
kernel m : B(�) × [0,2π ) → [0,1] such that

F(X) =
∫

m(X,θ )dEcan(θ ).

A simple calculation then shows that in the case of the smeared
number observable, this forces the observable to be trivial, i.e.,
m(X,n) cannot depend on n.

A similar situation happens if we insist that the radial
margin is the sharp number observable. In this case, we
have cmm(X) = δm(X) (the Dirac measure concentrated on m)
so that, in particular,

∫
{m} ‖ηm(x)‖2 dμ(x) = 1 and we must

have ηm(x) = 0 for μ-almost all x ∈ R+ \ {m}. It follows that
cmn = 〈ηm|ηn〉 = δmn and the angle margin is therefore the
trivial one: Pangle(�) = 1

2π

∫
�

dθI . This also follows from
the fact that any observable which is jointly measurable
with the number observable must commute with it by [28,
Theorem 1.3.1]. For phase observables, this is equivalent to
the observable being trivial.

We will now proceed to give some examples of phase-shift
covariant phase-space observables.

Example 1. As a first example, we consider phase-space
observables which, in addition to phase-shift covariance, are
covariant with respect to phase-space translations represented
by the displacement operators D(z) = eza∗−za , z ∈ C. Gener-
ally, any phase-space POVM G which satisfies the covariance
condition D(z)G(Z)D(z)∗ = G(Z + z), z ∈ C, Z ∈ B(C), is
generated by a unique positive trace one operator T , giving
the corresponding observable the explicit form [29,30]

GT (Z) = 1

π

∫
Z

D(z)T D(z)∗d2z. (6)

However, not all of these observables are covariant with
respect to phase shifts. Indeed, this is the case if and only
if the generating operator is a mixture of number states, T =∑∞

k=0 λk|k〉〈k|; see [24]. In order to connect these observables
to the general structure discussed above, let us consider G|k〉,
the observable generated by a single number state |k〉〈k|. First
note that we may write Eq. (6) as

G|k〉(X × �) =
∞∑

m,n=0

1

2π

∫
X×�

〈m|D(reiθ )|k〉

× 〈n|D(reiθ )|k〉 dr2dθ |m〉〈n|, (7)

where the matrix elements of the displacement operators are
given by

〈m|D(reiθ )|k〉 = (−1)max{0,k−m}
√

(min{m,k})!
(max{m,k})!e

iθ(m−k)

× r |m−k|L|m−k|
min{m,k}(r

2)e− r2

2 (8)

and Lα
n is the associated Laguerre polynomial. We can

then define the probability measure μ : B(R+) → [0,1] via
dμ(r) = e−r2

dr2, as well as the vectors

ηk
m(r) = (−1)max{0,k−m}

√
(min{m,k})!
(max{m,k})!

× r |m−k|L|m−k|
min{m,k}(r

2) ϕk ∈ H,

where ϕk ∈ H is an arbitrary fixed unit vector. The normaliza-
tion condition

∫ ‖ηk
m(r)‖2 dμ(r) = 1 is then satisfied, and it is

merely a simple observation that G|k〉 takes the form of Eq. (3).
Note that the angle margin G|k〉

angle is never the canonical phase
observable [14,24].

Example 2. A second example can be obtained by modify-
ing the above considerations. Indeed, if we replace the vectors
ηk

m(r) by ξk
m(r) = Lmin{m,k}(r2)ϕk while keeping the measure

μ unchanged, we get an observable F|k〉 : B(C) → L(H) with
the explicit form

F|k〉(X × �) =
∞∑

m,n=0

1

2π

∫
X×�

eiθ(m−n)Lmin{m,k}(r2)

×Lmin{n,k}(r2) e−r2
dr2dθ |m〉〈n|. (9)

Unlike the observable G|k〉, this observable is not translation
covariant, though it is clearly covariant with respect to phase
shifts. It should also be noted that in this case there do
not exist bounded (or unitary) operators D̃(reiθ ) such that

〈n|D̃(reiθ )∗|m〉 = eiθ(n−m)Lmin{m,n}(r2)e− r2

2 for all r and θ .
The significant features of these observables are in their

margins. For the angle margin phase observable F|k〉
angle, we get

the phase matrix elements

cmn =
∫ ∞

0
Lmin{m,k}(r2)Lmin{n,k}(r2) e−r2

dr2

= δmin{m,k}, min{n,k}.

In particular, the angle margin of F|0〉 is the canonical phase.
On the contrary, if we increase the value of k, we find that the
observable becomes in some sense more trivial. Indeed, since
cmn = δmn for m,n � k, the phase matrix always contains a
(k + 1) × (k + 1) identity matrix in the upper left corner. As
for the radial margin, we get

F|k〉
rad(X) =

k∑
m=0

cmm(X)|m〉〈m| + ckk(X)
∞∑

m=k+1

|m〉〈m|,

which shows that by increasing the value of k, the observable
becomes, vaguely speaking, more and more nontrivial. We
also immediately recognize the obvious fact that for k = 0
corresponding to the angle margin being the canonical phase,
the radial margin is trivial.

Example 3. As a final example, we consider the case
where the probability measure is a Dirac measure μ = δr0

concentrated at some point r0 > 0. The corresponding phase-
space observable Pr0 : B(C) → L(H) can then be written as

Pr0 (X × �) =
∞∑

m,n=0

〈ηm|ηn〉 δr0 (X)
∫

�

eiθ(m−n) dθ

2π
|m〉〈n|.

We now immediately see that the angle margin Pr0
angle is

the phase observable with the phase matrix elements cmn =
〈ηm|ηn〉, and the radial margin is the trivial (sharp) observable
Pr0

rad(X) = δr0 (X)I .

IV. DOUBLE HOMODYNE DETECTION SCHEME

We will now turn our attention to the double homodyne
detector, a well-established method for measuring translation
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FIG. 1. Schematic of a double homodyne detector. The signal
field is mixed with a parameter field by means of a 50:50 beam
splitter, after which a phase shift of −π/2 is performed on one of
the modes. Balanced homodyne detection is then performed on both
modes.

covariant phase-space observables related to a single-mode
electromagnetic field [19,31,32]. This scheme is based on
the fact that the usual single homodyne detector provides a
measurement of an arbitrary field quadrature. Indeed, when the
signal field under investigation is coupled to a strong auxiliary
field in a coherent state |z〉 using a 50:50 beam splitter, and the
scaled photon number difference 1

|z| (I ⊗ N − N ⊗ I ) of the
two output modes is measured, then for a sufficiently large
|z|, the measured observable is approximately the rotated
quadrature observable Qθ , where θ = arg z and Qθ (X) =
eiθNQ(X)e−iθN , with Q being the canonical spectral measure
on the real line (for more detail, see, e.g., [33]).

In double homodyne detection, the signal field is first
coupled to a parameter field in some state σ via a 50:50
beam splitter, after which a phase shift of −π

2 is performed on
one of the output modes (see Fig. 1). Balanced homodyne
detection is then performed on each output mode, so that
by choosing the phase of the auxiliary coherent field to be
zero in both measurements, this corresponds to measuring
the canonical spectral measure on R2 for the two-mode field.
With this setup, the measured observable is the phase-space
observable Gσ ′

, where the generating operator is connected
to the state of the parameter field via the conjugation map
(Cϕ)(x) = ϕ(x) as σ ′ = CσC [31]. In particular, if we want
the observable to be phase-shift covariant and thus give rise to a
phase observable as the angle margin, we must use a parameter
field which is diagonal in the number state representation,
σ = ∑∞

k=0 λk|k〉〈k|. The simplest case is obviously obtained
by using the vacuum σ = |0〉〈0|.

The problem with using this measurement setup is, of
course, caused by the fact that the canonical phase cannot be
obtained as the margin of any translation covariant phase-space
observable [14,24]. Thus, a modification of the setup is needed.
We will next show that a suitable modification is obtained by
adding a unitary coupling between the signal and parameter
fields prior to the beam splitter. In other words, while in the
usual double homodyne detection the signal and parameter
fields are uncorrelated before entering the beam splitter, with
this modification they will enter the beam splitter in an
entangled state. With this method, it is, in principle, possible
to measure the observables F|k〉 encountered in Example 2.

To this end, first notice that in the usual double homodyne
detector, the overall unitary coupling consisting of the beam
splitter and the phase shifter is given by U : Hin → Hout,

(U |m〉 ⊗ |n〉)(r,θ ) = 1√
π

〈n|D(reiθ )∗|m〉, (10)

FIG. 2. A modified double homodyne detector where an
additional unitary coupling W is performed prior to the beam splitter.
By choosing the parameter field to be in the vacuum state, one can
obtain the canonical phase observable as the angle margin of the
measured phase-space observable.

where Hin 	 H ⊗ H consists of the input signal and paramet-
ric field modes and Hout 	 H ⊗ H is the output space. The
observable measured with the two homodyne detectors is then
(or rather may be chosen to be) the canonical spectral measure
M : B(C) → L(Hout). If ρ and σ are the states of the signal
and parameter fields, respectively, then a direct computation
shows that

tr[U (ρ ⊗ σ )U ∗M(Z)] = tr[ρGσ ′
(Z)]

for all Z ∈ B(C). Hence, by considering only the angle margin
Mangle as the pointer observable, one can measure the angle
margin Gσ ′

angle. In particular, by preparing the parameter field
in a state which is diagonal in the number basis, one can
measure any phase-space phase observable.

Now it is easily seen from the discussion in Example 2 that
the total coupling needed for the measurement of F|k〉 is

(V |m〉 ⊗ |n〉)(r,θ ) = 1√
π

eiθ(n−m)Lmin{m,n}(r2)e− r2

2 .

We want to exploit the fact that we already have at our disposal
the unitary coupling (10) of the usual double homodyne
detector. Therefore, we will look for a unitary operator W :
Hin → Hin such that V = UW , which would then amount to
adding an extra component to the measurement setup prior to
the beam splitter (see Fig. 2). We could, of course, consider
equally well a unitary operator W ′ : Hout → Hout such that
V = W ′U , but this leads to a similar treatment.

The action of the operator W is now given by

W (|m〉 ⊗ |n〉) =
∞∑

k,l=0

〈U |k〉 ⊗ |l〉|V |m〉 ⊗ |n〉〉 |k〉 ⊗ |l〉.

Let us denote αkl,mn = 〈U |k〉 ⊗ |l〉|V |m〉 ⊗ |n〉〉 so that

αkl,mn = (−1)max{0,l−k}
√

min{k,l}!
max{k,l}!

× 1

π

∫ ∞

0

∫ 2π

0
eiθ(k−l+n−m)r |k−l|L|k−l|

min{k,l}(r
2)

×Lmin{m,n}(r2)e−r2
rdrdθ

= δl,k+n−m(−1)max{0,n−m}
√

min{k,k+n−m}!
max{k,k+n−m}!

×
∫ ∞

0
x

1
2 |n−m|L|n−m|

min{k,k+n−m}(x)Lmin{m,n}(x)e−xdx.

The above integral can be further calculated, but it seems that
a simple closed expression does not exist. However, note that
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this already tells us that W (|m〉 ⊗ |n〉) is an eigenvector of the
photon number difference operator:

(I ⊗ N − N ⊗ I ) W (|m〉 ⊗ |n〉) = (n − m)W (|m〉 ⊗ |n〉).
In the special case n = 0, which corresponds to the canoni-

cal phase observable, the above integrals are easily calculated.
We then obtain the expressions W (|0〉 ⊗ |0〉) = |0〉 ⊗ |0〉 and,
for m > 0,

W (|m〉 ⊗ |0〉)

=
∞∑

k=0

�(k + m
2 + 1)√

k!(k + m)!

m

2k + m
|k + m〉 ⊗ |k〉

= m

2

∞∑
k=0

�(k + m
2 )√

k!(k + m)!
|m,k〉〉, (11)

where |m,k〉〉 are Ban’s relative number states [34]

|m,k〉〉 =
{|k + m〉 ⊗ |k〉, m � 0,

|k〉 ⊗ |k − m〉, m < 0.

Note that W (|m〉 ⊗ |0〉) is actually a two-mode nonlinear
coherent state [35]. Such states are generally of the form
|α,f,m〉 = ∑∞

k=0 Ck|k + m〉 ⊗ |k〉, where the constants Ck ∈
C are such that

∑
k |Ck|2 = 1, and the states satisfy the

equations

f (N ⊗ I,I ⊗ N )(a ⊗ a)|α,f,m〉 = α|α,f,m〉, α ∈ C,

where f (N ⊗ I,I ⊗ N ) is some fixed function of the single-
mode number operators. As shown in [35],

Ck = αk

√
m!

k!(k + m)!

[
k∏

s=1

1

f (s − 1 + m,s − 1)

]
C0,

so that W (|m〉 ⊗ |0〉) = |α,f,m〉 where α = 1, C0 =
�(m

2 + 1)/
√

m!, and f (n1,n2) = 2/(n1 + n2),n1, n2 ∈ N,
n1 �= 0.

We close this section by noting that the action of the total
coupling V is easy to calculate for some physically relevant
states. For example, if the first mode is in the coherent state |α〉
and the second mode is in the vacuum state |0〉, then

(V |α〉 ⊗ |0〉)(r,θ ) = e−|α|2/2

√
π

∞∑
m=0

αm

√
m!

e−iθme− r2

2

= e−r2/2

√
π

〈θ |α〉,

that is, we obtain the London distribution θ 
→ 〈θ |α〉 of the
coherent state. Consider then a pair-coherent state

ψα = C(α)
∞∑

m=0

αm

m!
|m〉 ⊗ |m〉, α ∈ C,

where C(α) = J0(2i|α|)−1/2 is a normalization constant and
J0 is the zeroth Bessel function of the first kind. Now,

(V ψα)(r,θ ) = C(α)√
π

∞∑
m=0

αm

m!
Lm(r2)e−r2/2

= C(α)√
π

J0(2r
√

α)eαe−r2/2,

whereas, for a two-mode phase coherent state,

ψ̃q
α = (1 − |α|2)1/2

∞∑
m=0

αm|m〉 ⊗ |m + q〉,

q ∈ N, α ∈ C, |α| < 1, one gets the Gaussian function

(
V ψ̃q

α

)
(r,θ ) = (1 − |α|2)1/2

√
π

eiqθ

∞∑
m=0

αmLm(r2)e−r2/2

= (1 − |α|2)1/2

√
π (1 − α)

eiqθ−[α/(1−α)+1/2]r2

(see Eqs. 8.975(3) and 8.975(1) of [36]).

V. CONCLUSIONS

We have studied measurements of covariant phase
observables, with the aim of obtaining a realistic measurement
model for the canonical phase. Due to the practical problems
related to realizing minimal measurement models of the
canonical phase, we have instead considered measurements
of phase-shift covariant phase-space observables. In particular,
we have shown that the canonical phase may be obtained as the
angle margin of such an observable. We have then considered
the quantum optical double homodyne detection scheme, and
its modification, as a means of measuring these phase-space
observables. We have constructed a unitary coupling which,
when placed in front of the setup, would allow one to measure
the canonical phase observable.
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APPENDIX: JOINT MEASUREMENTS INCLUDING THE
CANONICAL PHASE

We say that two observables E1 : B(�1) → L(H) and
E2 : B(�2) → L(H) are jointly measurable if there exists an
observable E : B(�1 × �2) → L(H) such that

E1(X) = E(X × �2), E2(Y ) = E(�1 × Y ),

for all X ∈ B(�1) and Y ∈ B(�2). It is a standard result that
for sharp observables, joint measurability is equivalent to
commutativity. The same is true also in the case that one
(but not both) of the observables is merely a POVM [28,
Theorem 1.3.1], in which case the joint observable E is of
the product form E(X × Y ) ≡ E1(X)E2(Y ) ≡ E2(Y )E1(X). In
the case of the canonical phase, it is an elementary exercise
to check that any bounded operator which commutes with all
Ecan(X) is necessarily a scalar multiple of the identity. Thus,
we have the following result.
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Proposition 3. The canonical phase observable is not jointly
measurable with any nontrivial sharp observable.

In the more general case of a joint measurement with a
POVM, we still have the following negative result.

Proposition 4. Let F : B(�) → L(H) be an observable.
Then F is jointly measurable with the canonical phase
observable Ecan if and only if there exists a (weak) Markov
kernel m : B(�) × [0,2π ) → [0,1] such that

F(X) =
∫

m(X,θ ) dEcan(θ ) (A1)

for all X ∈ B(�). In such a case, the joint observable M :
B(� × [0,2π )) → L(H) is unique and is given by

M(X × �) =
∞∑

m,n=0

1

2π

∫
�

m(X,θ ) eiθ(m−n)dθ |m〉〈n| (A2)

for all X ∈ B(�) and � ∈ B([0,2π )).
Proof. Assume first that F and Ecan are jointly measurable,

with the joint observable M, i.e., M(X × [0,2π )) = F(X)
and M(� × �) = Ecan(�). Consider the minimal Naimark
dilation (K,T,V ) of Ecan where K = L2([0,2π )), T is the
canonical spectral measure on K, and V : H → K is the isom-
etry V |n〉 = en where en(θ ) = 1√

2π
e−inθ . Since M(X × �) �

M(� × �) = Ecan(�) for all X ∈ B(�) and � ∈ B([0,2π )),
there exists an observable R : B(�) → L(K) which commutes

with T and

M(X × �) = V ∗R(X)T(�)V (A3)

for all X ∈ B(�) and � ∈ B([0,2π )) [37, Lemma 4.1]. But
the canonical spectral measure T is maximal in the sense that
any operator which commutes with T must be a function of it
[38, Theorem 1, p. 187]. It follows that there exists a (weak)
Markov kernel m : B(�) × [0,2π ) → [0,1], such that R(X) =∫

m(X,θ ) dT(θ ), and it follows from Eq. (A3) that

F(X) = V ∗R(X)V =
∫

m(X,θ ) dEcan(θ ).

Suppose now that there exists a (weak) Markov ker-
nel such that Eq. (A1) holds. Since for each X ∈ B(�)
the map θ 
→ m(X,θ ) is measurable and m(X,θ ) � 1 for
almost all θ , we may define a bounded operator R(X) ∈
L(K) by (R(X)ϕ)(θ ) = m(X,θ )ϕ(θ ). The map X 
→ R(X)
is then a POVM which commutes with T. Therefore, the
map (X,�) 
→ V ∗R(X)T(�)V extends to an observable M :
B(� × [0,2π )) → L(H) whose margins are F and Ecan. In
other words, F and Ecan are jointly measurable.

In both of the above instances, the joint observable M
satisfies Eq. (A2), and the uniqueness follows from [37,
Theorem 4.1(a)] since Ecan is an extreme point of the convex
set of all observables on B([0,2π )) [12]. �
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(1999).
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