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We show that the phenomenon of frozen discord, exhibited by specific classes of two-qubit states under local
nondissipative decoherent evolutions, is a common feature of all known bona fide measures of general quantum
correlations. All those measures, despite inducing typically inequivalent orderings on the set of nonclassically
correlated states, return a constant value in the considered settings. Every communication protocol that relies on
quantum correlations as a resource will run with a performance completely unaffected by noise in the specified
dynamical conditions. We provide a geometric interpretation of this phenomenon.
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I. INTRODUCTION

Quantum correlations, seminally quantified by quantum
discord [1,2], stand as one of the most general manifestations
of nonclassicality in composite systems. They can be revealed
in the process of locally measuring a subsystem, even in
states where entanglement or nonlocality are absent. Despite
a massive surge in recent studies investigating interpreta-
tion, quantification, and applications of discord and related
quantifiers of quantum correlations [3], it is a fact that these
quantities remain far less understood than entanglement [4].
Few properties are now set in stone as necessary requirements
to identify a quantifier, say, Q, as a bona fide measure of
general quantum correlations, revealed on the subsystem A, in
bipartite states ρAB . We list them below.

P1: vanishing on classical-quantum (CQ) states.Q(ρAB ) �
0 for all ρAB and Q(χAB) = 0 for all states χAB belonging to
the set �CQ of CQ states χAB = ∑

i pi |i〉〈i|A ⊗ τiB , with {pi}
being a probability distribution, |i〉A an orthonormal basis for
subsystem A, and τiB arbitrary states for subsystem B.

P2: invariance under local unitaries. Q((UA ⊗
UB)ρAB(UA ⊗ UB)†) = Q(ρAB).

P3: nonincreasing under local operations on the unmea-
sured party B. Q((1A ⊗ �B)[ρAB]) � Q(ρAB), where �B is a
completely positive and trace preserving map (i.e., a quantum
channel) acting on subsystem B.

P4: reduction to entanglement on pure states.
Q(|ψAB〉〈ψAB |) is an entanglement monotone [4].

These criteria are certainly not complete, as in particular a
definition of the operations on A, or of the allowed classical
communication between A and B, under which discord and
any valid Q should not increase, has not been accomplished
[3,5–7]. In the quest to unveil the most essential signatures of
quantumness in complex systems, it is then of wide interest
to identify physically insightful properties that underlie the
notion of quantum correlations as opposed to entanglement
and should then be reflected by any valid measure thereof. One
such property is, for instance, the absence of monogamy [8].
This area of investigation has also a strong technological
motivation [9]: It is believed, and in some case proven, that
states with quantum correlations other than entanglement
can be employed as resources for several quantum compu-

tation [10–12], communication [13–16], and metrology setups
[17,18]. Identifying the distinctive traits of such correlations,
in particular with respect to their resilience under noise, might
lead to valuable recipes for their practical exploitation.

Numerous works have in fact investigated the dynamics
of general quantum correlations in open quantum systems
undergoing various types of Markovian or non-Markovian
evolutions, as recently reviewed in Refs. [3,19,20]. One
evident feature is that discord is typically more robust than
entanglement and does not suffer from sudden death issues
[21,22]; discord can even be created by local operations on the
measured party A (nonunital channels if A is a qubit) [6,23]. A
particularly fascinating phenomenon can occur for two-qubit
states undergoing nondissipative decoherence: Their discord
can remain constant, or frozen, for an interval of time in
Markovian conditions [24]. A forever frozen discord [25],
or multiple intervals of recurring frozen discord [26–28], can
further occur when the dynamics is non-Markovian. Necessary
and sufficient conditions for the freezing have been derived in
Ref. [29]. However, to date such a feature seemed bound to
the choice of particular (mainly entropic) quantifiers of discord
[3]. It is natural to question whether freezing just happens as
a mathematical accident or whether it bears a deeper physical
meaning that should manifest independently of the adopted
measure. Answering this question is the purpose of our work.

We consider a selection of essentially all the known bona
fide measures of general quantum correlations defined in recent
literature and we find that they all freeze under the same
dynamical conditions. A geometric analysis, inspired by [30],
is carried out in order to provide a satisfactory interpretation
to the universality of this dynamical phenomenon. Our
conclusions demonstrate that for all quantum information
protocols (e.g., remote state preparation, entanglement distri-
bution, or quantum correlation-assisted parameter estimation
[10,13–15,17,18,31–33]) whose performance relies on some
form of discord between two qubits, however quantified, there
exist unique noisy evolutions in the state space for which
coherence and thus quantumness in the correlations are exactly
preserved. The corresponding protocols will then run with
efficiency unaffected by such noisy conditions.

The paper is organized as follows. In Sec. II we briefly recall
the description of Bell diagonal states of two qubits. In Sec. III
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we present a comprehensive compendium of the measures
of nonclassical correlations studied in this work. Section IV
demonstrates that all the considered measures stay frozen
under specific nondissipative dynamical trajectories. In Sec. V
we present a geometric interpretation of the phenomenon. A
discussion and summary are provided in Sec. VI, while some
technical proofs are deferred to the Appendixes.

II. BELL DIAGONAL STATES

We focus our attention on Bell diagonal (BD) states of two
qubits, i.e., states with maximally mixed marginals [4,34].
Their density matrix can be written in Bloch form as ρ �c

AB =
1
4 (1AB + ∑3

i=1 ciσ
A
i ⊗ σB

i ), where {σA,B
i } denote the Pauli

matrices and the vector �c = (c1,c2,c3) completely specifies
the state. Explicitly,

ρ �c
AB = 1

4

⎛⎜⎜⎜⎝
c3 + 1 0 0 c1 − c2

0 1 − c3 c1 + c2 0

0 c1 + c2 1 − c3 0

c1 − c2 0 0 c3 + 1

⎞⎟⎟⎟⎠ . (1)

As the name suggests, BD states ρ �c
AB have the four maximally

entangled Bell states as eigenvectors, with eigenvalues

λ�c
ab = 1

4 [1 + (−1)ac1 − (−1)a+bc2 + (−1)bc3], (2)

where a,b = 0,1. The conditions λ�c
ab � 0 impose constraints

on the entries of �c, so physically allowed BD states can
be represented as points within a tetrahedron of vertices
(−1,−1,−1), (−1,1,1), (1,−1,1), and (1,1,−1) in the three-
dimensional space spanned by (c1,c2,c3) [34]. This geometric
picture is very appealing to visualize dynamical trajectories
[30]. For later convenience, we define an auxiliary ordered
vector �ς = (ς1 ≡ |cl1 |,ς2 ≡ |cl2 |,ς3 ≡ |cl3 |), where {l1,l2,l3}
is a suitable permutation of {1,2,3} such that ς1 � ς2 � ς3.
Bell diagonal states with zero discord correspond then to
ς2 = ς3 = 0.

III. DISCORD MEASURES

We study one-way measures Q of discord, that is, those that
reveal quantumness of correlations as perceived by an observer
probing only qubit A. Incidentally, whenever symmetrized
versions of these measures are available [3], they coincide with
their one-way counterparts for BD states, thus enlarging the
scope of our study. The adopted measures, which include those
reviewed in Ref. [3], others taken from recent literature, and
some defined or calculated here, are listed in the following [35].
Most of these measures do not enjoy a closed analytical form
in general, but are computable for BD states. Notice that pairs
of distinct quantifiers selected from our list will generically
induce inequivalent orderings on the set of non-CQ states,
even within the BD class [36].

A. Quantum discord D
The original measure of quantum discord [1,2] can be de-

fined as the minimum difference in total correlations between
the state ρ and the CQ state obtained after an optimized projec-
tive measurement {�A

i } on A, D(ρAB) = min{�A
i }[I(ρAB) −

I(
∑

i �
A
i ρAB�A

i )]. Here I(ρAB) = S(ρA) + S(ρB) − S(ρAB)
is the mutual information [37], with S(ρ) = −Tr(ρ log2 ρ)
being the von Neumann entropy. For BD states, S(ρ �c

A) =
S(ρ �c

B ) = 1 while S(ρ �c
AB) = −∑1

a,b=0 λ�c
ab log2(λ�c

ab). The dis-
cord can be computed as [30,38] D(ρ �c

AB) = 1 − S(ρ �c
AB) +

H ( 1+ς1

2 ), where H (s) = −s log2 s − (1 − s) log2(1 − s).

B. One-way quantum deficit �→

This measure [39,40] quantifies, in a thermody-
namical framework, the minimum entropy production
after a projective measurement on A, �→(ρAB) =
min{�A

i }[S(
∑

i �
A
i ρAB�A

i ) − S(ρAB)]. It can be interpreted as
the amount of information in the state ρAB that cannot be
localized via a one-way channel of classical communication
from A to B. For BD states, �→(ρ �c

AB) = D(ρ �c
AB) [38].

C. Relative entropy of discord DR

This quantifier [40–42] captures the distance, as measured
by the quantum relative entropy [43], between ρAB and the
set of CQ states, DR(ρAB) = minχAB∈�CQ S(ρAB ||χAB), where
S(ρ||σ ) = Tr[ρ(log2 ρ − log2 σ )]. For all bipartite states,
DR(ρAB) = �→(ρAB) [40,42].

D. Adjusted geometric discord ˜DG

The geometric discord DG was defined in Refs. [44,45]
as the minimum squared Hilbert-Schmidt distance from the
set �CQ. However, it is now acknowledged that such a
definition is flawed [46], as DG can be modified arbitrarily by
reversible operations on B. Moreover, DG does not respect P3
[47,48]. It is customary when dealing with the Hilbert-Schmidt
distance to normalize it by the purity of the state, in order to
correct the metric for the effective dimension of the Hilbert
space [49,50]. We then define the adjusted geometric discord
as D̃G(ρAB) = 2(minχAB∈�CQ ‖ρAB − χAB‖2

2)/Tr(ρ2
AB), where

‖M‖2
2 = Tr[M†M]. Properties and applications of this mea-

sure are discussed in Ref. [51]. For BD states, using [44] we
have D̃G(ρ �c

AB) = 2(ς2
2 + ς2

3 )/(1 + ς2
1 + ς2

2 + ς2
3 ).

E. Trace-distance discord D1

As the name suggests, this measure [52–54] is given by the
minimum trace distance from the set of CQ states, D1(ρAB) =
minχAB∈�CQ ‖ρAB − χAB‖1, with ‖M‖1 = Tr[

√
M†M]. For

BD states, such a measure is computable [52,54,55] and one
has simply D1(ρ �c

AB) = ς2.

F. Negativity of quantumness QN

This measure [52,56] corresponds to the minimum negativ-
ity (an entanglement measure [57]) created between the system
AB and an apparatus C during a local projective measurement
on A, according to the formalism of [56,58,59]. Referring the
reader to [52,54] for details, we recall that if subsystem A is a
qubit (as in our case), then QN (ρAB) = D1(ρAB).
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G. Bures-distance discord DB

We can consider the Bures distance from the set of CQ
states as another measure of discord, in analogy with the Bures
measure of entanglement [60]. We then have DB(ρAB) =
{(2 + √

2)[1 − √
Fmax(ρAB)]}1/2, where Fmax(ρAB) =

maxχAB∈�CQ F (ρAB,χAB) and F (ρ,σ ) = {Tr[(
√

ρσ
√

ρ)1/2]}2

is the Uhlmann fidelity [61]. For BD states, in Appendix A
we obtain an analytical expression for Fmax (see [62] for an
independent yet related derivation). We notice that for a given
ρ �c

AB , the CQ state that maximizes the fidelity is in general
different from the one that minimizes trace distance, Hilbert-
Schmidt distance, and relative entropy. Explicitly, we have

Fmax
(
ρ �c

AB

) = 1

2
+ 1

4
max
〈i,j,k〉

[√
(1 + ci)2 − (cj − ck)2

+
√

(1 − ci)2 − (cj + ck)2

]
,

where 〈i,j,k〉 denotes cyclic permutations of {1,2,3}.

H. Fidelity-based measure DF

As a simple rescaling of the previous quantity, we also
pick the geometric measure of quantumness discussed in
Refs. [6,58,63], which in our notation reads DF (ρAB) =
2[1 − Fmax(ρAB)], and is computable for BD states using the
expression for Fmax given above.

I. Local quantum uncertainty U
The last measure we adopt, which is also the most recently

introduced [18], quantifies the minimum quantum uncertainty
on a single local observable U(ρAB) = minKA

IWY(ρAB,KA ⊗
1B), where KA is a Hermitian operator with a nondegenerate
spectrum acting on subsystem A and IWY(ρ,K) = Tr[ρK2 −√

ρK
√

ρK] is the Wigner-Yanase skew information [64].
The quantity U is computable for all two-qubit states [18].
Interestingly, we find that for BD states U(ρ �c

AB) = DF (ρ �c
AB),

although the two measures do not coincide in general.

IV. UNIVERSAL FREEZING

We consider local Markovian nondissipative decoherence
channels acting independently on each of two qubits m = A,B

in the state ρAB . The single-qubit Lindblad operator has the
form

Lk[ρm] = γ

2

(
σm

k ρmσm
k − ρm

)
, (3)

where γ is the decoherence rate and k = 1,2,3 denote bit flip,
bit-phase flip, and phase flip (alias phase damping) channels,
respectively [21,24]. We consider BD states ρ

�c(0)
AB as inputs.

The time-evolved states under the considered local channels
remain in BD form, with

ci,j �=k(t) = ci,j (0)e−2γ t , ck(t) = ck(0), (4)

where k selects the channel as explained above. Different
initial conditions �c(0) lead to varied dynamics of nonclassical
correlations, without any general agreement between the
measures we consider. However, for each selected channel,
indexed by k, we can choose a specific subset of initial
conditions �c(k)(0) [24], given by

c
(k)
i (0) = ±1, c

(k)
j (0) = ∓c

(k)
k (0) with

∣∣c(k)
k (0)

∣∣ ≡ c (5)

(notice that taking into account the sign freedom and the
permutation of i,j �= k, there are four possible choices per
channel). These conditions, which are equivalent to imposing
that the density matrix be of rank 2, give rise to very peculiar
dynamics of the quantum correlations in the time-evolved

states ρ
�c(k)(t)
AB under the corresponding k-type channels. Namely,

defining the threshold time γ t� = − 1
2 ln c, we find analytically

that every measure Q considered in this paper takes the form

Q
(
ρ

�c(k)(t)
AB

) =
{

fQ(c) if 0 � t < t�

fQ(e−2γ t ) if t � t�.
(6)

This entails that all studied measures of discord remain frozen
to their initial value until, at t = t�, they suddenly start
decaying exponentially, as depicted in Fig. 1. The functional
dependence fQ for each measure Q is reported in Table I.

The presented results, although tied to the particular choices
of channels and initial states, apply to such a variety of

FIG. 1. (Color online) Time evolution of various measures of quantum correlations for BD states with initial condition �c(k)(0) given by
Eq. (5), subject to local bit flip (k = 1), bit-phase flip (k = 2), or phase flip (k = 3) channels with rate γ . In the range of parameters such that
2γ t < − ln c, depicted as a shaded (yellow) region on the horizontal planes in each panel, all the considered measures remain frozen to their
respective initial values. The plotted quantities are (a) quantum discord D, equal to one-way quantum deficit �→, equal to relative entropy
of discord DR; (b) adjusted geometric discord D̃G; (c) trace-distance discord D1, equal to negativity of quantumness QN ; (d) Bures-distance
discord DB ; and (e) fidelity-based measure DF , equal to local quantum uncertainty U . The analytical expressions are given by combining
Eq. (6) with Table I.
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TABLE I. Summary of the expressions for the measures Q of
quantum correlations in the BD states with the initial condition �c(k)(0)
evolving under local nondissipative channels, as evaluated in Eq. (6).

Measure Q fQ(s)

quantum discord D 1
2

∑1
a=0[1 + (−1)as]

× log2[1 + (−1)as]

one-way quantum deficit �→ 1
2

∑1
a=0[1 + (−1)as]

× log2[1 + (−1)as]

relative entropy of discord DR
1
2

∑1
a=0[1 + (−1)as]

× log2[1 + (−1)as]

adjusted geometric discord D̃G 2s2/(1 + s2)

trace-distance discord D1 s

negativity of quantumness QN s

Bures-distance discord DB 1 + (1 + √
2)

× [1 − (
√

1 − s2 + 1)1/2]

fidelity-based measure DF 1 − √
1 − s2

local quantum uncertainty U 1 − √
1 − s2

measures of discord that the level of mere coincidence can
be safely considered overcome. We now seek for a physical
explanation of our findings. Most of our employed measures,
in the chosen settings, can be interpreted as minimal distances
from the set of CQ states. It turns out that for nondissipative
evolutions with initial condition as in Eq. (5), all our distance
functions are optimized by the same time-dependent CQ state
(explicitly given in Refs. [24,26,65]). This certainly explains
why all such measures have a sudden change at the same
time t = t�, but does not explain why all of them are in fact
constant for earlier times. For instance, without the purity
adjustment, the geometric discord DG [44] decreases rather
than being frozen when t < t� [65–67]. The adjusted D̃G

instead freezes like the other measures. As remarked earlier,
the purity adjustment is necessary to correct for some flaws
of DG [46,51]. This suggests that the occurrence of freezing
is, at a somewhat empirical level, a stronger feature that is
necessarily present in truly bona fide quantifiers of discord.

V. GEOMETRIC REPRESENTATION

A deeper insight into this phenomenon can then be achieved
by looking at the geometric representation of BD states,
similarly to what was done in Refs. [30,67] for the quantum
discord D and for the (nonadjusted) geometric discord DG,
respectively. In the space (c1,c2,c3), one can draw the surfaces
along which each given measure Q is constant and then super-
impose the trajectories corresponding, say, to the evolution of
�c(k)(t) under local k channels in order to visualize the freezing.
Let us focus, without loss of generality, on phase flip channels
(k = 3). For ease of graphical display, instead of drawing
three-dimensional surfaces, we find it more informative to
slice the tetrahedron of BD states at, say, a constant value of c3

and draw the contours of constant Q in the resulting projected
plane spanned by (c1,c2). This analysis is reported in Fig. 2 for
several types of discord measures. It is evident that the various
quantifiers exhibit their quite different nature even within the
restricted set of BD states. In particular, around the classical

FIG. 2. (Color online) Contours of constant Q in the plane
(c1,c2) for physical BD states with c3 = 1

4 , where Q represents (a)
D ≡ �→ ≡ DR , (b) D̃G, (c) D1 ≡ QN , and (d) DB . The diagonals
(traced from the vertices to the center) represent the evolution of BD
states with the initial condition �c(3)(0) [Eq. (5)] under local phase
flip channels. For t < t� (continuous traits) all the measures Q are
constant; they then decay to zero for later times (dashed traits). The
color legend for the Q’s in the contour plots is 0 1.

states at the center (c1,c2) = (0,0), contours of constant
quantum correlations are ellipses for entropic (D,�→,DR) and
fidelity-based (DB,DF ,U) measures, circles for the Hilbert-
Schmidt-based D̃G, and squares for the trace-distance-based
D1. Similarly, closer to the peripheral boundaries of the
physically allowed region, the contour lines have different
topologies across the various measures. Some measures such
as D1 are constant for wider regions than the others, for
instance. Here we are interested in the overlap between the
contour lines of all Q’s. We find (see Appendix B) that the
only possible straight lines, in the BD state space, which
keep all the considered measures simultaneously constant, are
those along the diagonals of the projected rectangles in the
space (c1,c2), stopping sufficiently far away from the central
core (see Fig. 2). These segments describe only and precisely
the evolutions of BD states with initial conditions �c(3)(0)
[Eq. (5)] for local phase flip channels—and similarly for the
other k channels by selecting the corresponding planes (ci,cj )
and conditions �c(k)(0)—up to the time t�. This yields a general
geometric interpretation of the phenomenon of frozen discord
universally observed in all valid measures at once.

VI. DISCUSSION AND CONCLUDING REMARKS

We wish to remark that, in the presence of suitable non-
Markovian channels that can be described by a master equation
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with a memory kernel (as in the case of pure dephasing or
decoherence under classical random external fields) [25–28,
65], all the phenomena previously observed for the entropic
discord D extend automatically to all the measures considered
in this paper. Indeed, in the models of [25–28,65], the evolution
of BD states can be formally written as in Eq. (4), but with 2γ t

replaced by a more general �(t), which could be decreasing
over some time intervals. This can give rise to dynamics with
multiple intervals of constant discord [26,28,65] or discord
frozen forever [25] depending on the initial conditions. By
our analysis, we conclude that those features, which might be
observable, e.g., in the dynamics of impurity atoms in Bose-
Einstein condensates [25,68], are universal too and detectable
by any suitable discord measure Q.

In this paper we established the general status of an intrigu-
ing aspect of quantum correlations other than entanglement:
the freezing in certain dynamical conditions. Originally re-
vealed for entropic quantifiers [24], we showed that this feature
is common to all bona fide measures of discord and provided
a geometric interpretation thereof. It will be interesting to
investigate, when the theory of discord [3] is completed,
whether the occurrence of freezing in nondissipative evolu-
tions will perhaps be provable as an implication of the set of
necessary conditions for assessing the mathematical validity of
measures of discord. At present, the occurrence of freezing in
specific nondissipative evolutions can be proposed as a sanity
check to validate novel discord quantifiers. From an operative
perspective, we showed that quantumness of correlations,
in all its manifold manifestations, can be sustained with no
loss in suitable noisy settings. Our predictions are amenable
to experimental verification with current technology, e.g.,
using photons [69] or nuclear magnetic resonance techniques
[70,71]. We expect our study to stimulate novel endeavors
in the comprehension and exploitation of genuinely quantum
effects in open systems.
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APPENDIX A: FIDELITY-BASED MEASURE OF DISCORD

A two-qubit state ρ can be written in the Bloch representa-
tion

ρ = 1

4

(
1A ⊗ 1B +

3∑
i=1

xiσ
A
i ⊗ 1B +

3∑
i=1

yi1
A ⊗ σB

i

+
3∑

i,j=1

Tijσ
A
i ⊗ σB

j

⎞⎠ , (A1)

where {σA,B
i } denote the Pauli matrices. With such a state ρ

we associate the triple {�x,�y,T} [44].

Theorem 1. For any Bell diagonal state ρ, F (ρ,σ0) �
F (ρ,σ ), where σ is the state with the triple {�x,�y,T} and σ0 is
the state with the triple {�0,�0,T}.

Proof. For any state σ , there exists another state with the
associated triple {−�x,−�y,T} that we denote σ−. It can be
verified that for the BD ρ, the matrices

√
ρσ

√
ρ and

√
ρσ−

√
ρ

have the same characteristic polynomial and so have the same
eigenvalues. From the expression for fidelity

F (ρ,σ ) = tr
[√√

ρσ
√

ρ
]
, (A2)

it can be seen that the equality of the eigenvalues is sufficient
to prove the identity

F (ρ,σ ) = F (ρ,σ−). (A3)

Fidelity obeys the concavity property

F (ρ,μσ1 + (1 − μ)σ2) � μF (ρ,σ1) + (1 − μ)F (ρ,σ2),

μ ∈ [0,1]. (A4)

Setting μ = 1
2 , σ1 = σ , and σ2 = σ−, using Eq. (A3), and

noting that 1
2 (σ + σ−) = σ0, we recover F (ρ,σ0) � F (ρ,σ )

and so prove the theorem. �
Equipped with this, it is now possible to prove the main

result.
Theorem 2. For any BD state ρ, the classical-quantum state

χ that maximizes F (ρ,χ ) is also BD.
Proof. Any CQ two-qubit state will be of the

form χ = p|ψ1〉〈ψ1|A ⊗ ρB
1 + (1 − p)|ψ2〉〈ψ2|A ⊗ ρB

2 , where
{|ψ1〉A,|ψ2〉A} is an orthonormal basis for qubit A. Such a CQ
state will have the associated triple {(2p − 1)�e,�s+,�e�sT

−} [44],
where

ei = 〈ψ1|σi |ψ1〉, (A5)

s±,i = tr{[pρ1 ± (1 − p)ρ2]σi}. (A6)

For any state in this form, a second state χ0 = p′|ψ1〉〈ψ1|′A ⊗
ρ ′B

1 + (1 − p′)|ψ2〉〈ψ2|′A ⊗ ρ ′B
2 can be derived using the iden-

tity

p′ = 1
2 , (A7a)

|ψ1〉′A = |ψ1〉A, (A7b)

|ψ2〉′A = |ψ2〉A, (A7c)

ρ ′B
1 = 1

2

[
1B + pτB

1 − (1 − p)τB
2

]
, (A7d)

ρ ′B
2 = 1

2

[
1B − pτB

1 + (1 − p)τB
2

]
, (A7e)

where τ1,τ2 are the traceless parts of ρ1,ρ2. This state is
manifestly CQ and it can be easily verified that it will have the
associated triple {�0,�0,T}. From Theorem 1 we can see that it
suffices to restrict ourselves to CQ states of this form.

Temporarily, we relax the restriction that �e is of unit length
and consider the set of states where ‖�e‖ � 1. This allows
us to repeat the previous trick, this time between χ with �e =
(e1,e2,e3) and �s− = (s1,s2,0) and χ ′ with �e′ = (e1,e2,−e3) and
�s ′− = �s−. As before, from the comparison of characteristic

polynomials, F (ρ,χ ) = F (ρ,χ ′). A similar result holds for
s1 = 0 and s2 = 0 and by switching the vectors we consider,
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for any ei = 0. From this we can see that if any si = 0 then for
maximum fidelity ei = 0 and vice versa. We also note that this
set of states is convex and so due to the concavity of fidelity,
any local maximum will be a global maximum.

As an ansatz, we now consider the states where ej =
eδij and sj = sδij , where i sets the nonzero vector element.
From the previous result we can see that maximization only
needs to be performed over ei and si as fidelity can only
decrease under any variation in any other single element.
Furthermore, ei and si appear only as a product eisi in
the density matrix, never on their own. This means that
maximizing over both is equivalent to setting ei = 1 and
maximizing only over si , thus allowing us to reimpose the
restriction that ‖�e‖ = 1 and returning to the CQ states. It
is now only necessary to maximize over a single parameter
and any local maximum in this parameter will be the global
maximum for CQ states. The remaining states are the BD CQ
states and so finding the maximum among these states proves
the theorem.

Maximizing over the single remaining parameter, we obtain
the result for BD states with eigenvalues α,β,γ,δ [of the form
as in Eq. (2)]:

DF (ρ) = min{q1,q2,q3}, (A8)

where

q1 = 1 −
√

2(
√

αδ +
√

βγ ), (A9a)

q2 = 1 −
√

2(
√

αγ +
√

βδ), (A9b)

q3 = 1 −
√

2(
√

αβ +
√

γ δ). (A9c)

This is identical to the expression for local quantum uncer-
tainty [18] of BD states, giving the identity

DF (ρ) = U(ρ) (A10)

for ρ an arbitrary BD two-qubit state. �

APPENDIX B: UNIVERSAL FREEZING TRAJECTORIES

Theorem 3. Universal freezing for decay in the k-type flip
channel is observed in BD states only for initial conditions of

the form

c
(k)
i (t0) = ±e−2γ t0 , c

(k)
j (t0) = ∓c

(k)
k (t0)e−2γ t with∣∣c(k)

k (t0)
∣∣ ≡ c. (B1)

Proof. We consider a BD state in the form ρAB =
1
4 (1AB + ∑3

i=1 ciσ
A
i ⊗ σB

i ). For universal freezing, all bona
fide measures must have a constant value up until the time t�.
In particular, any two of them must satisfy this requirement. In
the following, we will pick the negativity of quantumness and
the adjusted geometric discord and find that the only straight-
line freezing trajectory common to both is the one reported in
the claim. Recall the expression for trace-distance discord D1

alias negativity of quantumness QN , D1 = QN = ς2, where
{ςi} are simply {|ci |} ordered such that ς1 � ς2 � ς3; from this
it can immediately be seen all initial BD states ρ satisfying

ς2(t0) = ∣∣c(k)
k (t0)

∣∣ ≡ c (B2)

will exhibit freezing for these measures. The adjusted geomet-
ric discord D̃G for the same states has the following expression
for time t � t�:

D̃G = 2
(
c2 + ζ 2

3

)/(
1 + ζ 2

1 + c2 + ζ 2
3

)
. (B3)

Since ςi(t) = ςi(t0)e−2γ t for i = 1,3, time evolution will
follow a straight line � in the ζ1 − ζ3 plane. Such a line can be
defined parametrically as

ζ1(s) = s, (B4a)

ζ3(s) = ms + a. (B4b)

In order for D̃G to be constant over this time interval, � must
follow a contour line in this plane. Since contour lines are
perpendicular to the gradient, it must therefore be

∇D̃G · ∇� = 0. (B5)

Calculating this and then substituting in the values for ζ1 and
ζ3 from Eq. (B4) gives

a2s + am(s2 − 1) + s(c2 − m2) = 0. (B6)

In order for � to be a straight line, m and a must be independent
of s. It can readily be verified by solving for a that the only
solution for which this is the case is a = 0,m = ±c.

Points on these lines correspond exactly to Eq. (B1),
proving the theorem. �
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