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Investigation of the collapse of quantum states using entangled photons
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We propose a scheme to investigate the time scale of wave-function collapse by using polarization-entangled
photon pairs. The setup is similar to those employed to study quantum correlations, but in the present case,
synchronization is essential at all stages. We find that it is possible to discriminate between the scenarios of
instantaneous collapse and finite-time reduction via a large number of double measurements of polarization. The
quantities to be recorded present distinct behaviors in each scenario, the deviations being small but distinguishable
from pure statistical fluctuations. The connection between the presented formalism and the theory of weak
measurements is discussed as well as the possible consequences for experimental tests of nonlocality.
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I. INTRODUCTION

The wave function and its collapse remain in controversial
positions in the general framework of quantum theory. Never-
theless, for long periods in the development of wave mechanics
these issues were put aside by most users of the quantum
formalism as, perhaps, an underlying discomfort. One of the
reasons for this is the fact that there were plenty of more
direct questions to be coped with regarding, e.g., atomic and
particle physics. In the last few decades, however, experiments
reached a remarkable sophistication and textbook illustrations
became feasible in the laboratory. This allowed for objective
discussions on, until then, purely academic matters, such as for
example in the experimental tests [1] of Bell’s inequalities [2].

Since then, part of the focus has started to migrate from
operational aspects to more foundational ones. This ongoing
move is so important that, justifiably, it has been termed
the second quantum revolution [3]. Examples of this process
are the debate on the “reality” of quantum states, which
has received special attention in the last year [4] (see also
[5]), and the many facets of the measurement problem, in
particular, the collapse of the state vector [6–11]. These
two topics are intimately related since there is no collapse
problem in the epistemic view, where a state is regarded as
the experimenter’s information on some aspects of reality.
In particular, in the statistical interpretation [12], where the
basic entity is an ensemble (nothing being said about single
particles), the decoherence program [8] alone seems to solve
the remaining puzzle, namely, the lack of superposition states
in the macroscopic world. However, if one admits that the
quantum state of a single object has a physical reality, the
ontic view, then the collapse problem persists. In such a case it
is hard to accept that any kind of instantaneous evolution can
happen. In this work we take this observation earnestly, and
argue that if the state vector is of ontological nature, then the
collapse should not be instantaneous. In what follows we show
that it is possible to check this hypothesis experimentally via
a large number of synchronized polarization measurements of
two correlated photons.

In a previous work [10] we presented some basic assump-
tions that we will adopt here, along with a formal example,
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constituting a proof of principle of how one could investigate
the collapse time of quantum states. This example involved a
single, completely unspecified, system with a two-dimensional
Hilbert space, where two almost simultaneous measurements
of incompatible observables were required, a conceptual and
practical difficulty.

In the present paper we study a specific composite system,
two entangled photons, for which the need of incompati-
ble measurements is removed. A description of a feasible
experiment to investigate the collapse time is given along
with a detailed theoretical analysis, where all calculations
and estimates are based on realistic figures, with imperfect
synchronization taken into account.

The paper is organized as follows: In the next section
we state our basic hypothesis, discuss its interpretation in
the specific case of photodetection, and analyze the possible
connections with the theory of weak measurements. In Sec. III,
we give a description of the proposed experiment along with
the calculation of the quantities to be measured. In Sec. IV we
give our conclusions and some final remarks.

Finally, it is worth mentioning that nonvanishing collapse
times have been considered before in different circumstances,
e.g., in the search for stochastic terms which, added to
the Schrödinger equation, produce a reduction dynamics
consistent with Born’s rule [13].

II. FINITE-TIME REDUCTION

In a scenario of noninstantaneous collapse the measurement
postulate must be recast in some way. A recent proposal [10]
that we will adopt here, with some modifications, reads as
follows:

(I) Measurement duration and “hits.” We take into account
the fact that any actual measurement has a duration, which
we denote by �t , and, most importantly, we assume that the
collapse is a process initiated by a random hit (we borrow
this terminology from [6] in a distinct context) occurring at
t (h), which is taken as a stochastic variable obeying some
probability distribution f (t), defined in the window [t0,t0 +
�t]. For t < t (h), the system remains uncoupled to external
degrees of freedom. The exact nature of the distribution and the
duration �t depend on the specific system and measurement
method, as will be exemplified later.
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(II) Finite-time collapse. The quantum state takes a short
time δt , starting from t (h), to complete the reduction. We do
not make any specific statements about the nonunitary time
evolution in the interval [t (h),t (h) + δt]. But we do assume that
during the reduction the state of the system is still contained
in a ket belonging to the enlarged Hilbert space ET = E ⊗ EX,
where E concerns the system of interest and EX refer to all
relevant degrees of freedom that couple with it. In addition,
we assume that δt is a decreasing function of |〈�0|�f 〉| (the
inner product between the initial and final states in E), such
that, if the states are orthogonal δt → ∞, while δt = 0 for
coincident initial and final states.

Regarding (I) we remark that it is very important to realize
that t (h) must not be confused with the moment when the
pointer comes to a definite position, that is, when the avalanche
photodiode (APD) delivers a macroscopic current, in the
case of photodetection. This time scale has been studied
from different perspectives [14]. It is an essential part of our
hypothesis that this macroscopic phenomenon is preceded by
a microscopic event that triggers the collapse of the state ket
at t = t (h).

We now give the form of f (t) for the detection of photons.
We recall that, according to standard quantum mechanics, the
probability density associated with the detection of a photon
with a given frequency is proportional to the intensity profile of
the corresponding mode of the quantized electromagnetic field.
That is, |ϕ(r,t)|2 ∝ |E(r,t)|2, where ϕ is the wave function and
E is the electric field. Since we admit that the macroscopic de-
tection of a photon is an “echo” of a microscopic hit, a one-to-
one relation, we must have f (t) ∝ |E|2. In words, we associate
the probability distribution for the occurrence of a hit with the
temporal intensity profile of the photons that reach the detector.

A. Connection with weak measurements

Let us briefly analyze how the previous hypotheses fit in the
framework of measurement theory. The general measurement
postulate can be written as follows [15]: Let {M̂j } be a set of
operators, with

∑
j M̂

†
j M̂j = Î , and a state |ψ〉 describing an

arbitrary system immediately before measurement. Then the
probability of obtaining a result j is p(j ) = 〈ψ |M̂†

j M̂j |ψ〉,
and the state of the system after the measurement satisfies

|ψ〉 → M̂j |ψ〉√
p(j )

. (1)

In this postulate any discussion of the duration of the partial
collapse is also missing. If M̂j = |uj 〉〈uj |, with {|uj 〉} being
an orthonormal basis, one recovers the usual postulate for
projective measurements.

An important and nontrivial situation encompassed by the
general postulate is that of weak measurements [16–18]. In
this case the operators {M̂} are not projectors and the state
after the measurement changes slightly with respect to |ψ〉. It
has been shown that weak measurements are universal in the
sense that any generalized measurement, including projective
ones, can be formally seen as a series of infinitesimal partial
collapses [19]. This process can be pictorially written as∣∣ψ(

x(0)
ν

)〉 → ∣∣ψ(
x(1)

ν

)〉 → ∣∣ψ(
x(2)

ν

)〉 → · · ·
→ ∣∣ψ(

x(n)
ν

)〉 · · · → ∣∣ψ(
x(f )

ν

)〉
, (2)

where variations of the parameters {xν} over a specified range
make the ket |ψ(xν)〉 span a particular region in the Hilbert
space. For example, in the case of a single qubit one can take
{x1,x2} as the angles defining a state in the Bloch sphere. Each
step is assumed to be infinitesimal, x(n)

ν − x(n−1)
ν = dx(n)

ν and it
is usual to assume the time evolution of {xν} to be a stochastic
process.

In this framework it is natural to think of δt as the time taken
in going from |ψ(x(0)

ν )〉 to |ψ(x(f )
ν )〉. The hit time t (h) would

be the moment associated with the first weak measurement.
In our model t (h) is a stochastic parameter too, such that the
process itself and the moment it starts will be random.

One may ask how, in practice, a single weak measurement
can be performed. One possible answer, already experimen-
tally implemented in superconducting qubits [20], is by not
detecting with some probability. The qubit is prepared in a
superposition of the ground state |0〉 and the excited state
|1〉, say, |ψ〉 = (|0〉 + |1〉)/√2. The qubit well potential is
such that, in the ground state, the tunneling probability is
vanishingly small, while state |1〉 presents a probability p to
tunnel (when the potential height is adiabatically lowered) and
reach the detector. Thus, if we get a click, we have a projective
collapse |ψ〉 → |1〉. However, if in a particular realization no
detection occurs, then the state becomes

|ψ〉 →
√

1 + p

2
|0〉 + e−iφM

√
1 − p

2
|1〉, (3)

where φM is a phase due to the adiabatic change in the potential.
This characterizes a partial collapse towards |0〉. We note that,
if one resorts to weak measurements to interpret a finite-time
collapse, the above notions must be extended to entangled
states. This was recently considered in the context of quantum
information theory [21]. Whether or not a complete collapse
is physically, and not only mathematically, a composition
of partial collapses is a relevant issue. We believe that the
experiment we propose here may shed some light on this
question.

III. TWO CORRELATED PHOTONS

The system we address here is composed of two spatially
separated photons which are simultaneously generated, and
led to the entangled polarization state

|�0〉 = α|+〉L ⊗ |−〉R + β|−〉L ⊗ |+〉R
≡ α| + −〉 + β| − +〉, (4)

where α 
= 0 and β 
= 0, and the subscripts L and R refer
to the photons sent to the “left” and “right” detectors,
respectively (Fig. 1). The generation can be achieved with
a nonlinear crystal via a parametric down-conversion process,
which, in general, gives synchronization and may also produce
entanglement in polarization [22,23]. Since the photons follow
distinct optical paths, a delay between them is likely to be
introduced. While this is not critically relevant in evaluating
violations of Bell’s inequalities, it may hinder the phenomenon
we intend to investigate. Up to this point, the synchronization
of the pair can be restored with the help of a Hong-Ou-Mandel
(HOM) apparatus [24] and delay lines coupled with translation
stages. From this point to the detectors the synchronization is
technically nontrivial, but can be handled, in principle. For
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FIG. 1. (Color online) Pictorial representation of the experimen-
tal setup. The box contains a nonlinear crystal that generates pairs of
synchronized photons via parametric down-conversion. The crystal
is pumped by a pulsed laser (not shown).

a recent proposal of a scheme to measure ultrashort delays
see [25]. As the photons reach the detectors their polarizations
are measured with the filters set in the same direction, for
which {|+〉,|−〉} are eigenstates.

To be more realistic, we assume that the two wave packets
attain the detectors simultaneously (in the laboratory frame),
except for a delay T that eventually persists (Fig. 2). We
stress that our model encompasses the expected situation in
which the residual delay is typically much larger than δt . Note
carefully that the procedure ensures that the centroids of each
wave packet will reach the detectors approximately at the same
time, and not that the (unpredictable) hits themselves will be
simultaneous. Note also that the spatiotemporal profile to be
considered is not that of the generated photons, but rather
of the photons just before detection (with the spreading and
deformation taken into account). Finally, the quantities we
suggest to be measured are subtle statistical deviations, so we
need a robust sampling. This demand naturally leads us to
consider that a pulsed laser (in our case a titanium-sapphire
laser) with a high repetition rate is employed as the primary
source of photons.

From basic quantum mechanics we immediately infer the
statistical distribution resulting from a series of N coinci-
dence polarization measurements on state (4); see Table I.
Fluctuations with magnitude �N ∼ √

N/2 naturally show up
for any finite number of repetitions. Since in any standard
interpretation of quantum mechanics the collapse is assumed
to be instantaneous, the second measurement of polarization
(in the same direction) will not play any role.

Now we address the same question, this time considering
the possibility of noninstantaneous collapse. In this case we
must analyze the development of the events more carefully. We
start by assuming that the intensity profile of the electromag-
netic field associated with the photons is already characterized.
We denote the distributions for a hit in the left and right

FIG. 2. (Color online) Probability densities for the occurrence
of a hit at the left and right photons. The residual delay, due to
imperfections in the synchronization process, is denoted by T .

TABLE I. Outputs and relative frequencies of two sequential
polarization measurements in the same direction according to
quantum mechanics. The second measurement plays no role since,
after the first one, the state collapses instantly.

Result Frequency

Left +, right − |α|2
Left −, right + 1 − |α|2

detectors by fL(t) and fR(t), respectively, and, for definiteness,
we assume the left photon to be delayed with respect to the
right one. Apart from this we consider the two packets as
having the same shape, that is,

fR(t) = fL(t − T ). (5)

In this scenario two distinct situations may happen. If, as
we suppose here, δt is smaller than any other time scale in
the problem, then, with high probability, when the second
hit takes place, the reduction due to the first one is already
completed. For these realizations we obtain exactly the results
shown in Table I. However, in a small number of nontrivial
events, according to our hypothesis, the second hit catches
the state ket while it is still collapsing. As soon as the first
hit happens, no matter in what detector (the two filters are
parallel), the state starts to collapse following one of the two
kinematic routes

|�1(t)〉 = a1(t)| + −〉 ⊗ |�(1)
+−〉 + b1(t)| − +〉 ⊗ |�(1)

−+〉, (6)

|�2(t)〉 = a2(t)| + −〉 ⊗ |�(2)
+−〉 + b2(t)| − +〉 ⊗ |�(2)

−+〉, (7)

with boundary conditions

a1[t (h)] = α, a1[t (h) + δt (1)] = 1,
(8)

b1[t (h)] = β, b1[t (h) + δt (1)] = 0,

and

a2[t (h)] = α, a2[t (h) + δt (2)] = 0,
(9)

b2[t (h)] = β, b2[t (h) + δt (2)] = 1,

where δt (1) and δt (2) denote the collapse times for routes (6)
and (7), respectively. We denote the instant when the first
hit happens by t (h). The kets {|�〉}, whose time dependence
was suppressed, correspond to the microscopic states of the
degrees of freedom that couple to the system. To be consistent
with Born’s rule we assume that route (6) happens with
relative frequency |α|2 and the second route, Eq. (7), with
relative frequency |β|2 = 1 − |α|2. We use the terminology
“kinematic route” because we are not providing, or trying to
provide, the dynamical equations that are satisfied by a(t)
and b(t) during the reduction. Instead, we use only the fact
that at the end of the process Born’s postulate should be
verified. We also remark that by excluding terms proportional
to | + +〉 and | − −〉 in the intermediate states (6) and (7),
with vanishing coefficients for t = t (h) and t = t (h) + δt (i),
we assume angular momentum conservation during each
individual process. Setting y = t

(h)
L − t

(h)
R , where t

(h)
L (t (h)

R ) is
the time when a hit occurs in the left (right) detector, the
probability P< for the occurrence of both hits in a time interval
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shorter than δt (i) when the first hit leads to route i is

P< = |α|2P (1)
< + |β|2P (2)

< , (10)

where

P (i)
< =

∫ +�t

−�t

∫ t ′′=t ′+δt (i)

t ′′=t ′−δt (i)
fL(t ′) fR(t ′′)dt ′dt ′′. (11)

The probability density for the relative variable y for each
route is given by p(i)(y) = dP (i)

< /d(δt (i))|y . It is clear from the
previous relation that p(1)(y) = p(2)(y) = p(y).

Let us then consider the rare event of a second hit
happening between t and t + dt with t (h) < t < t (h) + δt (i).
In this situation, if the state is caught collapsing via route
(6), the outcomes after the second reduction is completed are
| + −〉|�1f

+−〉 with probability |a1(t)|2 and | − +〉|�1f
−+〉 with

probability |b1(t)|2. If the state is collapsing through route (7),
the possible results are | + −〉|�2f

+−〉 with probability |a2(t)|2
and | − +〉|�2f

−+〉 with probability |b2(t)|2. The final states
{|�f 〉} need not be macroscopic pointers at this stage. Rather,
we assume that they contain the state of the apparatus which,
after some extra time, will describe a definite macroscopic
pointer position. We, thus, have a composite von Neumann
chain. From the previous reasoning, the probability of getting
+− between t and t + dt is proportional to

[|α|2|a1(t)|2 + (1 − |α|2)|a2(t)|2]dt. (12)

The probability of obtaining +− for any t , satisfying t (h) <

t < t (h) + δt (1) or t (h) < t < t (h) + δt (2), depending on the
route, is given by the integral

P (+ − | δt) = |α|2
P<

∫ δt (1)

−δt (1)
|a1(y)|2p(y)dy

+ |β|2
P<

∫ δt (2)

−δt (2)
|a2(y)|2p(y)dy

= |α|2(� + P<) + |β|2
P<

, (13)

where

 =
∫ δt (2)

−δt (2)
|a2(y)|2p(y)dy,

(14)

� =
∫ δt (1)

−δt (1)
|a1(y)|2p(y)dy − P<.

We can write the unconditional probability of getting the result
+− as

P (+−) = (1 − P<)|α|2 + P< P (+ − |δt)
= |α|2 + (|α|2� + |β|2). (15)

Therefore, if the collapse is not instantaneous, within our hy-
pothesis, the outcomes of two well-synchronized polarization
measurements should be characterized by Table II.

Table II might give the impression that we are suggesting
a correction to Born’s postulate. This is not the case, since the
postulate refers to the likelihood of each possible result of a
single measurement. If collapse were indeed instantaneous,
a second measurement of the same observable would be
innocuous. What we have just shown is that, if the collapse
takes a finite time, then a close consideration of Born’s

TABLE II. Outputs and relative frequencies of two sequential,
accurately synchronized, polarization measurements in a scenario of
finite-time reduction.

Result Frequency

Left +, right − |α|2 + (|α|2� + |β|2)
Left −, right + 1 − |α|2 − (|α|2� + |β|2)

rule leads to the probabilities in Table II. Once a suffi-
ciently large number N of repetitions is made, the numerical
difference between the results +− and −+ according to
Table I is �NI = (2|α|2 − 1)N , while the same quantity, ac-
cording to Table II, is �NII = [2(|α|2� + |β|2) + 2|α|2 −
1]N . Thus, the deviation between the two scenarios is
given by

�N = �NII − �NI = 2(|α|2� + |β|2)N. (16)

For a maximally entangled state, with |α| = 1/
√

2, implying
δt (1) = δt (2), it would not be possible to reveal a potentially
nonvanishing collapse time, since this would lead to �N = 0.
This is due to the fact that, in this completely symmetrical
case, we must have |a1(y)|2 = |b2(y)|2. Therefore, the initial
state (4) has to be unbalanced. As we will see next, � and  are
typically very small numbers and the difference (16) is subtle.
The immediate question that arises is, since �N/N is small,
can we safely distinguish it from pure statistical fluctuations
(�N ) that surely occur in an actual experiment? Fortunately,
the deviation in the worse scenario, where �NI ∼ √

N/2
and �NII ∼ −√

N/2 tend to minimize |�N |, is �N = √
N ,

while �N ∼ N , so that for a sufficiently large number of
realizations one can reach a ratio �N/�N as large as needed.
In fact, �N/�N = 2(|α|2� + |β|2)

√
N , and the number of

realizations must satisfy

N > K2[2(|α|2� + |β|2)]−2, (17)

for a statistical significance of K standard deviations (�N >

K�N ).
Once the general framework is set, let us go back to our

proposed experiment in more specific terms. Suppose the
source of light is a pulsed titanium-sapphire laser whose
normalized temporal profile of intensity reads

f (t) = 1

2σt

sech2

(
t

σt

)
, (18)

where the pulse width σt provides the coherence time. By using
(5) and (11) we get

P (i)
< = 1

4

∑
n=0,1

(−1)n
{

csch2(A(i)
n

)
ln

[
cosh

(
A(i)

n + �t/σt

)
cosh

(
A

(i)
n − �t/σt

)
]

−2 coth
(
A(i)

n

)
tanh

(
�t

σt

)}
, (19)

with A(i)
n = [T + (−1)n+1δt (i)]/σt . Assuming that δt (i) and T

are much smaller than the coherence time, the above result
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simplifies to

P (i)
< ≈ 1

2
tanh

(
�t

σt

)[
tanh

(T + δt (i)

σt

)
− tanh

(T −δt (i)

σt

)]
,

(20)

leading to the probability distribution

p(y) ≈ 1

2σt

tanh

(
�t

σt

)
sech2

(T + y

σt

)
. (21)

A typical repetition rate of a pulsed laser is 100 MHz;
however, this is not the frequency at which the correlated
pairs are detected in coincidence. We assume that this rate is
diminished by three orders of magnitude, giving one detection
in coincidence per 10 μs, on average. Furthermore, the residual
delay is of the order of δL/c, where δL is the step of the
translation stage in the delay line and c is the velocity of
light. Usually δL ≈ 1 μm, so T ≈ 3.3 fs. The duration �t of
each measurement is set to ensure that the detected photons
belong to the same pair. We can safely consider the window of
coincidence to be �t ≈ 1 ns. Finally, for the sake of illustration
let us assume that the final shape of the wave packets at
detection is still given by Eq. (18), with a relatively large
spreading of σt ≈ 1 ps (the coherence time soon after the
generation is, say, 200 fs).

Consider that we intend to investigate the compatibility of
experimental data with a collapse in the range of δt ∼ 0.1 fs,
with α = √

3/2. This would lead to P< ≈ 10−4, corresponding
to ten nontrivial detections per second. Of course, in order to
get numbers we must assume some functional form for a1(t)
and a2(t) before calculating � and . The quantitative results
weakly depend on this choice, but the qualitative features
remain unchanged. By choosing an exponential dependence
for |a1(t)| and |a2(t)|, satisfying the appropriate boundary
conditions, we get |α|2� + |β|2 ≈ 10−4 [26]. If one adopts
the sequential weak-measurement view, a(t) should probably
be seen as a smoothed version of the actual random-walk-type
dynamics followed by the coefficients [19].

Suppose that we obtain a reliable statistics characterized
by �N/�N ∼ 6 (six standard deviations), corresponding to
a 12-h-long experiment (N ≈ 109 realizations). This result
alone would be a strong evidence for finite-time collapse. Of
course, further experimentation would be necessary, varying
T , α, and the orientation of the filters, to investigate the
actual time dependence of a(t). It would be especially
important to repeat the same procedure with the filters set
in orthogonal directions for, in this situation, there should
be no measurable difference between the two scenarios for
any pair α,β. Conversely, if in the original experiment we
obtain �N/�N ∼ 1, then 0.1 fs would be an upper bound
for an exponential reduction in the system studied. Lastly,
the above estimates would not change appreciably for T = 0,

showing that the scheme is robust for delays of the order of
femtoseconds.

IV. CONCLUSIONS

It might be considered insufficient to assert that if the
state is ψ-ontic, in the sense adopted in the literature [27],
then the wave function is a real thing [28]. A possibly
reasonable extra requirement would be that the microscopic
collapse should not be instantaneous. We stress that this
has nothing to do with the condition of locality, since

the collapse (|a〉|b〉 − |b〉|a〉)/√2
δt−→ |a〉|b〉 is, in general,

nonlocal, provided that the subsystems are sufficiently far
apart. By employing minimal statements (of kinematic nature)
about this finite-time collapse and assuming that Born’s rule
remains valid during the nonunitary evolution, we claim that
it is possible to probe the collapse duration experimentally on
the scale of subfemtoseconds. Although decoherence is not
a logical necessity of our model, the previous results may
not be incompatible with it. In fact, it has been suggested by
Schlosshauer [7] that a combination of dynamical localization
models and the effects of environment is a promising strategy
to approach the collapse problem.

An important point is the lack of covariance of our results,
which is not an exception in dealing with entanglement. If we
admit that the two hits are not causally related, their ordering
may be swapped for some inertial frame. Alternatively,
if one assumes that the hits are causally connected it is
necessary to admit the existence of an “ether” in which
the spatially separated subsystems exchange information via
a supraluminal signaling. A stringent lower bound for the
velocity of this signal has been placed [29], vsignal ∼ 104c

for a continuous set of referentials whose relative velocity
with respect to earth is as large as 0.1c. Although a detailed
discussion of this point is outside the scope of the present
work, we believe that the dynamics of collapse, and its time
scale, deserve investigation in either case.
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