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We analyze the general nonclassicality of correlations of a composite quantum system as measured by the
negativity of quantumness. The latter corresponds to the minimum entanglement, as quantified by the negativity
that is created between the system and an apparatus that is performing local measurements on a selection
of subsystems. The negativity of quantumness thus quantifies the degree of nonclassicality on the measured
subsystems. We demonstrate a number of possible different interpretations for this measure and for the concept
of quantumness of correlations in general. In particular, for general bipartite states in which the measured
subsystem is a qubit, the negativity of quantumness acquires a geometric interpretation as the minimum trace
distance from the set of classically correlated states. This can be further reinterpreted as minimum disturbance,
with respect to trace norm, due to a local measurement or a nontrivial local unitary operation. We calculate the
negativity of quantumness in closed form for Werner and isotropic states and for all two-qubit states for which the
reduced state of the system that is locally measured is maximally mixed; this includes all Bell diagonal states. We
discuss the operational significance and potential role of the negativity of quantumness in quantum information
processing.
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I. INTRODUCTION

Quantum systems differ from classical ones in a number of
ways. This is particularly true for composite systems, which
can exhibit quantum features like nonlocality and quantum
entanglement [1]. They are certainly striking manifestations
of a deviation from classicality. While quantum entanglement
can be regarded as one of the most characteristic traits of
quantum mechanics [2], a lot of effort has recently been
directed towards characterizing a more general notion of
quantumness of correlations [3–5], almost always present in
mixed states also in the absence of entanglement [6]. The
study of quantum correlations, or of quantumness in its most
essential manifestation in composite systems, has a deep
foundational value as it provides a trail to investigate the
boundary between the classical and the quantum world from
the perspective of quantum measurements [7]. Quantumness of
correlations manifests, for instance, when any local complete
projective measurement on a subsystem necessarily alters
the state of a composite system [3]. There are many other
(sometimes equivalent) signatures to reveal quantumness of
correlations in a state, and there are correspondingly a number
of possible ways to quantify such quantumness (including the
quantum discord [3,4]), which range from informational to
geometric and thermodynamical settings. Some of the most
prominent approaches are summarized below, while for a more
extensive treatment we defer the reader to a recent review;
see [5] and references therein.

From an applicative point of view, quantum information
processing aims at harnessing quantum properties to out-
perform classical information processing [8]. A natural step
towards such a goal is that of developing concepts and tools
to more precisely determine which states possess or do not
possess a certain quantum property, further aiming to quantify
and exploit the latter when present. While quantumness of
correlations reduces to entanglement for pure states, thus
already embodying the key resource for quantum information

processing in the absence of noise [1,8], a number of
researchers are investigating the role of general nonclassical
correlations in quantum computation [9–12], quantum com-
munication [13,14], and quantum metrology [15,16].

In the following, we always address the notions of classi-
cality or quantumness as referred to the correlations among
subsystems in the state of a composite system; we similarly
adopt the wording of (non)classical states to mean equivalently
(non)classically correlated states. We are not concerned with
other definitions of (non)classicality such as those usually
adopted in quantum optics to characterize the nature of light
[17], which often lead to a very different classification of states
into classical and nonclassical [18].

As anticipated, there are a wide variety of approaches to
quantify the nonclassicality (of correlations) of the state ρ of
a quantum system [5]. To list a few, it can be measured by

Approach 1 (activation) the minimum amount of entan-
glement created between the system and its measurement
apparatus in a local measurement [19–22];

Approach 2 (geometric) the minimum distance between ρ

and its closest classical state [23–26];
Approach 3 (disturbance by measurement) the minimum

amount of disturbance caused by local projective measure-
ments [3,4,27];

Approach 4 (disturbance by unitary) the minimum distur-
bance caused by particular local unitaries [28,29].

As summarized in [5], a number of nonclassicality measures
can be defined via Approach 2, Approach 3, and Approach 4
using different distance functions such as the Hilbert-Schmidt
distance or the quantum relative entropy. Even though at a
first glance Approach 1 seems to be very different from the
other approaches, it turns out it is intimately connected with
them (see also [30]). This is because there are entanglement
measures that are similarly defined as the distance from the
closest separable state. One such example is given by the
relative entropy of entanglement [31], which is a well-known
upper bound to the distillable entanglement [32].
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In this paper we develop an extensive study of a promising
measure of nonclassical correlations recently defined in [20]
along Approach 1 : the negativity of quantumness (NoQ). NoQ
[20] corresponds to the adoption of negativity [33] as an
entanglement measure in Approach 1. In [22] it was proven that
Approach 1 leads to a quantitative hierarchy of correlations
that formalizes the intuition that “the general quantumness
of correlations is more than entanglement.” In particular,
the entanglement generated in a complete projective local
measurement is provably always greater than the entanglement
present in the state whose nonclassicality of correlations
is under scrutiny. This fact is independent of the specific
choice of entanglement measure. Nonetheless, given the
usefulness of negativity [33] in the study and quantification
of entanglement—a usefulness that comes in particular by its
being easy to calculate—it is natural to focus on the specific
hierarchy it generates. Furthermore, in this article we prove
there are other reasons to focus on NoQ.

Indeed, we find that NoQ can be further interpreted from
the perspective of Approach 2, Approach 3, and Approach 4
under suitable conditions. In particular, in the special case of a
bipartite state ρAB , when furthermore the measured subsystem
A is a two-level quantum object (qubit), it turns out that
the NoQ acquires a geometric interpretation as the minimum
distance between ρAB and the set of classical states, with the
distance measured in trace norm. This can be proven to be
further equivalent to the minimal state change, again in trace
norm, after either a local measurement on A or a (nontrivial)
local unitary evolution on A. The equivalence between the
last two approaches when A is a qubit is here proven
for any norm-based distance, complementing the original
results of [28,29] which were specific to the Hilbert-Schmidt
norm. All these results are derived and described throughout
the paper with relevant examples. Our work also provides
a proof to a conjecture raised by Khasin et al. about a
bound for the negativity (of entanglement) [34]. We obtain
closed analytical expressions for the NoQ in relevant cases
such as Werner and isotropic states of arbitrary dimension
[35,36], and a family of two-qubit states where qubit A is
maximally mixed, which includes Bell diagonal states. In
the latter instance, the problem is recast into an appealing
geometrical formulation. The closed formula for two-qubit
states with one maximally mixed marginal, together with the
hierarchical relation between quantumness of correlations and
entanglement of Ref. [22] allows, e.g., a consistent study and
comparison of the evolution of entanglement—as measured by
negativity—and quantumness of correlations—as measured
by the one-sided NoQ—under the action of a family of qubit
channels, e.g., a semigroup.

The paper is organized as follows. In Sec. II we fix some
notation adopted throughout the paper. In Sec. III we review
the main definitions and approaches to quantify quantumness
of correlations as sketched above. Section IV is focused
on the definition and formulation of the NoQ. The main
properties and interpretations of the NoQ are discussed in
Sec. V, along with its interplay with the usual negativity of
entanglement. In Sec. VI we prove in general the equivalence
of the various approaches when the measured subsystem is a
qubit. In Sec. VII we calculate the NoQ for relevant families
of bipartite states. We conclude the main body of the paper

in Sec. VIII. The appendixes contain a number of technical
proofs and extensions.

II. NOTATION

We deal only with finite-dimensional Hilbert spaces and
we identify linear operators with matrices. We denote by
〈A,B〉 := Tr(A†B) the Hilbert-Schmidt inner product of two
matrices A and B.

The Schatten p-norms ‖ · ‖p are a family of norms
parametrized by a real number p � 1. If σi(A)’s are the
singular values of a matrix A, the p-norm of the latter is
defined as

‖A‖p :=
(∑

i

σ
p

i (A)

)1/p

. (1)

We refer the reader to Appendix A for a concise summary of
the main properties of p-norms. In particular, we are going to
focus our attention on the 1-norm (also called trace norm)
‖A‖1 = ∑

i σi(A) = Tr
√

A†A and on the 2-norm ‖A‖2 =√∑
i σi(A)2 =

√
Tr(A†A) = √〈A,A〉 (also called Hilbert-

Schmidt norm). For any norm ‖ · ‖, one can define an
associated distance on matrices by means of ‖A − B‖. In
particular, the distance associated with the 1-norm is also
called trace distance (up to a factor 1/2), while the distance
associated with the 2-norm is known as Hilbert-Schmidt
distance. The trace distance between two mixed states (i.e.,
positive semidefinite operators of trace one) has a direct
operational interpretation linked to the probability of success
in distinguishing the two states via a measurement [8].

We also make use of the l1-norm, which is a basis-dependent
norm defined as the sum of the absolute values of the entries
of a matrix: ‖A‖l1 = ∑

i,j |Ai,j |. See Appendix B for more
details.

The relative entropy of a density matrix ρ with
respect to a density matrix σ is defined as S(ρ‖σ ) :=
Tr[ρ(log2 ρ − log2 σ )] = −S(ρ) − Tr(ρ log2 σ ). Here S(ρ):=
−Tr(ρ log2 ρ) is the von Neumann entropy. The relative
entropy is not a distance as, for example, it is not symmetric
in its arguments, but for the sake of our investigation we can
and do treat it as if it was a distance measure. This is done
routinely in quantum information theory [37].

A channel is a completely positive trace-preserving (CPTP)
linear map on operators [8]; it admits a Kraus representation,

�[B] =
∑

i

KiBK
†
i , (2)

with Ki’s the corresponding Kraus operators satisfying the
trace-preservation condition

∑
i K

†
i Ki = I. The dual �† of a

channel �—and, in general, of a linear map—is defined via
the Hilbert-Schmidt inner product through the relation

〈A,�[B]〉 = 〈�†[A],B〉, ∀ A,B.

It easy to verify that for a channel with Kraus decomposi-
tion (2) the dual map has Kraus decomposition

�†[A] =
∑

i

K
†
i AKi.
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Hence, � being trace-preserving implies that �† is unital;
i.e., �†[I] = I; �† is furthermore a channel—i.e., also trace-
preserving—if � is unital itself.

We will also make use of the Pauli matrices σ1 = σx =
( 0 1

1 0 ), σ2 = σy = ( 0 −i
i 0 ), and σ3 = σz = ( 1 0

0 −1 ), which, along-

side with the identity σ0 = I = ( 1 0
0 1 ), form a basis for the space

of 2 × 2 matrices.

III. CLASSICALITY AND NONCLASSICALITY OF
CORRELATIONS: NOTIONS AND MEASURES

A. Classicality of quantum states

One key quantum feature is the fact that a measurement
will, in general, disturb the state of the system being measured.
Most importantly, a local measurement will typically lead to
a decrease in (total) correlations—quantified, e.g., in terms of
quantum mutual information—between the measured system
and any other systems that might have been initially correlated
with it [3,4,38]. Because of the orthogonality and perfect
distinguishability of the states that form an orthonormal
basis, a complete projective measurement can be thought
as a quantum-to-classical mapping, where the information
extracted from the quantum system is recorded in a classical
register. In this sense, only correlations between a classical
system and the remaining unmeasured systems are left after
the local measurement. It has been actually suggested that
such surviving correlations should be deemed classical [4]. It
can be proven that a local measurement that does not destroy
any amount of correlation exists for a state if and only if the
measured system could be considered classical to start with
[3,27,38], so that such a measurement does not disturb the sys-
tem. To be more precise, the following notions will be adopted.

Definition III.1: Classicality of a quantum state (i).
Let ρ{1,2,...,n} be an n-partite quantum state. For any i ∈
{1,2, . . . ,n}, ρ{1,2,...,n} is classical on the ith system if there
exists a complete local projective measurement on the ith
subsystem which leaves ρ{1,2,...,n} invariant.

Complete projective measurements are described by a set of
orthogonal rank-1 projectors, say {|ai〉〈ai |}, such that they sum
up to the identity of the space, i.e.,

∑
i |ai〉〈ai | = I. Therefore,

the state is invariant under such measurement if and only if
the original state has block-diagonal form with respect to the
basis {|ai〉}, and this can be used as an alternative definition of
classicality of the state.

Definition III.2: Classicality of a quantum state (ii).
Let ρ{1,2,...,n} be an n-partite quantum state. For any i ∈
{1,2, . . . ,n}, ρ{1,2,...,n} is classical on the ith system if ρ{1,2,...,n}
can be represented as

ρ{1,2,...,n} =
∑

j

|aj 〉〈aj |i ⊗ σ
j

{1,...,i−1,i+1,...,n}, (3)

where {|aj 〉} is an orthonormal basis of the ith system and

σ
j

{1,...,i−1,i+1,...,n} = 〈aj |ρ{1,2,...,n}|aj 〉.
In this paper, mainly bipartite quantum states are consid-

ered, ρ ≡ ρAB . A bipartite quantum state which is classical
only on one subsystem (say A) is called classical-quantum
(CQ). Such a state will exhibit zero quantumness (of correla-
tions between A and B) with respect to local measurements

on A. Similarly, a state classical on both subsystems is called
classical-classical (CC) [38].

Classicality of subsystems is a much stronger notion than
separability, i.e., absence of entanglement, as recalled below.

Definition III.3: Separable and entangled states. A state
ρAB is separable in the bipartition A versus B, also indicated
as the A : B bipartition, if it can be represented as [1]

ρAB =
∑

j

pj τ
j

A ⊗ σ
j

B, (4)

with (pj )j a probability distribution and τ
j

A and σ
j

B quantum
states for A and B, respectively. A state ρAB is A : B entangled
if it is not A : B separable.

It is clear from (3) and (4) that every state ρAB that is
classical on A is A : B separable, while the opposite does not
hold.

Given a state which is not classical on some subsystem i,
i.e., such that the state would get disturbed by any possible
complete projective measurement on subsystem i, it is natural
to try to quantify the amount of nonclassicality of correlations
in that state, in particular from an operational perspective.
As mentioned in Sec. I, there are different approaches to
quantifying nonclassicality that we briefly review.

B. Nonclassicality by system-apparatus entanglement

We now recall more in detail how a measure—or rather a
family of measures—of nonclassical correlations can be based
on Approach 1. The definition goes through the consideration
of a particular set of states produced during the measurement
of a (sub)system, when such process is modeled by a particular
unitary interaction—which we call measurement interaction—
between the system and a measurement apparatus. We call the
states that are the result of such an interaction premeasurement
states [7].

Definition III.4: Measurement interaction. A measurement
interaction VA 
→AA′ on system A is a linear isometry from A

to a bipartite system AA′, where A′ has the same dimension
as A. This isometry is defined by the following mapping of an
orthonormal basis of A, {|ak〉}:

VA 
→AA′ |ak〉A = |ak〉A|k〉A′ , ∀ k,

where {|k〉A′ } is the computational basis of system A′. This
operation is defined in a basis-dependent way, i.e., the
choice of different local orthonormal basis of A results in
distinct measurement interactions. Therefore, the operation is
sometimes denoted as V

{|ak〉}
A 
→AA′ when the basis needs to be

specified.
Definition III.5: Premeasurement state. Let ρ{1,2,...,n} be an

n-partite quantum state. For some choice of subsystems � ⊆
{1,2, . . . ,n} and of measurement bases {|ak〉} (one for each
subsystem i ∈ �), the corresponding premeasurement state
for ρ is

ρ̃� :=
(⊗

i∈�

Vi 
→ii ′

)
ρ

(⊗
i∈�

Vi 
→ii ′

)†

, (5)

where � = {1,2, . . . ,n} ∪ �′; i.e., ρ̃� is the joint state of the
initial quantum systems and their measurement apparatuses.
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As already mentioned, measurement interactions depend
on the choice of a specific basis for each subsystem in �. The
action of measurement interactions defined for distinct bases
results—in general—in distinct final premeasurement states.
This leads to the consideration of the entire class of potential
premeasurement states.

The next theorem asserts that the system-apparatus separa-
bility of the premeasurement states characterizes the classical-
ity of the correlations of the original system.

Theorem III.1: Activation protocol [19–22]. A n-partite
quantum state ρ{1,2,...,n} is classical on its subsystems � ⊆
{1,2, . . . ,n} if and only if there exists a corresponding
{1,2, . . . ,n} : �′ separable premeasurement state ρ̃{1,2,...,n}∪�′ .

One can introduce a family of quantifiers of the nonclas-
sical correlations present in a quantum state exploiting this
intimate connection between the nonclassicality of a quantum
state and the entanglement properties of the corresponding
premeasurement states.

Definition III.6: Nonclassicality by system-apparatus en-
tanglement [19–22]. Let ρ{1,2,...,n} be a n-partite quantum state
and � ⊆ {1,2, . . . ,n} be a set of its subsystems. Then the
measure of nonclassicality of correlation (or quantumness, in
short) present in ρ{1,2,...,n} as revealed on subsystems � with
respect to an entanglement measure E is defined as

Q�
E (ρ{1,2,...,n}) := min⊗

i∈� B(i)
E{1,2,...,n}:�′ (ρ̃{1,2,...,n}∪�′ ), (6)

where B(i) denotes a local orthonormal basis of subsystem i ∈
�, the bipartite entanglement is measured across the bipartite
cut {1,2, . . . ,n} : �′, and the minimum is taken over different
premeasurement states for different measurement interaction
defined by

⊗
i∈� B(i).

C. Other measures of nonclassicality

In this section, we will briefly summarize other approaches
to define measures of nonclassicality of quantum states,
namely Approach 2 and Approach 3. The approach based on
Approach 4 and its relevance to our other results are discussed
in Sec. VI.

1. Measures of nonclassicality based on disturbance

Since the nonclassicality of a quantum state is defined by
the unavoidable disturbance caused by any local projective
measurement, perhaps the most immediate way to study the
degree to which a quantum state nonclassical is to quantify the
difference between the state before and after a measurement
(Approach 3).

Definition III.7: Nonclassicality by measurement distur-
bance [27,39]. Let d(·,·) be a distance function. The non-
classicality of a n-partite quantum state ρ{1,2,...,n} revealed on
its subsystems � ⊆ {1,2, . . . ,n}, measured by the minimum
disturbance caused by local projective measurements on each
subsystem in �, with respect to the distance function d(·,·), is
defined as

D�
d(·,·)(ρ{1,2,...,n})

:= min⊗
i∈� B(i)

d

(
ρ{1,2,...,n},

⊗
i∈�

�B(i)[ρ{1,2,...,n}]

)
, (7)

where �B(i) denotes a complete projective measurement on
subsystem i on a complete orthonormal basis B(i) and the
minimum is taken over different choices of local bases for
these projective measurements. If the distance function d(·,·)
is derived from a norm ‖ · ‖, we use the shorthand notation
D�

‖·‖(ρ{1,2,...,n}).
Example III.1. We list a few measures of quantumness of

correlations for bipartite states ρAB based on this notion.
(i) Zero-way deficit [39]:

	∅(ρAB) := DAB
S(·||·)(ρAB)

= min
B(A)⊗B(B)

S(ρAB‖(�B(A) ⊗ �B(B))[ρAB]). (8)

The distance function here is the quantum relative entropy (see
Sec. II).

(ii) One-way deficit [39]:

	→(ρAB) := DA
S(·||·)(ρAB)

= min
B(A)

S(ρAB‖�B(A)[ρAB]).

Again the distance function is the quantum relative entropy.
Notice that the one-way deficit vanishes on CQ states while
the zero-way deficit is a symmetric measure vanishing only on
CC states.

(iii) Geometric discord [24,25]:

DA
G(ρAB) := DA

‖·‖2
2
(ρAB) = min

B(A)
‖ρAB − �B(A)[ρAB]‖2

2. (9)

The distance function here is the square of the Hilbert-Schmidt
distance (see Sec. II). For a discussion of some conceptual
issues with the use of the geometric discord as quantumness
measure, see [26].

2. Distance-based measures of the nonclassicality of correlations

The quantification of nonclassicality based on Approach 2
follows a very common approach in quantum information
theory. Here the quantumness of correlations is defined as the
minimum distance from the (suitably chosen) set of classical
states.

Definition III.8: Nonclassicality by distance from classical
states. Let d(·,·) be any distance function. The nonclassicality
of a n-partite quantum state ρ{1,2,...,n} on its subsystems � ⊆
{1,2, . . . ,n}, measured by the distance from the set C(�) of
states which are classical on each subsystem in �, with respect
to the distance function d(·,·), is defined as

D�
d(·,·)(ρ{1,2,...,n}) := min

η∈C(�)
d(ρ{1,2,...,n},η). (10)

If the distance function d(·,·) is derived from a norm ‖ · ‖, we
use the shorthand notation D�

‖·‖(ρ{1,2,...,n}).
Example III.2. Here we provide two examples of nonclas-

sicality measures for a bipartite state ρAB based on this notion
that differ in the choice of distance measures and relevant set
of classical states (recall that CC stands for the set of states
which are classical on systems A and B and CQ is the set of
states which are classical on A):

(i) Relative entropy of discord [23]:

DR(ρAB) := DAB
S(·||·)(ρAB) = min

η∈CC
S(ρAB ||η).
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Here the distance function is the quantum relative entropy. It
can be proven that the relative entropy of discord is equivalent
to the zero-way deficit (8) [23].

(ii) Geometric discord [24]:

DG(ρAB) := DA
‖·‖2

2
(ρAB) = min

η∈CQ
||ρAB − η||22. (11)

Here the distance function is (the square of) the Hilbert-
Schmidt distance. It is easily verified that the two defini-
tions (9) and (11) for the geometric discord are equivalent [25].

IV. NEGATIVITY OF QUANTUMNESS

The activation protocol (Definition III.6) allows us to
define a measure of nonclassical correlations QE for each
entanglement measure E we may want to consider. Through
this mapping, some entanglement measures generate known
nonclassicality measures and others generates new ones. Neg-
ativity [33] is a widely used entanglement measure with a very
appealing property: It is easily computable.1 For the rest of
the paper, we study the measure of nonclassicality of quantum
states based on the activation protocol (Definition III.6) and
on the choice of negativity as entanglement measure, E ≡
N . It is in order to recall that the negativity can vanish
for some entangled states, known as Positive-under-Partial-
Transposition (PPT) entangled states, whose entanglement is
not distillable by local operations and classical communication
[40]. However, this does not compromise its use to define
a measure of nonclassicality of correlations through the
activation protocol. This is because entangled premeasurement
states of the form Eq. (5) are always nonpositive under partial
transposition (NPT) and distillable, as argued in [20] and
shown explicitly in Lemma IV.1 later in this paper. This
guarantees that the quantity analyzed in this paper and defined
formally below, which we dub NoQ, is a faithful measure of
nonclassicality of correlations in composite systems, vanishing
if and only if the correlations of the considered states are
classical.

The negativity (of entanglement) is defined as follows.
Definition IV.1: Negativity (of entanglement) [33]. Let ρAB

be a bipartite quantum state. The negativity (of entanglement)
of ρAB is defined as

NA:B(ρAB) :=
∥∥ρ�

AB

∥∥
1 − 1

2
,

where the subscript ofN denotes the bipartition with respect to
which the entanglement is being measured, the superscript �

on ρAB denotes its partial transpose, and ‖ · ‖1 is the Schatten
1-norm. This definition assumes, as we do in the rest of the
paper, that we are dealing with normalized states.

It can be immediately verified that the negativity of
entanglement is independent both of the choice of the party on
which the partial transposition is considered and of the choice
of local basis in which the local transposition is taken. The
NoQ can then be defined as follows.

1Unlike other operationally more meaningful entanglement mea-
sures such as entanglement cost, distillable entanglement and
entanglement of formation, which typically involve a nontrivial
optimization over a large set of parameters [1].

Definition IV.2: Negativity of quantumness [20]. The NoQ
of a n-partite quantum state ρ{1,2,...,n} on subsystems � ⊆
{1,2, . . . ,n} is defined as

Q�
N (ρ{1,2,...,n}) := minN{1,2,...,n}:�′ (ρ̃�), (12)

where the minimum is taken over all premeasurement
states ρ̃�, � = {1,2, . . . ,n} ∪ �′, of the quantum systems
{1,2, . . . ,n} and the measurement apparatuses �′ associated
with the individually measured systems � ⊆ {1,2, . . . ,n}.

A. Total negativity of quantumness

The total (or two-sided, in the case where there are only two
subsystems) quantumness (of correlations) of a quantum state
is quantified by the amount of apparatus-system entanglement
in a premeasurement state when every subsystem is measured
individually, i.e., � = {1,2, . . . ,n}. Adopting the NoQ as a
measure, the corresponding explicit expression for the total
NoQ of arbitrary multipartite states was given in [20]. Here
we derive this expression again as it will be useful for the
analysis made later in this paper.

First, we observe that the premeasurement states for the case
of studying total quantumness have a very particular form.

Definition IV.3: Maximally correlated state. A bipartite
state τAB of systems A and B is said to have the max-
imally correlated form if it can be expressed as τAB =∑n

i,j=1 τij |ai〉〈aj |A ⊗ |bi〉〈bj |B for some τij ∈ C with respect
to some orthonormal basis of each system {|ai〉} and {|bj 〉}
and n = min {dim A, dim B}. Note that Hermiticity implies
τij = τ ∗

ji . A state that can be represented in a maximally
correlated form is called a maximally correlated state (MCS).

Maximally correlated states have some remarkable proper-
ties. For example, if a MCS has negative partial transpose
the entanglement contained in the state is distillable and,
moreover, distillable entanglement and relative entropy of
entanglement coincide for this set of states [32]. Moreover,
for any quantumness measure, the quantumness of a MCS
is the same as its corresponding entanglement as proven in
Appendix C.2 At the same time, there is a simple analytic
expression for both the eigenvalues and the eigenvectors of its
partial transpose.

Lemma IV.1. The partial transpose3 τ�
AB = ∑n

i,j=1 τij

|ai〉〈aj |A ⊗ |bj 〉〈bi |B of a MCS τ = ∑n
i,j=1 τij |ai〉〈aj |A ⊗

|bi〉〈bj |B has the following eigenvalues and corresponding
eigenvectors:

τii for |ai〉 ⊗ |bi〉,
±|τij | for

1√
2

(
|ai〉 ⊗ |bj 〉 ± τji

|τji | |aj 〉 ⊗ |bi〉
)

,

with i > j.

Proof. Notice that ρ�
AB with respect to the basis {|ai〉 ⊗

|bj 〉} is a generalized permutation matrix; i.e., there is only

2Recently it has been proven that some entanglement measures and
some nonclassical correlation measures coincide for a more general
class of states [30].

3Here it is taken with respect to subsystem B, in the maximally cor-
related basis {|bj 〉}; while the eigenvalues of the partially transposed
state do not depend on this details, the eigenvectors do.
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one nonzero entry on each row and column. Therefore, by
the action of an appropriate permutation matrix P , it can be
transformed into the following form (the off-diagonal blocks
have all vanishing entries; we do not indicate all the zero
entries):

Pρ�
ABP −1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ11

. . .
τnn

0 τ12

τ21 0

. . .

0 τn−1,n

τn,n−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Each diagonal block corresponds to an invariant subspace
(under the action of Pρ�

ABP −1). The rows and columns of the
upper left block corresponds to the vectors |ai〉 ⊗ |bi〉’s, while
the entries of the other two-by-two on-diagonal blocks each
correspond to |ai〉 ⊗ |bj 〉 and |aj 〉 ⊗ |bi〉 for i �= j . Hence,
Pρ�

ABP −1 has the eigenvalues and eigenvectors above. �
From this we get immediately the following.
Corollary IV.1: Negativity of a MCS. The negativity of a

MCS τAB = ∑n
i,j=1 τij |ai〉〈aj |A ⊗ |bi〉〈bj |B is

N (ρAB) =
∑

i,j |τij | − 1

2
. (13)

The quantity
∑

i,j |τij | in the above corollary is the sum of
the absolute value of entries of the matrix [τij ] and it can be
seen as the l1-norm of the matrix in the maximally correlated
basis (see Sec. II and Appendix B). The negativity of a MCS
can then be expressed as

N (ρAB) = ‖τAB‖{|ai 〉⊗|bj 〉}
l1

− 1

2
,

where the superscript indicates that the l1-norm is taken for the
matrix representation of τAB with respect to the basis {|ai〉 ⊗
|bj 〉}.

We are now ready to prove the following.
Theorem IV.1: Total negativity of quantumness [20]. Let

ρ{1,2,...,n} be an n-partite quantum state. Then the total NoQ,
i.e., the minimum amount of entanglement with respect to
negativity between system-apparatuses when each subsystem
is measured independently, is

Q
{1,2,...,n}
N (ρ{1,2,...,n})

= min⊗
i∈{1,2,...,n} B(i)

‖ρ{1,2,...,n}‖
⊗

i∈{1,2,...,n} B(i)
l1

− 1

2
,

where the minimum is taken over different choices of fac-
torized basis

⊗
i∈{1,2,...,n} B(i) for the (local) measurement

interaction.
Proof. This result is a direct consequence of every premea-

surement state being a MCS (between system and apparatus)
and it is true regardless of the number of systems. For the sake
of concreteness we only prove it for the bipartite case, the
extension to the multiparty case being straightforward.

Let ρAB be a bipartite state and let ρ̃ABA′B ′ be its premea-
surement state produced by measurement interactions V

{|ai 〉A}
A 
→AA′

and U
{|bi 〉B }
B 
→BB ′ , whereB(A) = {|ai〉} andB(B) = {|bi〉} are some

orthonormal bases of subsystem A and B,

ρ̃ABA′B ′ =
∑
ijkl

ρijkl|ai〉〈aj |A ⊗ |bk〉〈bl |B ⊗ |i〉〈j |A′ ⊗ |k〉〈l|B ′,

where ρijkl = 〈ai |〈bk|ρAB |aj 〉|bl〉. Observe that this state has
indeed the maximally correlated form in the (AB) : (A′B ′) cut.
Therefore, Corollary IV.1 implies

QAB
N (ρAB) = min

B(A)⊗B(B)

∑
ijkl |ρijkl| − 1

2
(14)

= min
B(A)⊗B(B)

‖ρAB ‖B(A)⊗B(B)
l1

− 1

2
. (15)

�
This relation can be rewritten as

QAB
N (ρAB)

= min
B(A)⊗B(B)

1
2‖ρAB − (�B(A) ⊗ �B(B))[ρAB]‖B(A) ⊗B(B)

l1
, (16)

where �B(A) and �B(B) represent complete projective measure-
ments on systems A and B, respectively, on the orthonormal
basis B(A) and B(B). The superscript in the norm expression
indicates that the l1-norm is taken in the same local basis as
for the projective measurement. Therefore, the total NoQ can
be given the following interpretation.

Corollary IV.2: Decoherence interpretation of total NoQ.
The total NoQ of n-partite quantum state ρ{1,2,...,n} is the
minimum disturbance caused by a complete projective mea-
surement on every system {1,2, . . . ,n} as quantified by the
l1-norm in the basis of the measurement.

Notice that the total NoQ corresponds to the absolute sum
of the off-diagonal entries (coherences) of the density matrix,
minimized over all local product bases [20].

B. Partial negativity of quantumness

Here we study the quantumness of correlations due to
the nonclassical nature of single subsystems. Notice that this
notion of partial (or one-sided, in the case there are only two
subsystems) quantumness is well defined since the activation
protocol Theorem III.1 applies.

Theorem IV.2. Partial negativity of quantumness. Let
ρ{1,2,...,n} be an n-partite quantum state and � ⊆ {1,2, . . . ,n}
a subset of subsystems, and denote the elements of � as
{k1,k2, . . .}. For each subsystem k ∈ �, let B(k) = {|a(k)

ik
〉}ik

be one orthonormal basis of k. Then the partial NoQ on
subsystems � ⊂ {1,2, . . . ,n} is

Q�
N (ρ{1,2,...,n}) = min⊗

k∈� B(k)

1

2

⎛
⎝ ∑

ik1 ,ik2 ,...

‖ρik1 ,ik2 ,...‖1 − 1

⎞
⎠ ,

where ρi1,i2,... = (〈a(k1)
i1

|〈a(k2)
i2

| · · · )ρ{1,2,...,n}(|a(k1)
i1

〉|a(k2)
i2

〉 · · · )
and the minimum is taken over different choices of measure-
ment interaction defined by

⊗
k∈� B(k).

Proof. The same proof applies to a system with an arbitrary
number of subsystems, but for the sake of clarity and concrete-
ness only the bipartite case is explicitly treated here. Let ρAB

012117-6



NEGATIVITY OF QUANTUMNESS AND ITS INTERPRETATIONS PHYSICAL REVIEW A 88, 012117 (2013)

be a bipartite quantum state; we want to calculate the QoN on
subsystem A, QA

N (ρAB). Let {ai}i∈{1,2,...,m} be an orthonormal
basis for subsystem A, which we assume to have finite
dimension dim A = m. Suppose that the premeasurement state

ρ̃ABA′ =
m∑

i,j=1

|ai〉〈aj |A ⊗ ρij ⊗ |i〉〈j |A′,

where ρij = ρB
ij = 〈ai |ρAB |aj 〉, is created by a measurement

interaction V
{|ai 〉A}
A 
→AA′ . After the action by an appropriate per-

mutation matrix, the partially transposed ρ̃ABA′ on A′ can be
written in a block-diagonal form as we did for the maximally
correlated states in the proof of Lemma IV.1:

P ρ̃�
ABA′P

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11

. . .
ρmm

0 ρ12

ρ21 0

. . .

0 ρm−1,m

ρm,m−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The only difference with the MCS case is that here the entries
of the block matrices on the diagonal are matrices themselves
rather than scalars. It is well known that the eigenvalues of
a Hermitian matrix ( 0 H

H † 0 ) for an arbitrary matrix H are
given by the singular values of H , taken with both positive
and negative signs. Therefore, while the Schatten 1-norm
of the upper left block is clearly

∑m
i=1 ‖ρii‖1, that of the

second block-diagonal matrix is ‖ρ1,2‖1 + ‖ρ2,1‖1, etc. Now,
the Schatten 1-norm of block-diagonal matrices is simply the
sum of Schatten 1-norms of each sub-block (see Appendix A).
Therefore,

QA
N (ρAB) = min

B(A)

1

2

⎛
⎝∑

i,j

||ρij ||1 − 1

⎞
⎠ . (17)

�

V. PROPERTIES AND INTERPRETATIONS OF TOTAL
AND PARTIAL NEGATIVITY OF QUANTUMNESS

A. Properties of NoQ

We list here some general properties of NoQ.
(i) Positivity: NoQ is non-negative for any quantum state.

(ii) Faithfulness: NoQ is faithful; i.e., it is zero if and only
if the state is classical on the subsystems that are measured (all
the subsystems in the case of the total NoQ).

(iii) Negativity of quantumness exceeds negativity of entan-
glement [22]: For any bipartite quantum state, the total NoQ
exceeds the partial NoQ and both are always larger than the
entanglement of the state as quantified by the negativity.

The first two properties are very natural requirements for a
measure of nonclassical correlations. The first property follows
directly from the definition; the second property follows from

the activation protocol of Theorem III.1 and the fact that for a
MCS, negativity is nonzero if and only if the state is entangled
[32]. The third property follows from the hierarchy theorem
of [22] and is exploited in the next section.

B. Negativity of entanglement versus negativity of quantumness

In [34], Khasin et al. studied the negativity of an arbitrary
MCS and made a similar observation as ours; that is to say, the
negativity of a MCS can be geometrically interpreted as the
l1-norm distance from the separable state given by considering
only the diagonal component of that MCS. Using our notation,
their result is the following.

Theorem V.1 [34]. Let τAB = ∑n
i,j=1 τij |ai〉〈aj |A ⊗

|bi〉〈bj |B be a MCS for some τij ∈ C with respect to some
orthonormal basis of each system B(A) = {|ai〉} and B(B) =
{|bj 〉}. Then,

NA:B(τAB) = 1
2‖τAB − �B(A) ⊗ �B(B)[τAB]‖B(A)⊗B(B)

l1
,

(18)

where �A,�B are complete projective measurements on the
basis B(A),B(B).

Observe that we have already obtained the same result,
thanks to Eq. (16) and the equality of entanglement and
quantumness for a MCS (see Appendix C or Ref. [30]).

Besides such a result, Khasin et al. conjectured that the
negativity of any bipartite state is upper- bounded by the above
quantity minimized over the choice of local bases. In this
section, we prove their conjecture and moreover prove that for
a MCS τAB the state (�A ⊗ �B)[τAB] in Eq. (18) is indeed
the closest separable state of τAB with respect to the l1-norm
in the B(A) ⊗ B(B) maximally correlated basis.

With respect to the conjecture of Khasin et al., we find the
following.

Theorem V.2. For any bipartite state ρAB it holds

N (ρAB) � min
B(A)⊗B(B)

1
2‖ρAB − �B(A) ⊗ �B(B)[ρAB]‖B(A)⊗B(B)

l1
,

where the minimization is taken over the choice of local
product bases B(A) ⊗ B(B) and �A is a complete projection
onto B(A) (similarly for B).

Proof. We know from [22] that N (ρAB) � QN (ρAB) holds
for all ρAB . The claim is then obtained combining this with
Eq. (16). �

We are also able to prove the following.
Theorem V.3. Consider a MCS τAB = ∑

ij τij |ai〉〈aj | ⊗
|bi〉〈bj | where B(A) = {|ai〉} and B(B) = {|bj 〉} are any
orthonormal bases of subsystem A and B. Let us define a state
σAB = ∑

i τii |ai〉〈ai | ⊗ |bi〉〈bi |; i.e., σ only has the diagonal
components of τAB in the chosen local bases. Then one of the
closest separable states (or, more precisely, one of the closest
PPT states) to τAB with respect to the || · ||l1 norm in the
B(A) ⊗ B(B) basis is σAB :

‖τAB − σAB‖B(A)⊗B(B)
l1

= min
ξ∈PPT

‖τAB − ξ‖B(A)⊗B(B)
l1

= min
ξ∈SEP

‖τAB − ξ‖B(A)⊗B(B)
l1

,

where PPT is the set of all AB states with positive partial
transpose, SEP(⊂ PPT ) is the set of all separable state
in AB, and the l1-norm is taken with respect to the basis
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B(A) ⊗ B(B) in which τAB has the maximally correlated
form.

Proof. See Appendix D. �

C. Interpretations of the negativity of quantumness

Any measure of quantumness defined through the activation
protocol naturally possesses an operational meaning: the least
amount of system-apparatus entanglement which will be cre-
ated by any measurement interaction. Namely, NoQ quantifies
such minimum entanglement in terms of negativity. However,
it turns out that NoQ has some more possible interpretations:
a geometric interpretation as the minimum distance from
classical states (Approach 2) and an operational interpretation
in terms of disturbance induced by a measurement (Approach
3). Here we restrict our attention to the study of bipartite states
ρAB . In the bipartite case, we often refer to he total (partial)
NoQ as to the two-sided (one-sided) NoQ.

With respect to the operational interpretation in terms
of measurement disturbance, when the decohered quantum
system A is a qubit the one-sided NoQ can be interpreted
as the distinguishability of a quantum state from its partially
decohered state.

Theorem V.4. Let ρAB be a bipartite quantum state with A a
qubit. Then the partial NoQ on subsystem A of quantum state
ρAB is equivalent to the minimum trace distance between ρAB

and its decohered state on subsystem A:

QA
N (ρAB) = min

B(A)

1
2 ||ρAB − �B(A)[ρAB]||1, (19)

where �B(A) is the complete projective measurement in the
basis B(A) and the minimum is taken for different choices of
basis B(A).

Proof. Suppose the subsystem A is a two-level system, so
that the sum in Eq. (17) is limited to i,j ∈ {0,1}. Then,

1∑
i,j=0

||ρij ||1 = ‖ρ00‖1 + ‖ρ11‖1 + ‖ρ01‖1 + ‖ρ10‖1

= 1 +
∥∥∥∥
(

0 ρ01

ρ10 0

)∥∥∥∥
1

= 1 + ‖ρAB − �B(A)[ρAB]|‖1.

Here, the second equality is due on one side to the fact that,
ρAB being a normalized state, ‖ρ00‖1 + ‖ρ11‖1 = 1; on the
other side, for a block antidiagonal matrix one has ‖( 0 X

Y 0 )‖1 =
‖X‖1 + ‖Y‖1. �

Furthermore, we find the following equivalence.
Theorem V.5. Let ρAB be a bipartite quantum state where

the quantum system A is two-dimensional. Then

min
�B(A)

‖ρAB − �B(A)[ρAB]‖1 = min
σ∈CQ

‖ρAB − σ‖1. (20)

Proof. The inequality

min
�B(A)

‖ρAB − �B(A)[ρAB]‖1 � min
σ∈CQ

‖ρAB − σ‖1

holds trivially. Therefore, we prove the other direction.
Let {|i〉}{i=0,1} be the orthonormal basis of A in which the

minimization of right-hand side of Eq. (20) is achieved (i.e., in
which σ is explicitly classical on A, for an optimal classical-
quantum σ ). Now, ρ − σ in the chosen basis has the following

block-matrix form: (
A ρ01

ρ10 B

)
,

with ρAB = ( ρ00 ρ01
ρ10 ρ11

), σAB = ( σ00 0
0 σ11

), A = ρ00 − σ00, and B =
ρ11 − σ11. Let the singular value decomposition of ρ01 be
ρ01 = UDV and note that∥∥∥∥

(
A ρ01

ρ10 B

)∥∥∥∥
1

=
∥∥∥∥
(

U 0
0 V †

)(
U †AU D

D V BV †

)(
U † 0
0 V

)∥∥∥∥
1

=
∥∥∥∥
(

U †AU D

D V BV †

)∥∥∥∥
1

�
∥∥∥∥
(

�[U †AU ] D

D �[V BV †]

)∥∥∥∥
1

=
∥∥∥∥
(

D1 D

D D2

)∥∥∥∥
1

,

where � is a complete projective measurement on B that leaves
D invariant, D1 = �[U †AU ], D2 = �[V BV †], and we have
used that the trace distance is invariant under unitaries and
monotone under general quantum operations.

Let D1 = diag({a1, · · · ,an}), D2 = diag({b1, · · · ,bn}), and
D = diag({c1, · · · ,cn}). Notice that D depends only on the
state ρ, not on σ nor on the choice of basis. Then

‖ρAB − σ‖1 �
∥∥∥∥
(

D1 D

D D2

)∥∥∥∥
1

=
n∑

i=1

∥∥∥∥
(

ai ci

ci bi

)∥∥∥∥
1

.

Now ∥∥∥∥
(

a c

c b

)∥∥∥∥
1

= max
U

∣∣∣∣Tr

(
U

(
a c

c b

))∣∣∣∣
�

∣∣∣∣Tr

((
0 1
1 0

)(
a c

c b

))∣∣∣∣ = 2c;

hence,

min
σ∈CQ

‖ρAB − σ‖1 �
∑

i

2ci,

and such lower bound can be achieved when ai = bi = 0 for
all i, i.e., when A = B = 0. The latter case corresponds to
σ00 = ρ00 and σ11 = ρ11, i.e., σ = �B(A)[ρAB]. �

Hence, when the single measured system is a qubit,
Approach 2 and Approach 3 are equivalent also in the case
in which the distance adopted is the trace distance rather than
the Hilbert-Schmidt distance used in the case of the “standard”
geometric discord [24,25]. Combining Eqs. (19) and (20)
with the hierarchy of [22], we have that the trace-distance-
based quantumness measure always exceeds the negativity
(of entanglement) in bipartite states ρAB where A is a qubit.
We have numerical evidence that the equivalence between
the three approaches—activation (with negativity), geometric
(with trace distance), and disturbance (with trace distance)—
breaks down when the measured system is not a qubit.

For the two-sided case, we have already seen in Corol-
lary IV.2 that, in general, the total NoQ can be interpreted as
the minimum disturbance caused by local complete projective
measurements on A and B, as quantified by the l1-norm
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in the basis in which the projection is taken. Moreover, by
choosing properly the distance, it can be also interpreted from
the perspective of Approach 2.

Theorem V.6. Let ρAB be a bipartite state. Then its two-sided
NoQ is equivalent to the distance in l1-norm from its closest
CC state where the norm is with respect to the eigenbasis of
the classical state,

QAB
N (ρAB) = min

σ∈CC
1
2‖ρAB − σ‖B(σ )

l1
, (21)

where B(σ ) denotes the eigenbasis4 of σ .
Proof. Consider having fixed the local bases B(A) and

B(B) for the CC state σ , so that B(σ ) = B(A) ⊗ B(B).
Optimize now over the eigenvalues of σ , for fixed B(σ ). It is
clear that within such a class, the CC state σ that is optimal
for the sake of ‖ρAB − σ‖B(σ )

l1
is the one that has the same

diagonal (in the fixed basis) entries as ρ. For such σ it holds
‖ρAB − σ‖B(σ )

l1
= ‖ρAB − (�B(A) ⊗ �B(B))[ρAB]‖B(A)⊗B(B)

l1
.

The remaining minimization over the choice of local bases is
the same as in Eq. (16). �

D. The mechanism of the activation protocol for negativity

In this section, we see that the (total) activation protocol
using the negativity as an entanglement measure can be
described in terms of an isometric mapping due to the
measurement interaction: A bipartite quantum state and its
closest CC state are mapped to a premeasurement state and the
separable state closest to the latter, respectively.

The following lemma makes it clear what we mean by the
fact that the measurement interaction is isometric with respect
to the l1-norm.

Lemma V.1. The l1-norm is invariant under a measurement
interaction provided that the l1-norm is taken in the basis in
which the measurement interaction is defined.

Proof. The proof is immediate and, for the sake of
clarity and concreteness, we consider only the case of the
measurement of a single system. Consider an operator X on
system A and the measurement interaction V

{|ai 〉A}
A 
→AA′ that acts

on an orthonormal basis {|ai〉}of A as

|ai〉A 
→ |ai〉A |i〉A′ .

Then the matrix representations of X in the basis {|ai〉} and
that of V

{|ai 〉A}
A 
→AA′X(V {|ai 〉A}

A 
→AA′)† in the basis {|ai〉A ⊗ |i〉A′ } have
nonzero terms that are in one-to-one correspondence, so that

‖X‖{|ai 〉A}
l1

= ∥∥V
{|ai 〉A}
A 
→AA′X

(
V

{|ai 〉A}
A 
→AA′

)†∥∥{|ai 〉A⊗|i〉A′ }
l1

holds. �
This isometric property of the measurement interaction

and the following two observations—actually, restatements
of results we obtained in the previous sections—allow us to
draw a clear picture of the activation mechanism.

The first observation is that, according to Theorem V.6, the
total NoQ of a bipartite quantum state can be interpreted as
the l1-norm distance from its closest classical state:

QAB
N (ρAB)

= min
σ∈CC

1
2‖ρAB − σ‖B(σ )

l1

= min
B(A)B(B)

1
2‖ρAB − (�B(A) ⊗ �B(B))[ρAB]‖B(A)⊗B(B)

l1
.

The second observation is that, according to Theorem V.3,
the closest separable state to a MCS τAB is the separable state
corresponding to the diagonal—in the maximally correlated
basis—entries of τAB :

min
ξ∈PPT

‖τAB − ξ‖B(A)⊗B(B)
l1

= ‖τAB − σ‖B(A)⊗B(B)
l1

.

Now, the measurement interaction acting with respect to
the basis defined by �B(A) and �B(B) acts on the state and on
its closest classical state as follows:

ρAB 
→ ρ̃ABA′B ′

(�A ⊗ �B)[ρAB] 
→ (�A ⊗ �B)[ρ̃ABA′B ′ ].

Due to Theorem V.3, the state (�A ⊗ �B)[ρ̃ABA′B ′] is indeed
the closest separable state to the premeasurement state ρ̃ABA′B ′ .
In Appendix E we argue that that same isometric mapping
“state 
→ premeasurement state” and “closest classical state

→ closest (to the premeasurement state) separable state” hold
also for the case of relative entropy used as a distance function.

The following diagram shows the isometric mapping for
the NoQ:

min
�A⊗�B

‖ρ̃ABA′B ′ − (�A ⊗ �B)[ρ̃ABA′B ′ ]‖�A⊗�B

l1
=(ii) min

η∈SEP
‖ρ̃ABA′B ′ − η‖MCS

l1

=(i) = N (ρ̃ABA′B ′)
(22)

min
�A⊗�B

‖ρAB − (�A ⊗ �B)[ρAB]‖�A⊗�B

l1
=(iii) min

σ∈CC
‖ρAB − σ‖CCl1

= QN (ρAB).

In Eq. (22), equality (i) holds because the measurement
interaction for the basis �A ⊗ �B is isometric; relation (ii)

4An eigenbasis is uniquely defined if there are no degeneracies in
the spectrum; if there are, it is implicit that the basis B(σ ) is chosen
optimally to minimize the distance.

corresponds to the fact that the closest separable state to
a MCS is given by its diagonal part; relation (iii) holds
because the closest CC state is again its diagonal part. With
‖·‖MCS

l1
we indicate that the l1-norm is taken in the MCS

basis of ρ̃ABA′B ′ ; similarly, with ‖·‖CCl1
we indicate that the

l1-norm is taken in the basis in which σ is excplicitly
CC.

012117-9



TAKAFUMI NAKANO, MARCO PIANI, AND GERARDO ADESSO PHYSICAL REVIEW A 88, 012117 (2013)

VI. THE EQUIVALENCE OF NONCLASSICALITY
MEASURES FOR BIPARTITE SYSTEMS WITH

A TWO-LEVEL SUBSYSTEM

Recently, Gharibian has shown in [28] that the classicality
of a bipartite quantum state ρAB on subsystem A can be tested
by verifying the invariance of the state under some special
local unitary operations. Similar results have been obtained
independently by Giampaolo et al. [29]. Both works, which
define Approach 4 in Sec. I, are based on a generalization
to mixed states [41] of an approach to the quantification of
pure-state entanglement via local unitaries [42]. In [28,29]
it was proven that a quantum state is classical on one
subsystem A if and only if there exists some operation from
a particular set of local unitaries acting on the subsystem A,
called root-of-unity operations, that leaves the state invariant.
Therefore, the minimum disturbance caused by a local unitary
from this nontrivial set was suggested as a measure of
nonclassicality of correlations. We show that if the subsystem
A under investigation is a two-level system (qubit), then
the corresponding measure of nonclassicality defined by this
approach (Approach 4), and those defined by Approach 1 and
Approach 3, are all related.5

Definition VI.1: Root-of-unity operation [28,29,41]. Con-
sider a n-dimensional quantum system A. Then the set of
all unitary operators on A with spectrum {ωj

n}j∈{0,1,··· ,n−1} for
ωn = e2πi/n is called the set of root-of-unity (RU) operations.6

We indicate such a set by RU (A).
Approach 4 is then expressed by the following theorem.
Theorem VI.1: Nonclassicality by local unitary disturbance

[28,29]. A bipartite quantum state ρAB is classical on subsys-
tem A if and only if there exists a local unitary operation
VA ∈ RU (A) which leaves the quantum state invariant, i.e.,

(VA ⊗ IB)ρAB(VA ⊗ IB)† = ρAB.

Now consider the case in which A is a qubit. By definition,
a RU VA ≡ V of the qubit A has eigenvalues ±1 and thus its
spectral decomposition can be expressed as

V = |φ〉〈φ| − |φ⊥〉〈φ⊥|,
where {|φ〉 ,|φ⊥〉} is an orthonormal basis of a qubit. Then it
is easy to see that the mapping

ρ 
→ 1
2 (ρ + VρV †)

corresponds the totally dephasing operation in the basis
{|φ〉 ,|φ⊥〉}. This immediately implies

ρ − �
|φ〉
A [ρ] = 1

2 (ρ − VρV †),

where �
|φ〉
A denotes the totally dephasing operation on system

A in the basis {|φ〉,|φ⊥〉}. Therefore, when A is a qubit,
the quantification of nonclassicality of correlations by the
two different approaches Approach 3 and Approach 4 is

5The analytic equivalence of geometric discord and nonclassicality
measure by local unitary invariance for a 2 × N -dimensional system
was shown in [28,29] for the special case of Hilbert-Schmidt distance,
but not from our general operational viewpoint.

6Note that this set corresponds to {UZU † | U unitary,Z =∑
j ωj

n |j〉 〈j |} for {|j〉} fixed to be, e.g., the computational basis.

equivalent up to a constant. In the original papers [28,29,41],
the minimum disturbance caused by a RU operation was
measured by the Hilbert-Schmidt norm, but, in principle, any
norm-based distance can be considered, with the equivalence
staying true.

VII. ANALYTIC EXAMPLES

In this section, we look at some special classes of states
and obtain an analytic expression for the NoQ of these states.
Indeed, as we have seen, the expression of NoQ includes an
optimization over local bases and finding a closed analytic
expression for general states appears to be challenging. The
classes of states we study here, two-qubit states with a
maximally mixed marginal, Werner states and isotropic states,
all have properties—in particular, symmetries—that allow us
to simplify the optimization. In [20] it was already proven that
for two qudits,

QA
N

(
(1 − p)

1

d2
+ p|ψ〉 〈ψ |

)
= pN (|ψ〉〈ψ |),

where p is a probability, 1/d2 is the maximally mixed state of
the two qudits, and |ψ〉 is an arbitrary pure state. This previous
result encompasses also two-qubit states not considered here,
as well as isotropic states in arbitrary dimensions. In the
latter case, the proof provided below is simpler and based
on symmetry considerations.

A. Two-qubit states with one maximally mixed marginal

1. Bell diagonal states

Bell states are maximally entangled two-qubit states of the
following form:

|φ±〉 = 1√
2

(|0〉 |0〉 ± |1〉 |1〉),

|ψ±〉 = 1√
2

(|0〉 |1〉 ± |1〉 |0〉).

Bell diagonal states are two-qubit states such that all of their
eigenvectors are Bell states, i.e., of the form

τ = p0|φ+〉〈φ+| + p1|ψ+〉〈ψ+| + p2|ψ−〉〈ψ−|
+p3|φ−〉〈φ−|,

with {pi} a probability vector. The properties of Bell diagonal
states that are used for the proof of the theorems in this
section are summarized in Appendix F. Most importantly,
Bell diagonal states can be completely characterized by three
alternative—i.e., besides the above probability vector—real
parameters, namely by the three elements R11, R22, and R33 of
the correlation matrix R = [Rμν], with

Rμν = Tr[(σμ ⊗ σν)ρ], μ,ν = 0,1, . . . ,3.

We are able to compute explicitly the one-sided NoQ for Bell
diagonal states. Our result is summarized in the following
theorem.

Theorem VII.1: One-sided NoQ for Bell diagonal states.
Let R00,R11,R22,R33 be the correlation matrix elements of a
Bell diagonal state ρAB . Rename and reorder |R11|,|R22|,|R33|

012117-10
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according to their size as λ1,λ2,λ3 with 1 � λ3 � λ2 � λ1 �
0. Then

QA
N (ρAB) = λ2

2
. (23)

Proof. Let |φ〉 = (|0〉A|0〉B + |1〉A|1〉B)/
√

2 and φAB =
|φ〉〈φ|, where throughout the proof |i〉 denotes the com-
putational basis. Then, as explained in the Appendix F, a
Bell diagonal state can be expressed as (IA ⊗ �B)[φAB],
where �(X) = ∑3

μ=0 pμσμXσμ is a Pauli channel with
{pμ}μ∈{0,1,2,3} a probability vector. Now let {|ai〉 : i = 0,1} be
a basis for the qubit space. Then the expression of one-sided
NoQ in Eq. (17) implies

QA
N (ρAB) = min

{|a0〉,|a1〉}
(‖〈a0|(IA ⊗ �B[φAB])|a1〉‖1

+‖〈a1|(IA ⊗ �B[φAB])|a0〉‖1
)
/2

(i)= min
{|a0〉,|a1〉}

max
U

|〈U, 〈a0|(IA ⊗ �B[φAB])|a1〉〉|
(ii)= min

{|a0〉,|a1〉}
max

U
|〈U,�B[〈a0|φAB |a1〉]〉|

(iii)= min
{|a0〉,|a1〉}

max
U

|〈�B[U ], 〈a0|φAB |a1〉〉|
(iv)= min

{|a0〉,|a1〉}
max

U
|〈�B[U ], (|a∗

0〉〈a∗
1 |B/2)〉|

(v)= min
V

max
U

| 〈1|B V †�B[U ]V |0〉B |/2, (24)

where (i) holds because of the 1-norm invariance under
Hermitian conjugation, so that the two terms on the right-hand
side of the previous line are equal; (ii) holds because tracing
on A commutes with operations on B; (iii) holds because a
Pauli channel is self-dual; (iv) holds because for the maxi-
mally entangled state |φ〉 one has 〈γ |A |φ〉AB = |γ ∗〉B /

√
2,

where |γ ∗〉 = γ ∗
0 |0〉 + γ ∗

1 |1〉 if |γ 〉 = γ0 |0〉 + γ1 |1〉; finally,
(v) holds because {|a∗

i 〉 : i = 0,1} is still an orthonormal
basis and we can write |a∗

i 〉 = V |i〉 for V a unitary. Since
〈1|BV †�B[U ]V |0〉B |/2 is an expression only on subsystem
B, the subscripts are omitted in the following.

Now, the spectral decomposition of the unitary U can be
expressed as

U = eiθ1 |ψ〉〈ψ | + eiθ2 |ψ⊥〉〈ψ⊥|
= eiθ1 (|ψ〉〈ψ | + ei(θ2−θ1)(I − |ψ〉〈ψ |))
= eiθ1 (eiθI + (1 − eiθ )|ψ〉〈ψ |),

where |ψ〉,|ψ⊥〉 are eigenvectors of U and θ = θ2 − θ1. Thus,
ignoring the irrelevant global phase, we can rewrite the NoQ
as

QA
N (ρAB) = min

V
max
θ,|ψ〉

|〈1|V †�(eiθI

+ (1 − eiθ )|ψ〉〈ψ |)V |0〉|/2
(i)= min

V
max
|ψ〉

|〈1|V †�[|ψ〉〈ψ |]V |0〉|
(ii)= min

V
max
|ψ〉

|〈σx + iσy

2
, V †�[|ψ〉〈ψ |]V 〉|

= min
V

max
|ψ〉

√
〈σx〉2 + 〈σy〉2/2, (25)

where 〈σx〉 is the expectation value of σx for the state
V †�(|ψ〉〈ψ |)V , i.e., 〈σx, V

†�(|ψ〉〈ψ |)V 〉 and similarly 〈σy〉
is its expectation value of σy . For the equalities, in (i)
we used the fact that any Pauli channel is unital and that
maxθ |1 − eiθ | = 2, while (ii) is due to the relation |0〉〈1| =
(σx + iσy)/2.

As already mentioned, there is a one-to-one correspondence
between Pauli channels and Bell diagonal states, and a Pauli
channel with corresponding Bell diagonal state described by
{Rii} acts on a Bloch vector of components ni = Tr(σiρ)/

√
2,

i = x,y,z (see also Appendix F), according to

(nx,ny,nz) 
→ (R11nx, − R22ny,R33nz).

Therefore, its action on the Bloch sphere S2 results in
an ellipsoid of equatorial radii (R11,R22,R33). Now rename
|R11|,|R22|,|R33| according to their size as λ1,λ2,λ3 with
1 � λ3 � λ2 � λ1 � 0. Considering that

√〈σx〉2 + 〈σy〉2 rep-
resents the Euclidean distance from the origin of the projection
of the state V †�(|ψ〉〈ψ |)V on the xy plane, one can easily
imagine that QA

N (ρAB) is achieved when V aligns the largest
equatorial radius with the z axis and choosing |ψ〉 to be the
state mapped in the direction of the second-largest equatorial
radius (see Fig. 1). It is clear that this choice provides an upper
bound QA

N (ρAB) � λ2/2. In the following we prove that this
bound is saturated.

First, observe that an ellipsoid with equatorial radii
(λ1,λ2,λ3) that are aligned with the coordinate axes can be
expressed as

{x = (x1,x2,x3) : xT Ax = 1},

where A = diag(1/λ2
1,1/λ2

2,1/λ2
3). Therefore, an arbitrary

ellipsoid with equatorial radii (λ1,λ2,λ3) can be expressed as

{y = (y1,y2,y3) : yT By = 1},

xy-plane xy-plane

(a) (b)

FIG. 1. (Color online) The problem of calculating the one-sided
NoQ QA

N of Bell diagonal states cast in geometrical terms. (a) The
surface of the ellipsoid is the set of states of the form V †�(|ψ〉〈ψ |)V
with some unitary V for the set of all pure qubit states |ψ〉. Here we
want to find the optimal unitary V such that it minimizes the maximum
distance from the origin to its projection onto the xy plane. (b) Clearly
choosing the unitary which rotates the ellipsoid such that it aligns the
longest equatorial radii along z axis minimizes the maximum distance
from the origin to its projection on the xy plane.

012117-11



TAKAFUMI NAKANO, MARCO PIANI, AND GERARDO ADESSO PHYSICAL REVIEW A 88, 012117 (2013)

with B = RT AR for some rotation R ∈ O(3). In particular, B
has the same—positive—eigenvalues as A. We then find

max
y: yT By=1

√
y2

1 + y2
2

(i)
� max{||y|| : y = (y1,y2,0),yT By = 1}
(ii)= max{(y ′T By ′)−1/2 : y ′ = (y ′

1,y
′
2,0),‖y ′‖ = 1}

= 1/

√
min{(y ′T By ′) : y ′ = (y1,y2,0),‖y ′‖ = 1}

(iii)
� 1/

√
1/λ2

2 = λ2,

where (i) holds because the cross section of an arbitrary
ellipsoid with the xy plane is a subset of its projection onto the
xy plane; (ii) holds because for any y satisfying yT By = 1 we
can consider a normalized y ′ = y/‖y‖, and for any normalized

y ′ we can consider y/
√

yT By that satisfies by construction
yT By = 1; finally, (iii) holds because Corollary III.1.2 of [43]
implies

1

λ2
2

= max
M ⊂ R3

dimM = 2

min
x ∈ M
||x|| = 1

xT Bx, (26)

where M is a two-dimensional subspace of R3.
Therefore, QA

N (ρAB) = λ2
2 . �

With this result for the one-sided NoQ we can also easily
solve the two-sided case.

Corollary VII.1: Two-sided NoQ for Bell diagonal states.
For a Bell diagonal state ρAB , its total NoQ is QN (ρA) = λ2

2 .
Proof. Since local unitaries acts as O(3) elements on the

correlation matrix of ρAB , one can always transform it to⎛
⎜⎝

1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

⎞
⎟⎠

and a simple calculation shows that the ‖ · ‖l1 -norm—in the
computational basis—of a state with such correlation matrix
is 1 + λ2. Since QA

N (ρAB) � QN (ρAB) [22], this is the best
we can achieve; i.e., QN (ρAB) = λ2/2. �

2. Extension of the analysis for Bell diagonal states

For the analysis of Bell diagonal states, we made use of
the fact that each Bell diagonal state can be expressed as a
state generated by the action of a unique Pauli channel on
the maximally entangled state. However, there is no reason
to restrict the channel to be a Pauli channel and NoQ can
be computed in a similar manner for the state generated by
the action of a general qubit channel (CPTP map) on the
maximally entangled state.

Theorem VII.2. Let ρAB be a two-qubit state where ρA =
TrB[ρAB] is maximally mixed. Let R be the correlation matrix
of the state ρAB with elements Rμν = 〈σμ ⊗ σν,ρAB〉 and
denote its 3 × 3 submatrix as R̂ := [Rij ]i,j∈{1,2,3}. Denote the
singular values (including zeros) of R̂ in descending order as
s1(R̂) � s2(R̂) � s3(R̂).

Then QA
N (ρAB) = s2(R̂)/2.

Proof. To apply the techniques from the analysis for the
case of Bell diagonal states (Theorem VII.1), it is important to
notice the relation between the matrix T ∈ R4×4 representing
a Hermiticity-preserving linear map � (see Appendix G) and
the correlation matrix R of the corresponding operator ρAB =
(I ⊗ �)[φAB], with φAB the standard maximally entangled
state. This relation can be expressed as Rμν = 1

2 (−1)δμ2Tμν ,
with δμ2 a Kronecker δ. Moreover, local unitaries acting on
ρAB corresponds to the action of unitaries on the input and
output of the channel. Namely, let R′ be the correlation matrix
of (UA ⊗ UB)ρAB(UA ⊗ UB)†, where UA and UB are local
unitaries on system A and B. Then the matrix T′ defined via
T ′

μν = 2(−1)δμ2R′
μν represents the action of WUB

◦ � ◦ WUT
A

,
where WU stands for the conjugation by U , i.e., WU [X] =
UXU †. Also, it is easy to see that the singular values of the
3 × 3 submatrix R̂ = [Rij ]i,j∈{1,2,3} and those of the submatrix
of [Tij ]i,j∈{1,2,3} of T are equal up to the constant 1/2.

Now we consider a state ρAB maximally mixed on A, which
can always—and uniquely—be represented as ρAB = (IA ⊗
�)[φAB], with � a channel. Now as explained in Appendix G,
one can find unitaries UA and UB such that � = WUB

◦ �̃ ◦
WUA

with the matrix representation T of �̃ in the canonical
form

T =

⎛
⎜⎜⎝

1 0 0 0
t1 λ1

t2 λ2

t3 λ3

⎞
⎟⎟⎠ .

Following the same steps taken in Eq. (24), one finds

QA
N (ρAB) = min

{|a0〉,|a1〉}
(‖〈a0|(IA ⊗ �B[φAB])|a1〉‖1

+‖〈a1|(IA ⊗ �B[φAB])|a0〉‖1)/2

= min
V

max
U

| 〈1|B V †�†
B[U ]V |0〉B |/2,

where we have taken into account that now in general the
channel λ is not self-dual, so that �† �= �.

From � = WUB
◦ �̃ ◦ WUA

, so that �† = W
U

†
A

◦ �̃† ◦ W
U

†
B
,

and following step (i) of Eq. (25), we arrive at

QA
N (ρAB) = min

V
max
|ψ〉

|〈|0〉〈1|, V †�̃†[|ψ〉〈ψ |]V 〉|, (27)

having used the fact that for any channel �, the dual map �†

is unital, i.e., �̃†[I] = I.
Now, the action of �̃† on a state with Bloch coordinates

(1,w1,w2,w3) is

�̃†

[
1

2

(
I +

∑
i

wiσi

)]

= 1

2

[(
1 +

∑
i

tiwi

)
I +

∑
i

λiwiσi

]
, (28)

since the matrix representation of �̃† is TT (see Appendix G).
While as soon as some ti is different from zero the map �̃† is
not trace-preserving, we see that this is irrelevant, as the first
term on the right-hand side of Eq. (28) effectively does not
contribute to the right-hand side of Eq. (27). Hence, we can
follow the proof of Theorem VII.1 as if we were dealing with
a Pauli channel fully characterized by λ1,λ2,λ3. �
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B. Werner states

Here we present the formula for the one-sided and two-sided
NoQ for general Werner states [35].

Definition VII.1: Werner states. Let A and B be d-
dimensional quantum systems. Then a Werner state ρAB is
a bipartite state of the form [35]

ρAB = IAB + βW

d2 + dβ
,

where β ∈ R satisfies |β| � 1, W = ∑
ij |i〉〈j | ⊗ |j 〉〈i| is the

swap operator and IAB is the identity operator on AB. Werner
states are UU invariant, i.e., UA ⊗ UBρABU

†
A ⊗ U

†
B = ρAB ,

for all U .
Theorem VII.3: NoQ of Werner states. For any Werner

state ρAB = IAB+βW

d2+dβ
the partial and the total NoQ are both

equal to

QA
N (ρAB) = QAB

N (ρAB) = |β|(d − 1)

2(d + β)
.

Proof. First we prove the case for one-sided NoQ.
Recall from Eq. (17), QA

N (ρAB) = minB(A)
1
2 (

∑
i,j ‖ρij‖1 −

1), where ρij = ρB
ij = 〈ai |ρAB |aj 〉 for |ai〉 = U |i〉 elements of

the basis B(A), for some unitary U . It is clear that each ‖ρij‖1

is invariant unitaries on B. We can then use the UU invariance
of Werner states as follows:

‖〈ai |AρAB |aj 〉A‖1

= ‖〈i|AU
†
AρABUA|j 〉A‖1

= ‖〈i|AU
†
A(UA ⊗ UB)ρAB(UA ⊗ UB)†UA|j 〉A‖1

= ‖UB〈i|AρAB |j 〉AU
†
B‖1

= ‖〈i|AρAB |j 〉A‖1.

This proves that there is no need to perform the optimization
to calculate the NoQ and one can use the computational
basis on A. A straightforward calculation proves then the
claim.

One can then calculate the two-sided NoQ checking that
local measurements in the computational basis are optimal,
since they reach the lower bound constituted by the one-sided
value. �

C. Isotropic states

Isotropic states [36] are another class of bipartite states,
amenable to an exact quantumness analysis.

Definition VII.2: Isotropic states. Isotropic states are bipar-
tite quantum state of the following form [36]:

ρAB = λ� + 1 − λ

d2 − 1
(I − �),

where d is the dimension of A and B, 0 � λ � 1, and � =
|φ〉〈φ| with |φ〉 = 1/

√
d

∑d
i=1 |i〉A |i〉B is the d-dimensional

maximally entangled state. Isotropic states are UU ∗ invariant;
i.e., UA ⊗ U ∗

BρABU
†
A ⊗ UT

B = ρAB , for all U .
Theorem VII.4. The one-sided and two-sided NoQ of an

isotropic state are both equal to

QA
N (ρAB) = QAB

N (ρAB) = |λd2 − 1|
d + 1

.

Proof. The proof is essentially identical to the one for
Werner states. One can use the UU ∗ invariance to prove that
the optimization in the calculation of the one-sided NoQ in
unnecessary. Then a straightforward calculation considering
the computational basis of A leads to QA

N (ρAB) = |λd2−1|
d+1

(similarly for B). The result for the two-sided NoQ is obtained
matching this lower bound by considering measurements in
the two local computational bases. �

VIII. CONCLUSIONS

In this paper we have quantitatively investigated a gen-
eral notion of quantumness of correlations in bipartite and
multipartite states [5]. Such quantumness can be related, for
instance, to the disturbance induced on quantum states by local
projective measurements.

We have reviewed several approaches to reveal and quantify
the quantumness of correlations, proving that several of them
are, in fact, equivalent in the general case of bipartite systems
where local measurements act on a two-dimensional subsys-
tem. We focused our analysis on a measure of quantumness of
correlations defined as the minimum entanglement (measured
by the negativity) created with a set of measurement appara-
tuses during the action of local measurements, following the
so-called “activation” paradigm for nonclassical correlations
[19–22]. The ensuing quantumness measure, known as NoQ,
turns out to have very interesting properties. In particular, when
the measured subsystem is a qubit it reduces to the minimum
disturbance as measured by the trace distance or, alternatively,
to the minimum trace distance to states that are classical on the
qubit. We clarified the mechanism of the activation protocol
for negativity and proved a bound on the negativity of arbitrary
bipartite states conjectured in [34].

We finally presented a number of examples on which
the NoQ can be computed exactly. These include relevant
families of states such as Werner, isotropic, and two-qubit
states that have one maximally mixed marginal. The latter
class not only includes all Bell diagonal states, but also all
the states isomorphic to an arbitrary qubit channel � via
(1A ⊗ �B)[φAB], with φAB the standard maximally entangled
state of two qubits. Given the hierarchical relation

QA
N (ρAB) � N (ρAB)

of [22], the closed formula of this paper allows, e.g.,
a consistent study and comparison of the evolution of
entanglement—as measured by negativity—and quantumness
of correlations—as measured by the one-sided NoQ—under
the action of a family of qubit channels, e.g., a semigroup. We
remark that, while QA

N could increase under actions on A, both
QA

N and N can only decrease under actions on B.
We believe the unveiled connections between apparently

unrelated approaches to define and quantify general non-
classical correlations might inspire further research into the
rationale of quantum measurements, possibly bringing a better
understanding of the most essential features which mark a
departure from a classical description of nature. The NoQ
is an inherently relevant marker of nonclassicality, as it
embodies the most general notion of quantum coherence for
composite systems. From an applicative perspective, the NoQ
has been already linked to the performance of certain quantum
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information tasks. In particular, the authors of Ref. [44]
have studied the primitive of remote state preparation in
realistic models of one-way quantum computation based on
noisy cluster states. They considered two possible sources
of noise affecting the computation, either phase flip errors
or white noise. The result was that the fidelity of remote
state preparation in such a context does not relate either with
entanglement or with the conventional measure of quantum
discord for the considered mixed resource states, but it turns
out to be a monotonic function of the NoQ (thereby referred
to as “minimum entanglement potential”) [44]. This links our
measure with the quality of a quantum computation protocol
in a specific practical setting. Other interesting features of
the NoQ in open system dynamical evolutions have been
investigated theoretically and experimentally in very recent
works [45–47].

We can expect more general frameworks to be defined
in the near future where the quantumness of correlations,
possibly measured by the NoQ, can emerge as a resource
to beat classical strategies for some particular task. Quantum
communication and metrology seem to be fertile grounds for
such an expectation to grow into practice. We finally remark
that the NoQ can be bounded by experimentally accessible
witnesses [48]. An experimental demonstration of the acti-
vation of nonclassical correlations into entanglement during
local measurements, featuring an experimental estimation of
the NoQ in a particular class of two-qubit states, will appear
elsewhere [49].

Note added. Recently, we became aware of other works
investigating a distance-based measure of quantumness based
on trace norm, which is equivalent to the NoQ for qubit
states [47,48,50–53]. In particular, Paula et al. [50] aim
at computing the minimum distance between a two-qubit
Bell-diagonal state and any classical-quantum state. Paula
et al. make the assumption that the closest classical-quantum
state is itself in the class of Bell-diagonal states and provide
evidence for the correctness of this assumption via a numerical
investigation. That the assumption is correct follows from
Theorem V.5 in this work. More in general, Theorems V.4
and V.5 taken together imply that Approach 1, Approach 3,
and Approach 2 are all equivalent when the system whose
classicality is under scrutiny is a qubit, with the choice of trace-
norm as distance and negativity as entanglement measure. It
follows that the results of [50] must necessarily coincide with
those of our Theorem VII.1, which we further generalize in
Theorem VII.2.
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APPENDIX A: PROPERTIES OF THE SCHATTEN
p-NORMS

As Schatten p-norms are defined as

‖A‖p :=
(∑

i

σ
p

i (A)

)1/p

, (A1)

where σi(A)’s are the singular values of a matrix A, they are
invariant under the action of unitary matrices, namely ‖A‖p =
‖UAV ‖p for any unitary matrices U and V .

If A can be partitioned into orthogonal block-diagonal
matrices, i.e., if there exists mutually orthogonal projections
P1, . . . ,Pk such that P1 ⊕ · · · ⊕ Pk = I and A = ∑k

i=i PiAPi ,
then ‖A‖p = ∑k

i=1 ‖PiAPi‖p. This can be easily derived by
the pinching inequality [43] and by the fact that equality can
be achieved trivially.

Several transformations on the Schatten 1-norm which
we use throughout the paper can be derived by these two
properties. For example,∥∥∥∥

(
0 X

Y 0

)∥∥∥∥
1

=
∥∥∥∥
(

X 0
0 Y

)(
0 I
I 0

)∥∥∥∥
1

=
∥∥∥∥
(

X 0
0 Y

)∥∥∥∥
1

= ‖X‖1 + ‖Y‖1 .

There is an alternative expression for the Schatten 1-norm
by its dual norm. The dual norm of ‖ · ‖, denoted as ‖ · ‖◦, is
defined for a matrix A as

‖A‖◦ := sup
‖B‖=1

|〈B,A〉|.

It is known that the dual norm of the Schatten p-norm for
1 � p � ∞ is the Schatten q-norm with 1

p
+ 1

q
= 1 [43]. For

the Schatten 1-norm,

‖A‖1 = sup
‖B‖∞=1

|〈B,A〉| = max
V ∈U(n)

|〈V,A〉| = max
V ∈U(n)

| Tr(V A)|,

for a matrix A ∈ M(n).

APPENDIX B: PROPERTIES OF THE l1-NORM

The l1-norm (sometimes called taxicab metric) of a vector
is defined as the sum of absolute values of all entries. For
x = (x1,x2, . . . ,xn) ∈ Cn,

‖x‖l1 =
n∑

i=1

|xi |.

We will be interested in applying this kind of norm to matrices
A ∈ M(n), where M(n) is the set of n × n matrices with
complex entries, so that

‖A‖l1 =
n∑

i,j=1

|Aij |. (B1)

One advantage of the norm (B1) is its ease of calculation, but
it has some drawbacks. First, it is not submultiplicative; i.e., it
does not respect ‖AB‖l1

� ‖A‖l1
‖B‖l1

. Moreover, this norm
is not invariant under conjugation by unitaries, which implies
a matrix takes a different l1-norm value depending on the basis
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chosen for its representation. To take this into account, the basis
with respect to which the l1-norm is calculated is indicated as
superscript when needed.

One notable feature of the l1-norm which is used in the
paper is the following.

Lemma B.1. For any A ∈ M(n) it holds

‖A‖Bl1 � ||A||1 (B2)

independently of the basisB in which the l1-norm is calculated.
If A is normal, i.e., AA† = A†A, then there is a choice of

basis B̄ such that the minimum in (B2) is achieved, i.e.,

‖A‖B̄l1 = ||A||1. (B3)

Proof. For a fixed choice of basis B—the one in which we
calculate ‖·‖Bl1 —consider the subset of matrices �B whose
entries have modulus equal or smaller than 1, i.e., �B =
{[bij ]i,j∈{1,2,...,n} ∈ M(n) ; |bij | � 1 , ∀ i,j ∈ {1,2, . . . ,n}}.
The l1-norm of A in the basis B can be written as

‖A‖B1 = max
V ∈�

| Tr(V A)|. (B4)

On the other hand, the 1-norm can be written as

||A||1 = max
V ∈U(n)

| Tr(V A)|, (B5)

where U (n) is the set of n × n unitary matrices. Observe that
U (n) ⊂ �, because the rows and columns of a unitary matrix
form a set of orthonormal vectors. Therefore, Eq. (B2) holds.

Equation (B3) is trivial because a normal matrix can be
diagonalized by a change of basis. �

APPENDIX C: THE EQUALITY OF ENTANGLEMENT
AND QUANTUMNESS FOR MCS

Theorem C.1. Let ρAB be a MCS. Then

QAB
E (ρAB) = QA

E(ρAB) = EA:B(ρAB),

with QAB
E and QA

E the measures of quantumness (two-sided
and one-sided, respectively) defined by means of (6) and EA:B

the entanglement between A and B.
Proof. By the result of [22], QAB

E (ρAB) � QA
E(ρAB) �

EA|B(ρAB) holds. Therefore, it is sufficient to prove
EA|B(ρAB) � QAB

E (ρAB). By definition QAB
E (ρAB) :=

min EAB|A′B ′ (ρ̃ABA′B ′), where the minimum is taken over
the choice of different pre-measurement state. Now we can
choose a particular measurement interaction which acts on
the basis of the maximally correlated form, i.e.,∑

ij

ρij |ai〉〈aj | ⊗ |bi〉〈bj |


→
∑
ij

ρij |ai〉〈aj | ⊗ |bi〉〈bj | ⊗ |i〉〈j |A′ ⊗ |i〉〈j |B ′ .

The resultant state is equivalent to the original ρAB up
to local unitary on AB or A′B ′. Therefore, EA|B(ρAB) �
QAB

E (ρAB). �

APPENDIX D: PROOF OF THEOREM V.3

Proof. We simply denote τAB and σAB as τ,σ . Let
η = ∑

klmn λklmn|ak〉〈al| ⊗ |bm〉〈bn| be a traceless Hermitian

matrix such that ξ = τ + η is an arbitrary separable state. We
want to prove that

||τ − σ ||{|ai 〉⊗|bj〉}
l1

� ‖τ − ξ‖{|ai 〉⊗|bj〉}
l1

= ‖η‖{|ai 〉⊗|bj〉}
l1

.

Since ||τ − σ ||{|ai 〉⊗|bj〉}
l1

= ∑
i �=j |τij |, it is sufficient to prove

that
∑

i �=j |τij | �
∑

klmn |λklmn|.
In our argument we make use of the negative eigenvectors

of τ�

|φij 〉 = 1√
2

(|ai〉 ⊗ |bj 〉 − τji

|τji | (|aj 〉 ⊗ |bi〉)),

where i �= j , with corresponding eigenvalues −|τij | (see
Lemma IV.1).

We now consider two cases.
(1) Suppose the diagonal entries of ξ are the same as those

of τ , i.e.,

λijkl = 0 for i = j, k = l.

Now consider the partial transpose of ξ , ξ� = τ� + η� =
τ� + ∑

klmn λklmn|ak〉〈al | ⊗ |bn〉〈bm|. It holds

〈φij |ξ�|φij 〉
= 〈φij |τ�|φij 〉 + 〈φij |

∑
klmn

λklmn|ak〉〈al||bn〉〈bm|φij 〉

= −|τij | − 1

2|τij | (τ ∗
jiλ

∗
ij ij + τjiλijij )

= −|τij | − Re

[
τji

|τij |λijij

]
.

By assumption ξ is a separable state, i.e., the numerical range
of ξ� is in a positive real line. Therefore, a necessary condition
for ξ to be PPT is 〈φij |ξ�|φij 〉 � 0 for all i �= j .

We find

∑
i �=j

|τij | �
∑
i �=j

−Re

[
τji

|τij |λijij

]

�
∑
i �=j

|λijij | �
∑
klmn

|λklmn|,

as claimed.
(2) Consider an arbitrary η, i.e., no conditions are imposed

on the coefficients λklmn except that they lead to a separable
state ξ . Then there are more terms in the expression for
〈φij |ξ�|φij 〉 than those encountered in the previous calculation.
Namely,

〈φij |ξ�|φij 〉 = −|τij | − 1

2|τij | (τ ∗
jiλ

∗
ij ij + τjiλjjii)

+ 1

2
(λiijj + λ∗

jjii)

= −|τij | − Re

[
τji

|τij |λijij

]
+ 1

2
(λiijj + λ∗

jjii).
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Nonetheless, by imposing 〈φij |ξ�|φij 〉 � 0 for all i �= j we
find∑

i �=j

|τij | �
∑
i �=j

(
− Re

[
τji

|τij |λijij

]
+ 1

2
(λiijj + λ∗

jjii)

)

�
∑
i �=j

(|λijij | + |λiijj |)

�
∑
klmn

(|λklmn|).

Therefore, for both cases,
∑

i �=j |τij | is the smallest possible
value and σ is one of the closest separable state. �

APPENDIX E: THE ISOMETRIC MAPPING
FOR QUANTUM RELATIVE ENTROPY

Relative entropy of entanglement is an entanglement mea-
sure defined as the “distance”—in terms of quantum relative
entropy (see Sec. II)—from the closest separable state [31]:

ER(ρAB) = min
σAB∈SEP

S(ρAB ||σAB). (E1)

The measure of nonclassical correlation based on quantum
relative entropy is called relative entropy of discord [23] and
is defined as

ER(ρAB) = min
σAB∈CC

S(ρAB ||σAB), (E2)

and in [23] its equivalence to zero-way quantum deficit (8)
was proved. Namely,

min
σAB∈CC

S(ρAB ||σAB) = min
�A⊗�B

S(ρAB ||�A ⊗ �B[ρAB]). (E3)

Since quantum relative entropy is invariant under linear
isometry,

min
�A⊗�B

S(ρAB ||�A ⊗ �B[ρAB])

= min
�A⊗�B

S(ρ̃ABA′B ′ ||�A ⊗ �B[ρ̃ABA′B ′]), (E4)

where ρ̃ABA′B ′ is the premeasurement state constructed by the
measurement interaction on the basis �A ⊗ �B . Finally, by
the exact expression of relative entropy of entanglement for
MCS given in [32], one can deduce that �A ⊗ �B[ρ̃ABA′B ′ ] is
indeed one of the closest separable states for ρABA′B ′ .

Equation (E5) summarizes the relations and equivalences
just explained:

min
�A⊗�B

S(ρ̃ABA′B ′ ||(�A ⊗ �B)[ρ̃ABA′B ′]) =(ii) min
η∈SEP

S(ρ̃ABA′B ′ ||η)

=(i) (E5)

min
�A⊗�B

S(ρAB ||(�A ⊗ �B)[ρAB]) =(iii) min
σ∈CC

S(ρAB ||σ ).

In Eq. (E5), (i) is because the measurement interaction for
the basis �A ⊗ �B is isometric, (ii) is because the closest
separable state of MCS is its diagonal part, and (iii) is because
the closest CC state is again its diagonal part.

APPENDIX F: BELL DIAGONAL STATES AND
PAULI CHANNELS

Since the set of pure qubit states corresponds to the complex
projective space CP1 and there is an isomorphism between
the unit sphere S2 ⊂ R3 and CP1, the states of a qubit can be
represented as points in a unit ball B2. Namely, for a qubit state
with a density matrix ρ, define a vector n = (n1,n2,n3) ∈ R3

as ni = Tr[σiρ], where σ1 = σx,σ2 = σy,σ3 = σz are the Pauli
matrices (see also Sec. II). The vector n is called the Bloch
vector of the qubit state ρ. A pure ρ corresponds to a unit
vector n, while a mixed state has ||n|| < 1. That is, pure states
correspond to S2 and mixed states to its interior. Conversely,
one can recover the density matrix associated to a Bloch vector
n via

ρ = 1
2 (I + n · σ ),

where n · σ = ∑3
i=1 niσi .

This representation allows us to geometrically analyze qubit
states. For example, when a Pauli channel of the form �[ρ] =∑3

μ=0 piσμρσμ with {pi} a probability vector and σ0 = I acts

on a qubit sate ρ, the Bloch vector n of ρ transforms as

(n1,n2,n3) 
→ [(p0 + p1 − p2 − p3)n1,

(p0 − p1 + p2 − p3)n2,

(p0 − p1 − p2 + p3)n3].

Bell diagonal states have some notable properties. First, a
Bell diagonal state can be expressed as the action of a Pauli
channel on a Bell state. More precisely, there is a one-to-one
relation between the set of Pauli channels and the set of Bell
diagonal states,

p0|φ+〉〈φ+| + p1|ψ+〉〈ψ+| + p2|ψ−〉〈ψ−| + p3|φ−〉〈φ−|
= (� ⊗ I)[|φ+〉〈φ+|],

where I indicates here the identity channel on a qubit
and �[ρ] = ∑3

μ=0 piσμρσμ as defined before. Second, the
correlation matrix of Bell diagonal states have diagonal form.
A simple algebra shows that the correlation matrix of Bell
diagonal states satisfies the following relations:

R00 = 1, Rij = 0 for i �= j,

R11 + R22 + R33 � 1, 1 + R11 + R22 � R33,

1 + R11 + R33 � R22, 1 + R22 + R33 � R11.

Indeed the restrictions above force the vector (R11,R22,R33) to
be within a tetrahedron in R3 [54]. The two different pictures
of Bell diagonal states, the Pauli channel representation and the
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correlation matrix representation, are related in the following
way: ⎛

⎜⎝
R00

R11

R22

R33

⎞
⎟⎠ =

⎛
⎜⎝

1 1 1 1
1 1 −1 −1

−1 1 −1 1
1 −1 −1 1

⎞
⎟⎠ .

⎛
⎜⎝

p0

p1

p2

p3

⎞
⎟⎠ .

APPENDIX G: CANONICAL FORM OF QUBIT CHANNELS

1. Matrix representation of qubit channels

The Bloch parametrization nμ = Tr(σμX), μ = 0, . . . ,3,
of a Hermitian matrix X = X† ∈ M(2) allows us to represent
such Hermitian matrices—and in particular states, for which
n0 = 1—as vectors in R4. Any Hermiticity-preserving map
� : C2×2 → C2×2 can then be represented as matrix T ∈
R4×4, with Tij = 〈σi,�[σj ]〉. If � is a channel, so that in
particular it preserves trace, then T01 = T02 = T03 = 0. Also,
it is easy to check that the matrix representing the dual of �

(see Sec. I) is given by the transpose TT of the original matrix
representation T of �.

2. The canonical form of qubit channels [55]

Let � be an arbitrary Hermiticity- and trace-preserving
linear map on qubits represented by T ∈ R4×4. Then one
can find suitable local unitaries UA and UB such that the
T representation of the new channel �′ = WUA

◦ � ◦ WUB
,

with WU acting by conjugation, i.e., WU [X] = UXU †, has
the canonical form ⎛

⎜⎜⎝
1 0 0 0
t1 λ1

t2 λ2

t3 λ3

⎞
⎟⎟⎠ ,

where the λi’s are the singular values of the 3 × 3 real
submatrix [Tij ]ij , i,j = 1,2,3. The conjugate channel of �′
is �′† = W

U
†
B

◦ �† ◦ W
U

†
A

and is represented by the matrix⎛
⎜⎜⎝

1 t1 t2 t3

0 λ1

0 λ2

0 λ3

⎞
⎟⎟⎠ .
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