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Conceptual inconsistencies in finite-dimensional quantum and classical mechanics
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Utilizing operational dynamic modeling [D. I. Bondar et al., Phys. Rev. Lett. 109, 190403 (2012)], we
demonstrate that any finite-dimensional representation of quantum and classical dynamics violates the Ehrenfest
theorems. Other peculiarities are also revealed, including the nonexistence of the free particle and ambiguity in
defining potential forces. Non-Hermitian mechanics is shown to have the same problems. This work compromises
apopular belief that finite-dimensional mechanics is a straightforward discretization of the corresponding infinite-

dimensional formulation.
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I. INTRODUCTION

Schrodinger formulated quantum mechanics in terms of dif-
ferential operators acting on complex-valued wave functions.
Heisenberg devised the matrix representation with vectors
replacing continuous functions. The latter description seems
more intuitive for processes in bound systems, while the former
is natural for scattering problems, where de Broglie waves
represent interacting particles propagating in the continuum.
As ubiquitously known, these two quantum-mechanical rep-
resentations are merely special realizations of the unifying
Hilbert-space formulation, where the observables are self-
adjoint operators acting on ket vectors that abstract the wave
function’s notion. Moreover, Schrodinger and Heisenberg
mechanics are equivalent as long as the underlying Hilbert
space is infinite-dimensional, which is a paraphrase of the fact
that all complete infinite-dimensional spaces are alike.

However graceful such a quantum-mechanical formalism
is, the requirement of infinite-dimensionality appears to be
excessive as far as applications are concerned. For example,
whenever the Schrodinger equation is solved numerically,
it is always approximated by a finite matrix equation.
Hence, a self-consistent formulation of quantum mechanics
in a finite-dimensional Hilbert space is an ongoing problem
[1-21], especially considering quantum information science,
quantum optics, and physics of the Planck length, where
finite-dimensionality finds new horizons.

The purpose of this work is to pinpoint fundamental
inconsistencies plaguing any attempt to formulate quantum as
well as classical mechanics in a finite-dimensional framework.
In particular, we will demonstrate the violation of the Ehrenfest
theorems, nonexistence of the free particle, and an ambiguity
in defining potential forces. Possible solutions of these
inconsistencies are outlined.

II. MATHEMATICAL BACKGROUND

We begin by constructing the coordinate X and momen-
tum p operators. Utilizing group-theoretic arguments, Weyl
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demonstrated [1]
|(x |p)|*> = const <= [%,p] = ih (1)

(for alternative derivations, see Refs. [3,22]). The left-hand
side of Eq. (1) is well defined in a finite-dimensional space,
whereas the right-hand side of Eq. (1) is not because no
bounded operators obey the canonical commutation relation
[1,23]. Thus, in the literature on finite-dimensional quantum
mechanics, the coordinate and momentum operators are
usually defined as those whose eigenvectors obey

(X, | px) = exp(i2mnk/N)//N, )

where nk=—j,—j+1,...,j—1,j, j=2N+1, X|x,) =
an|x,), plpx) = 2mwhk/(aN)|py), and N is the Hilbert space’s
dimension (see Ref. [15] for a detailed description of the
notation). According to Eq. (2), the coordinate and momentum
eigenvectors form mutually unbiased bases, which means that
if a system is prepared in a state from one of the bases, then all
outcomes of the measurement with respect to the other basis
are equally probable.
The finite-dimensional Schrodinger equation is

ih |dWV(r)/dt) = H |W(1)), 3)

where there are at least two independent ways of introducing
H . First, the Hamiltonian

H = p*/2m) + U(%) 4)

can be adapted with the specification that ¥ and p are
defined by Eq. (2). This is nearly a tacit definition of the
Hamiltonian in finite-dimensional quantum mechanics. An
alternative definition of H, widely employed in numerical
calculations (see, e.g., Ref. [24]), is obtained once the term
p?/(2m), proportional to the second derivative in the infinite-
dimensional coordinate representation, is approximated by
finite differences. These two forms of the N-dimensional
Hamiltonians are significantly different even though they
converge to the same limit as N — oo.

Which definition is more fundamental? To answer this
question, we employ operational dynamic modeling (ODM)
[25], a universal and systematic framework for deriving
equations of motion from the evolution of the dynamical
average values. In Ref. [25], along with a number of other
applications, we utilized this method to infer the classical
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Liouville and Schrodinger equations from the Ehrenfest
theorems,

d
mo AVOIE[W@) = (PO p ¥ @). ®)

d
7 (YOIp[P@) = (POl - U'(R) W), (6)

by assuming that the coordinate X and momentum p commuted
in the former case and obeyed the canonical commutation
relation in the latter.

III. REVEALING INCONSISTENCIES
IN FINITE-DIMENSIONAL QUANTUM
AND CLASSICAL MECHANICS

Closely following Ref. [25], we apply ODM to Egs. (5) and
(6): Stone’s theorem (see, e.g., Ref. [23,26]) guarantees the
uniqueness of the Hermitian operator A in Eq. (3). Applying
the chain rule to the left-hand side of Egs. (5) and (6) and then
utilizing Eq. (3), one obtains

im(H,£] =hp, (7)

i[H,p] = —hU'(%). (8)

We shall demonstrate below that Eqgs. (7) and (8) cannot be
satisfied by nontrivial finite-dimensional operators.

Theorem 1. Assume p and H are nonzero finite-
dimensional Hermitian operators. If [I:I ,p1 = 0, then there is
no finite-dimensional linear operator £ such that i[I:I X] = p.

Proof. Let | E,,) denote a joint eigenvector of H and p such
that H |E,) = E, |E,) and p |E,) = p, |E,). Assuming that
i[H,%] = P, one obtains

i (Ey|[H,£11En) = i(Ey — Ep) (Eq| £ |Ep) = pu(Ey | En)
€))

V n,m. The special case of this identity, when n = m, reads
pm =0 Y m. This contradicts the assumption that p is a
nonzero matrix. |

Theorem 1 physically implies the nonexistence of the
“free” particle in finite-dimensional quantum mechanics. This
statement is also a consequence of probability conservation,
closely linked to Stone’s theorem. If the wave function’s
normalization is constant and X is finite-dimensional, then the
particle’s motion is confined to the spatial interval bound by the
smallest and largest eigenvalues of X. This confinement must
be realized by some force. Since stand-alone Eq. (7) is solvable
with respect to H [see Eq. (12) below], then i[I:I,ﬁ]/h from
Eq. (8) can be taken as the definition of this confining force.
Note that the Ehrenfest theorems do not hold for a particle in
a box even in the infinite-dimensional case [27].

Theorem 2. There are no finite-dimensional operators A and
B such that

Lf(A).B] = f'(A)
for any “good” function f(z).

Proof. Let a function of an operator be defined as (see, e.g.,
Ref. [28])

(10)

f(A) = / g™ ak,  f(A):= / ikg(k)e*Adk,
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where g(k) is the Fourier transform of a function f(z). The
correctness of Eq. (10) implies

[eikz‘i’B] — ikeikA.

(11

Differentiating the last identity with respect to k and setting
k = 0, we reach the contradiction [A,fs’] =1. |

Theorem 2 establishes not only the nonsolvability of Eq. (8)
but also two nonequivalent definitions (F=-U@®)and F =
i[U(X),pl/h) of a potential force F in a finite-dimensional
framework. The latter definition should be preferred due to the
comment after Theorem 1.

As thoroughly elaborated in Ref. [25], the Liouvillian L,
the classical dynamics’ generator, is a solution of the equations
im[L,%] = p and i[ﬁ,ﬁ] = —U'(%) with commuting £ and p.
The following statement establishes that finite-dimensional
classical mechanics is more convoluted than the quantum
analog.

Theorem 3. Let X and p be nonzero finite-dimensional
Hermitian operators with [X,p] = 0. There is no finite-
dimensional operator L such that i[L,£] = p.

Proof. Up to the notation (H <> £ and £ <> L), this theorem
is the same as Theorem 1. ]

IV. INCONSISTENCIES AND NUMERICAL
CALCULATIONS

Finite-dimensional quantum mechanics’ most important
application is in numerical simulations of the Schrodinger
equation. We shall now show that the accuracy of numerical
calculations appears not to depend on whether a finite-
dimensional Hamiltonian obeys the Ehrenfest theorem (5).
Even though we analyze a specific system with a few different
choices for its Hamiltonian, the conclusions are universal
because the root of the problem lies in the nonexistence
of bounded operators obeying the canonical commutation
relation.

Assuming X is Hermitian and has a nondegenerate spec-
trum, the solution of Eq. (7) is

U+ Cifk =1,

i (x| plxi)
m(xg—x;)

(o] H* |xp) = (12)

otherwise,

where X |x;) = x; |x;) and C is an arbitrary real constant. For
any definition of the momentum operator p, Eq. (12) provides
the most general Hamiltonian obeying the first Ehrenfest
theorem [Eq. (5)].

Choosing X with equally spaced eigenvalues (with the step
a) and utilizing the approximation d\W(x;)/dx ~ [V (Xpy1) —
W(xg-1)]/(2a), we can define the momentum operator:
(xk| Pralx)) = —ih (81,“1 — 5l,k71) /(2a). Then, the corre-
sponding Hamiltonian from Eq. (12),

X —h?
(x| Hyqlx) = Sz Gkt +81u—1) + [U ) + Cdy i,

13)

satisfying the Ehrenfest theorem (5), takes the form of the
simplest finite-difference approximation for the differential
operator: —% /(2m)d? /dx* + U (x).

Let I-AI,:M » denote the Hamiltonian (12) after substituting p
from Eq. (2) and H,,.» be the Hamiltonian (4) with the same
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FIG. 1. (Color online) The exact energies in the infinite-
dimensional case [29] vs eigenvalues of 30-dimensional Hamiltonians
for the singular harmonic oscillator (14). 1:1; 4 18 given by Eq. (13).
A, is from Eq. (12) with the momentum operator from Eq. (2).
H,u is from Eq. (4) with the momentum operator from Eq. (2). The
Hamiltonians ﬂ; ,and H? . satisfy the Ehrenfest theorem (5), while
H,,.» does not. The values of the spatial step a are (a) 0.09, (b) 0.145,
and (c) 0.145. The other parameters areh =m =1, g =1, w = 10,
and N = 30.

p. Contrary to I-Al;mh, the matrix H,,,;, does not satisfy the
Ehrenfest theorem (5).

Figures 1 and 2 depict the eigenvalues and the 20th
eigenvector of the Hamiltonians I:I_;d, A, and H,,, for
the oscillator,

? g

U@%—8x+4ﬂ,
which is exactly solvable in the infinite-dimensional case
[29]. The values of the coordinate step a for I-AI,’;mb and
H,.;, are selected to minimize the largest eigenvalues of
each Hamiltonian, which leads to the spectra of I:I;ub and
I:Imub (for a finite N) best fitting the exact energy in the
infinite-dimensional case [see Figs. 1(b) and 1(c)]. However,

the same recipe applied to I:I; 4 does not provide a good fit,

0<x <00, (14)

and the step size for I:I; 4 18 manually adjusted to match the
exact energies. This exercise demonstrates [Fig. 2(a)] that

even though the Hamiltonian ﬁ; 4 reproduces the exact energy
better than either Flr;u 5 OF H,.p, it yields poor-quality excited
states. Finally, note that the Hamiltonian I:I;mb, satisfying
Ehrenfest theorem (5), provides results of the same quality

as Hyup, violating Eq. (5). These observations indicate that
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FIG. 2. (Color online) The exact 20th eigenstate in the infinite-
dimensional case [29] vs 20th eigenvectors of 30-dimensional Hamil-
tonians for the oscillator (14). See Fig. 1 regarding the parameters’
values and the notation’s description.

there is no correlation between the numerical calculations’
accuracy and the Ehrenfest theorem’s validity. Note, however,
that any disagreement between the exact and numerical results
in Figs. 1 and 2 will exponentially increase with the number
of spatial dimensions.

V. NON-HERMITIAN HAMILTONIAN AS
AN UNSUCCESSFUL ATTEMPT
TO FIX INCONSISTENCIES

Non-Hermitian Hamiltonians are widely employed to
model resonant and unbound states (see, e.g., Refs. [30,31]
and references therein) as well as a handy trick to avoid
numerical artifacts related to the finiteness of spatial grids (see,
e.g., Ref. [32]). The Hamiltonian’s non-Hermitianity leads to
nonconservation of the wave function’s normalization. The
normalization decreasing over time is interpreted as a quantum
particle leaving the spatial interval bound by the coordinate’s
smallest and largest eigenvalues. Therefore, it might be
anticipated that this will at least restore the free particle’s
notion. Despite great utility, non-Hermitian Hamiltonians do
not resolve the conceptual difficulties, as we shall demonstrate
now.

First, reapplying ODM to Eqs. (5) and (6) with the condition
H #* AT, the following generalizations of Egs. (7) and (8) are
obtained:

im(H'% —xH)=nhp, i(H'p—pH)=—-hU'R). (15)
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Iiemma 1. Assume that £, p, and H are bounded. If a(ﬁ HN
o(H) = and
im(H'% —2H)=hp, (16)
Hip = pH, (17)
then p =X =0. Here, o(A) denotes the spectrum of an
operator A.
Proof. First, we employ the Rosenblum theorem [33] (see

Theorem 9.3 in Ref. [34]) to Eq. (16) and then employ Eq. (17)
to show

img = de(HT — )7 p(H — &)

2]'[1 r
h N

= sep a6 =0, as)
Tl r

where I' denotes a union of closed contours in the complex
plane with total winding numbers 1 around o (A ') and 0 around
a(H). [ ]

Theorem 4. Assume (i) H, £, and p are finite-
dimensional operators satisfying Eqgs. (16) and (17),
(1) lim,_ oo [(W(2) |W(2))| < 00, where |W(¢)) is a solution
of Eq. (3), and (iii) the eigenvectors {|E,) r}zv=1 (I:I |E,) =
E,|E,),n el :={1,2,...,N})span the entire Hilbert space.
Then, p = 0.

Proof. Suppose p # 0. According to Lyapunov stability
theory [35], the second assumption implies that Im(E,) < O,
V n e I. Lemma 1 guarantees that H has at least a single real
eigenvalue. Introduce R := {n € I |Im(E,) = 0} # @, the set
of the real eigenvalues’ indices. “Sandwiching” Eqgs. (16) and
(17) leads to

im(E; — E)(E X |E)) =h (Ex| pE)) . 19)
(Ef —ED(El pIE)=0 Vklel (20)

According to Eq. (20), (Ex| p |E;) may be nonzero only for
(k,)) e Q :=={(k,]) e R x R| E; = E;}. However, Eq. (19)
enforces (Ex| p |E;) =0V (k,l) € Q. Therefore, we reach the
contradiction p = 0. ]

Theorem 4, being a generalization of Theorems 1 and 3,
disproves the existence of the free quantum and classical
particle within a non-Hermitian setting.

PHYSICAL REVIEW A 88, 012116 (2013)

VI. OUTLOOK

Utilizing ODM [25], we demonstrated that all finite-
dimensional representations of quantum and classical dynam-
ics violate the second Ehrenfest theorem [Eq. (6)], while
the first Ehrenfest theorem [Eq. (5)] may be satisfied under
special circumstances [Eq. (12)]. Nonexistence of the free-
particle case and the ambiguity in defining potential forces
were also established. The fundamental reason behind these
inconsistencies is the absence of bounded operators obey-
ing the canonical commutation relation. These conclusions
fundamentally bound the accuracy achievable by the current
paradigm of numerical simulations.

The unveiled inconsistencies may be circumvented in some
circumstances. A quantum-mechanical system simulated on
a continuous variable (i.e., infinite-dimensional) quantum
computer [36] would not be affected by such difficulties.
Additionally, there is a solution not using a quantum computer.
In particular, a key element in proving Theorems 1 and 3 is
the nonexistence of a finite real number » such that Or # 0.
However, this equation has a solution if infinitesimal and
infinitely large numbers are included in the set of real numbers.
Thus, some of the no-go theorems may be avoided by utilizing
nonstandard analysis [37,38], where such extensions are
rigorously implemented. An adaptation of the latter approach
to physical simulations would be a computational paradigm
shift.

We hope that the current work challenges a widespread
belief that finite-dimensional quantum mechanics is a straight-
forward discretization of the corresponding continuous for-
mulas without conceptual consequences and further motivates
exploration of the multifaceted dichotomy between finite- and
infinite-dimensional cases. Attesting to this point of view, a
recent paper [39] contains examples of physically relevant
relations realizable only in finite-dimensions and nonexistent
in the infinite-dimensional Hilbert space.
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