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The quantum dynamics of arbitrary N -level systems, including dissipative systems, are modeled exactly
here by the dynamics of classical coupled oscillators. A one-to-one correspondence is established between the
quantum states and the positions of the oscillators. Quantum coherence, expectation values, and measurement
probabilities for system observables can therefore be realized from the corresponding classical states. Although
the well-known equivalence [SU(2), SO(3) homomorphism] of two-level quantum dynamics to a rotation in real,
physical space cannot be generalized to arbitrary N -level systems, the representation of quantum dynamics by a
system of coupled harmonic oscillators in one physical dimension is general for any N . The time evolution of
an N -level system [generated by a complex element of the SU(N ) group], is first represented as the rotation of
a real state vector in (unphysical) hyperspace, as previously known for density matrix states and also extended
here to include Schrödinger states. The resulting rotor in n Euclidean dimensions [the rotation group SO(n)]
is then mapped directly to n oscillators in one physical dimension, which significantly reduces the level of
abstraction required to visualize quantum dynamics compared to vector models or generalized Bloch spheres
in higher dimensions. The number of such oscillators needed to represent N -level systems scales as N2 for
the density matrix formalism but increases only linearly with N for Schrödinger states. Values for the classical
coupling constants are readily derived from the system Hamiltonian, allowing construction of classical mechanical
systems that provide insight into the dynamics of abstract quantum systems (new dynamical invariants) as well
as a metric for characterizing the interface between quantum and classical mechanics. A distinctive attribute of
the quantum-classical connection as presented here is the necessity for both positive and negative couplings and,
in the case of dissipative systems, antisymmetric couplings.
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I. INTRODUCTION

The density matrix formalism [1–3] provides a straightfor-
ward procedure for predicting quantum dynamics, applicable
very generally to pure states, statistical mixtures of pure states,
and dissipative (open) systems. Although the theory needs no
supporting visual model for its application, the Liouville–von
Neumann equation governing the time evolution of the density
matrix provides little physical insight into system dynamics.
There has therefore been considerable effort towards repre-
senting, where possible, quantum systems using more intuitive
classical models. Of particular influence and importance is
the classical representation for quantum two-level systems
[4], sometimes referred to as the Feynman-Vernon-Hellwarth
(FVH) theorem. The behavior of any quantum mechanical
two-level system can be modeled by classical torque equations,
providing a one-to-one correspondence between the time
evolution of the system and the dynamics of, for example,
a spinning top in a constant gravitational field or a magnetic
moment in a constant magnetic field.

Work by Fano [3] published concurrently with the FVH re-
sult also provides a geometrical interpretation of spin dynamics
for more complex quantum systems. The density matrix for an
N -level system is represented as an expansion in Hermitian
operators, resulting in a vector with real components. The
time development of this generalized Bloch vector is a real
rotation in a hyperspace of (N2 − 1) dimensions. Constants
of the motion can be derived [5,6] that constrain the system’s
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dynamics and provide physical insight. However, the states of
the system as given by the components of this vector (also
referred to as a coherence vector [5] and, more recently, a
Stoke’s tensor [7]) do not evolve in a physical space amenable
to visualization, with its attendant advantages, except for the
case N = 2.

Thus, no completely general mapping has been realized that
yields a one-to-one correspondence between the states of a
quantum-mechanical N -level system and classical dynamical
variables. Interest in this topic is motivated by the success
of the FVH result in providing direct physical insight into
the dynamics of abstract quantum systems. For example, as
observed in [8], the language and concepts of quantum optics
have been heavily influenced by the FVH result.

Analogies between quantum and classical systems have
been noted [9–21] almost from the beginning. However, an
equivalence between the quantum and classical equations of
motion has been obtained only for certain limiting conditions
[22–29] such as weak perturbations of the system (weak
coupling limit) and the aforementioned two-level systems.

Recently, the possibility of representing a subset of N -
level quantum systems exactly in terms of classical coupled
oscillators was demonstrated [30], with no restriction to weak
coupling. However, this approach is limited at the outset to real
Hamiltonians and can only be applied to pure states evolv-
ing according to the time-dependent Schrödinger equation.
Moreover, the quantum states must be inferred, somewhat
indirectly, from the position, the velocity, and, subsequently,
the conjugate momentum of each oscillator. The momentum
is calculated as the inverse of the Hamiltonian times the
velocity, which imposes a further restriction—invertibility—to
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the subset of relevant Hamiltonians. In a broader context,
this approach is insufficiently general to establish a similar
classical representation for statistical mixtures and density
matrix evolution, which also precludes open, dissipative
systems and important applications to decoherence.

In the present work, a very general, exact method is
introduced for mapping arbitrary N -level quantum systems
directly to the positions of coupled harmonic oscillators,
undertaken by the author many years ago. It solves a problem
of longstanding interest and is made more relevant now by
recently published results [21,30] on the quantum-classical
connection. Given the ubiquity of the harmonic oscillator
in modeling a host of important physical phenomena, this
work should have significant implications beyond the basic
formalism and examples of its implementation presented here.

The outline of the paper is as follows. The salient features
for representing the dynamics of N -level systems as real
rotations derived from the Liouville–von Neumann equation,
rather than the usual complex rotations generated by SU(N )
group operators, are reviewed first. There is no restriction
to real Hamiltonians and, most importantly, the formalism is
applicable to both pure and mixed states. The desired one-to-
one correspondence between the states of the quantum system,
represented as a density matrix, and classical dynamical
variables in real, physical space is provided by a mapping
to harmonic oscillators. In contrast to the results in [30], the
quantum states, either pure or mixed, are represented exactly
using only the time-dependent displacements of classical
coupled oscillators rather than the displacement, velocity, and
conjugate momentum originally required. The Hamiltonian
does not have to be invertible because it does not need to be
inverted. The recipe for determining the physical couplings to
construct the oscillator system completes the basic formalism,
which is also shown to be applicable to dissipative systems.

Although the treatment in terms of the density matrix
provides a complete and general formalism for the quantum-
classical mapping, the Schrödinger approach to this problem
also warrants further consideration. Removing limitations of
this approach might provide additional useful options and
insights for characterizing the quantum-classical connection.
Hilbert space rotations are therefore reviewed to generalize
this option for representing the quantum dynamics of pure
states classically. Restrictions in the Schrödinger approach
to real, invertible Hamiltonians are removed by recasting the
time-dependent Schrödinger equation as a real equation. Its
solution is then a rotation in real space as opposed to the usual
rotation in a complex Hilbert space. (This is not the same
as quantum mechanics in a real Hilbert space [31], although
the points of departure are similar.) An exact one-to-one
mapping of Schrödinger states to the physical displacements
of coupled oscillators then follows immediately from the
formalism developed thus far. Whereas n = N2 − 1 classical
oscillators are needed most generally to represent density
matrix dynamics for an N -level system, Schrödinger states
require at most n = 2N oscillators, which can be reduced
to N if the Hamiltonian is real. The present work therefore
establishes an equivalence among complex SU(N ) rotations,
real rotations in n Euclidean dimensions [i.e., the SO(n)
group], and systems of n coupled harmonic oscillators in one
dimension, which may be relevant for other representations

of quantum dynamics, such as the generalized Bloch sphere
[32,33]. Both positive and negative couplings are required
most generally, which is a distinctive feature of the quantum-
classical connection as presented here.

For the sake of completeness, the Schrödinger approach
for representing spin dynamics is then extended to mixed
states, although this most generally requires 2N2 oscillators
and would not typically be preferred to the Liouville approach.
However, as noted later, each Schrödinger pure state compris-
ing the density matrix evolves independently of the others. Its
precise contribution to system dynamics is readily discerned,
providing an option for further insight.

Open (dissipative) N -level systems are considered next,
showing they also can be exactly modeled as classical coupled
oscillators. Dissipation is generated in ideal, frictionless os-
cillators by antisymmetric couplings. Such couplings emerge
naturally as a result of extending the formalism presented
so far to open systems. In this case, the Liouville approach
developed here for the quantum-classical mapping is essential
for applications that are not restricted to population relaxation
or the simplest mechanisms for dephasing, for example, more
general treatments of decoherence and cross relaxation.

Illustrative examples of the quantum-classical mapping are
then provided. The examples demonstrate the necessity for
negative couplings in closed systems as well as antisymmetric
couplings in open systems. The paper closes with the intro-
duction of new invariants (constants of the motion) that may
be useful in characterizing system dynamics and symmetries.
The transition from the exact results to approximations that
assume weak couplings at the outset of the analysis is provided
in the Appendix.

For notational convenience and interchangeability of en-
ergy and frequency units, h̄ is set equal to 1 throughout the
paper. Vectors written in row form to fit in the text are to be
understood as column vectors when used in matrix equations.

II. TIME EVOLUTION OF CLOSED N-LEVEL SYSTEMS

A brief synopsis of the standard Liouville and Hilbert
space formalisms for representing the unitary time evolution of
(closed) N -level systems serves as the contextual background
for the quantum-classical connection established here. The
time evolution of the system in both representations is first
reduced to a rotation in real Euclidean space of the form

�(t) = U (t)�(0). (1)

The chosen representation determines the particular form for
the quantum state � and the propagator (unitary rotation
operator) U (t). A straightforward mapping of real rotations
to classical coupled oscillators then follows. The Liouville
formalism is considered first, since it provides the most general
framework for the quantum-classical connection. It is readily
extended in a subsequent section to dissipative systems that
cannot be represented using the Schrödinger equation.

A. Liouville equation

The Liouville–von Neumann equation for the time evolu-
tion of a density matrix ρ governed by system Hamiltonian H
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is

ρ̇ = −i[H,ρ], (2)

with formal solution

ρ(t) = e−iH tρ(0)eiHt = U (t)ρ(0) U †(t), (3)

which defines U (t) = e−iH t .
The time evolution can be related to a rotation by first

expanding ρ in terms of a complete set of basis operators
[3]. Orthogonal bases are particularly convenient and are
typically normalized for further convenience. Denoting the
basis elements as êi for state i and requiring only that the basis
be orthonormal gives

〈êi |êj 〉 = Tr(ê†i êj ) = δij , (4)

where the inner product for the vector space composed of
matrices is given by the operator Tr, which returns the trace
(sum of diagonal elements) of its argument. The symbol †
denotes the operation of Hermitian conjugation. In lieu of
explicitly normalizing the êi , the inner product can be defined
with the appropriate factor multiplying Tr. Then, ρ can be
represented as

ρ =
∑

j

rj êj , (5)

where the coefficients in the expansion are the projection onto
the basis states. Each rj in Eq. (5),

rj = 〈êj |ρ〉 = Tr(ê†jρ), (6)

is thus the expectation value of the quantum state êj .
Then

ṙi = Tr(ê†i ρ̇) = −iTr(ê†i [H,ρ]) =
∑

j

−iTr(ê†i [H,êj ])rj

=
∑

j

�ij rj . (7)

Expanding the commutator, using Tr(AB) = Tr(BA) =
[Tr(AB)†]∗ and [ê†i ,êj ]† = [ê†j ,êi] gives

�ij = −iTr(ê†i [H,êj ]) = iTr([ê†i ,êj ]H )

= −{iTr([ê†j ,êi]H )}∗ = −�∗
ji (8)

in terms of its complex conjugate elements, denoted by *.
Thus, � = −�† is anti-Hermitian and can be diagonalized.
The evolution of the density matrix is given by

ṙ = �r, (9)

with solution

r(t) = e�t r(0). (10)

The propagator U (t) = e−�t , and therefore U † = U−1 is
unitary, since �† = −�. Thus, Eq. (9) represents a rotation,
albeit still most generally in complex space.

1. Rotation in real space

An orthonormal basis of Hermitian operators can always
be found for N -level systems [for example, the generators
of SU(N )]. Choosing Hermitian basis states ensures that the

components of the density matrix are real, and � derived from
Eq. (8) is also a real antisymmetric matrix. The rotation of
Eq. (9) is then a rotation in real, multidimensional space,
which is the generalization of the FVH result [4] to N -level
systems [3,5]. More formally, the generator of the rotation, �,
can be represented as a linear combination of the generators
for SO(n), the group of rotations about a fixed point in
n-dimensional Euclidean space. Omitting the identity element
in Eq. (5), which commutes with everything and produces
a time-independent component in Eq. (7), gives n = N2 − 1
starting with the N2 elements of ρ.

The quantum dynamics are thus fully classical in the
additional dimensions exceeding three-dimensional physical
space. However, classical rotations in more than three dimen-
sions are only marginally less abstract than rotations in a com-
plex Hilbert space. More accessible insight can be obtained
by mapping the transformed, real-valued quantum states to
physical space. The mapping proceeds from complex SU(N ) to
SO(n)—describing a rotor in n real, Euclidean dimensions—to
n classical oscillators in one physical dimension. The relation
between SU(N ) and SO(n) has applications to the generalized
Bloch sphere [32,33]. The broader relevance of mapping SO(n)
to one-dimensional oscillators warrants further investigation,
which is beyond the scope of the present article.

2. Exact mapping to classical coupled oscillators

A textbook exercise for deriving the Larmor precession
of a spin- 1

2 in a static magnetic field B0 differentiates the
first-order derivative in Ehrenfest’s theorem. The result is a
harmonic oscillator equation for the expectation values of the
spin components transverse to B0. Similarly, differentiating
Eq. (9) gives

r̈ = �2r. (11)

Since �2 is real, symmetric, and therefore diagonalizable, the
solution is readily written in terms of the usual normal-mode
solutions. Moreover, the eigenvalues, −ω2

a (a = 1,2,3, . . . ,n),
for n × n matrix �2 are guaranteed to be negative, since the
eigenvalues of anti-Hermitian � are pure imaginary. The n

distinct eigenvectors | ωa 〉 constitute a basis set satisfying the
completeness relation

∑
a |ωa〉〈ωa| = 1 (the identity element).

In this eigenbasis, Eq. (11) for each component ra = 〈ωa|r〉
is, of course,

r̈a = −ω2
ara, (12)

with standard harmonic oscillator solution

ra(t) = ra(0) cos ωat + ṙa(0)

ωa

sin ωat (13)

and ṙ dependent on r according to Eq. (9), giving

|r(t)〉 =
n∑

a=1

|ωa〉〈ωa|r(t)〉

=
n∑

a=1

|ωa〉〈ωa|
[

cos ωat + �
sin ωat

ωa

]
|r(0)〉

= U (t)|r(0)〉. (14)

Using the original representation for nondiagonal �2 and its
eigenvectors to calculate U (t) gives the physical displacements
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FIG. 1. Schematic of three masses at equilibrium positions ri = 0
coupled with springs of stiffness kij .

ri(t) for each of the n oscillators. This solution for U (t)
must be identical to the propagator given in Eq. (10). It is
included primarily for consistency in the presentation, but also
to emphasize that the fundamental differential equation under
consideration is first order and only requires specification
of r(0).

3. Classical coupling constants

To complete the explicit identification of Eq. (11) with
mechanical oscillators, consider equal (unit) masses, m, on
a frictionless surface, with mass mi connected by a spring of
stiffness kij = kji to mass mj (i,j = 1,2,3, . . . ,n), as in Fig. 1
for an illustrative case n = 3.

The classical matrix �Cl relating the displacement from
equilibrium of the ith mass to its acceleration, as in Eq. (11),
is

(�Cl)ij = 1

m

⎧⎪⎨
⎪⎩

kij , i �= j,

−
n∑

l=1
kil, i = j,

(15)

for positive couplings kij .
However, negative couplings also arise quite naturally in

the results which follow. A system of pendulums consisting
of masses attached to rigid rods can be coupled negatively by
attaching a spring to rod i below the fulcrum of oscillation
and to rod j above the fulcrum. Displacing mass mi to
the right exerts a force on mj to the left, i.e., the coupling
kij < 0. Yet, the force on mi is still a restoring force, so |kil|
must be used for the diagonal elements i = j in Eq. (15)
to accommodate negative couplings. A pendulum can be
inverted with its mass above the fulcrum to implement kii < 0.
Inverting transformers can be used to implement negative
couplings in LC circuits.

Setting �Cl = �2 and using |kil| = |(�2)il| to calculate the
self-couplings kii gives the spring constants

kij

m
=

⎧⎪⎨
⎪⎩

(�2)ij , i �= j,

−
[

(�2)ii +
n∑

l �=i

|(�2)il|
]
, i = j,

(16)

in terms of the matrix � (squared) representing the quantum
system, as derived from Eq. (8). There is thus a one-to-one
mapping of the quantum states to the oscillator displacements

embodied in ri(t) for both systems. Given the initial states
ri(0) of the system, the necessary ṙi(0) follow from Eq. (9).

This mapping is very general. It is not limited to particular
values of the spin, numbers of interacting spins, specific forms
of the commutation relations, or relative fractions of mixed and
pure states comprising ρ. An N × N density matrix generates
N2 components in Eq. (5), which requires N2 oscillators. The
static component of the identity element can be eliminated,
and the structure of the Hamiltonian may generate evolution
restricted to a smaller subspace of states, further reducing the
number of required oscillators.

For pure states, the time-dependent elements ci(t) compris-
ing the state vector can readily be obtained, if desired, from ρ

reconstructed in matrix form using the ri(t) and Eq. (5). Each
resulting element ρij is equal to cic

∗
j . Assigning any one of the

ci to the square root of ρii sets the arbitrary global phase of
the pure-state elements. In terms of this real ci , the remaining
cj are equal to ρji/ci .

As shown next, a mapping, for complex H , of pure states
in the Schrödinger picture to at most 2N oscillators is also
possible. However, dissipative systems, which cannot most
generally be described by pure states, still require on the order
of N2.

B. Schrödinger equation

The solution

|�(t)〉 = e−iH t |�(0)〉 (17)

to the time-dependent Schrödinger equation

i|�̇(t)〉 = H |�(t)〉 (18)

represents a rotation of |�(0)〉 in Hilbert space, since H is
Hermitian and the propagator U (t) = e−iH t is unitary. Most
generally, H and the components ci of |�〉 in a chosen basis
are complex, so a classical interpretation for the time evolution
of the state is not readily apparent.

In [30], the authors present an approach for representing
the complex ci in terms of the displacements and conjugate
momenta of classical coupled oscillators, restricted to the
special case of real, invertible H . These restrictions can be
removed, as shown in what follows. The formalism of the
previous sections can be applied to the Schrödinger equation
by recasting it in the form of a real rotation for general H .

1. Rotation in real space

Many previous investigations of quantum-classical connec-
tions [9,10,21,30] focus on the Hamilton equations of motion.
They start with a real, classical Hamiltonian H and relate it to
the quantum Hamiltonian, H . The outcome in [30] is that H
represents real harmonic oscillators only if the quantum H is
real, which is then applied to the Schrödinger equation.

The formalism of the preceding sections, which accom-
modates general, complex H , can be extended directly to
the Schrödinger equation without reference to the Hamilton
equations. Start with Eq. (18) and represent the components
of |�〉 for an N -level system as an N -component vector c in
the usual manner, giving

ċ(t) = −iH c(t). (19)
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Write complex c = q + i p and complex H = Q + iP . Equat-
ing the real and imaginary parts after performing the multipli-
cations in Eq. (19) recasts the Schrödinger equation as a real
equation, (

q̇
ṗ

)
=

(
P Q

−Q P

) (
q
p

)
= �

(
q
p

)
, (20)

in the form of Eq. (9) with �† = −� real, antisymmetric, since
Hermitian H requires Q† = Q and P † = −P . The results and
implications for real rotations then follow from Sec. II A1 and
the discussion following Eq. (9). There are 2N real parameters
(q1, . . . ,qN ,p1, . . . ,pN ) comprising the N complex elements
of |�〉. Schrödinger equation evolution of N -level systems can
therefore be represented as rotations in real 2N -dimensional
Euclidean space. In principle, this can be reduced to 2(N − 1)
by the normalization condition and choice of a specific value
(typically zero) for the arbitrary and physically meaningless
global phase of the state vector [3].

A search of the literature uncovers research developing
quantum mechanics in a real Hilbert space [31] that configures
the state vector as (q1,p1, . . . ,qN ,pN ). The associated Hamil-
tonian is then neither symmetric or antisymmetric. The analog
to Eq. (20) is not a real rotation, so this particular representation
misses the possibility of mapping a real time-dependent
Schrödinger equation to classical coupled oscillators.

2. Exact mapping to classical coupled oscillators

Differentiating Eq. (20) gives(
q̈
p̈

)
=

(
P Q

−Q P

)2 (
q
p

)

=
(

P 2 − Q2 PQ + QP

−(PQ + QP ) P 2 − Q2

)(
q
p

)

=
(−Re(H 2) Im(H 2)

−Im(H 2) −Re(H 2)

)(
q
p

)
= �2

(
q
p

)
(21)

in the form of Eq. (11) for a real symmetric (Hermitian) matrix
�2 constructed from the real and imaginary parts of H 2. The
mapping of q and p to mechanical oscillators then follows
from Sec. II A2.

For complex N × N Hamiltonians, there are thus most
generally 2N mutually coupled oscillators. There can be
fewer oscillators and no mutual coupling between specific
oscillators, depending on the structure of H . As is seen
later, noncommuting rotations that compose the operator �

derived from H are directly related to the couplings. The
displacements q and p provide an exact one-to-one mapping
to the real and imaginary components, respectively, of the
quantum state |�〉. According to Eq. (21), the imaginary
part of H 2 generates the coupling between these compo-
nents. The state c(0) = q(0) + i p(0) uniquely determines the
initial displacements, with the initial velocities then given
by Eq. (20).

For real H = Q, P = 0, the present treatment gives the
result in [30],

q̈ = −H 2q, (22)

and p̈ = −H 2 p. Under this condition, q and p are conjugate
variables (but are not most generally so) which evolve

independently according to the same propagator, with no
mechanical coupling between q and p oscillators. The initial
conditions are the only difference in the solutions. One only
needs a single set of N oscillators set in motion with two
different sets of initial conditions to infer the quantum state
|�〉. Calculating p = H−1q̇ as in [30] imposes an additional
unnecessary restriction that H , already constrained in [30] to
be real, must be invertible (i.e., no eigenvalues equal to zero).

3. Extension to mixed states

The results in [30] and extensions in the previous section are
limited to pure states evolving according to the Schrödinger
equation. The methodology would appear to be inapplicable
to mixed states. A statistical mixture cannot be represented in
terms of a state |�〉, but is written in terms of the probability
pk for being in each of the possible states |�k〉, which defines
a density matrix,

ρ(t) =
∑

k

pk|�k(t)〉〈�k(t)|, (23)

that evolves according to Liouville Eq. (2). It is an average over
the N constituents comprising a macroscopic system, which
can be astronomically large, precluding an exact determination
of the exact state of each of the N constituents.

However, the density matrix representing a given system
is not unique. The identical density matrix can also be
constructed from a completely specified set of N � N non-
interacting pure states, with the N2 elements of ρ determined
from measurable macroscopic (average) properties of the
system, such as energy or polarization. In that case, both
the weights pk and corresponding states are known exactly,
so each |�k〉 can be used independently to construct a set
of coupled oscillators representing the components c

(k)
i (t) of

|�k(t)〉. Rather than calculating density matrix evolution as
ρ(t) = Uρ(0)U †, the simpler and more efficient Schrödinger
evolution |�(t)〉 = U |�(0)〉 can be applied to each pure state
|�k〉 comprising ρ in Eq. (23). Subsequently, the weights pk

can be used to calculate expectation values and measurement
probabilities or to reconstruct the density matrix at later times
t if desired.

In addition, as shown in [34], at least one of the |�k〉
comprising the initial density matrix is redundant and can
be removed from the calculation, since it provides a relatively
uninteresting constant contribution to the system dynamics.
Choose one of the weights, for example, p1. The density
matrix can be rewritten as p1 times the identity element plus
a “pseudo” density matrix constructed from the |�k〉 with
weights (pk − p1). The term that is proportional to the identity
element does not evolve in time under unitary transformations
and can be ignored.

Thus, the state |�1〉 has been removed from the density
matrix, along with any other |�k〉 that had original weights
pk = p1. In the general case of m � 1 degenerate statistical
weights pk , only N − m of the |�k〉 are required. The number
of oscillators is correspondingly reduced to 2N (N − m)
resulting from 2N components for each |�k〉 and N − m

individual |�k〉. Choosing the weight with the largest degener-
acy provides the maximum reduction. Unless the degeneracy
is sufficiently large, m > N/2, this requires more oscillators
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than the maximum N2 needed using the standard Liouville
approach. However, the explicit contribution of each pure
state to the system dynamics is readily apparent in applying
this extended Schrödinger approach to the density matrix,
providing an option for further insight. The density matrix
at any given time is easily reconstructed as described in [34].

III. DISSIPATIVE SYSTEMS

The modifications necessary to model open systems as a
set of damped oscillators can be found very generally using
the Liouville representation, with minimal detail concerning
the relaxation formalism. The Wangsness-Bloch equation
expressing the evolution of the density operator in the presence
of relaxation adds a relaxation operator term to Eq. (2) that
operates on the density matrix [3,35]. Expanding ρ in a basis
of orthonormal operators as in Eq. (5) gives the real equation

ṙ = �r + Rr + F (req). (24)

The relaxation matrix R must be symmetric for relaxation
elements that act symmetrically between states of the system,
with diagonal elements providing autorelaxation rates and
off-diagonal elements giving cross-relaxation. The term F is
a constant vector incorporating the asymptotic decay of the
system to the steady state as a function of the equilibrium state
req. Without this term, the solution decays to zero.

Differentiating again gives

r̈ = (� + R)ṙ = �[(� + R)r + F ] + R ṙ, (25)

i.e., a set of coupled oscillators with a velocity-dependent
friction term and a constant applied force �F . A constant force
in the harmonic oscillator equation merely shifts the origin of
the coordinates. However, the matrix multiplying r , which
determines the mechanical couplings as given in Eq. (16),
is no longer symmetric due to the sum of antisymmetric
� and symmetric R, resulting in nonreciprocal off-diagonal
couplings.

The precise role of nonreciprocal couplings in a classical
model for quantum dissipative systems can be clarified by
eliminating ṙ to obtain

r̈ = (� + R)2r + (� + R)F = �2r + �F, (26)

a set of ideal (frictionless) coupled oscillators subjected to a
constant applied force. In this case, however, the matrix �2 is
the sum of symmetric �2 + R2 and antisymmetric �R + R�.
The former term corresponds to a set of undamped oscillators
with symmetric couplings kij = kji (Sec. II A2), modified in
comparison to no relaxation by inclusion of R2. The normal-
mode frequencies are also modified accordingly.

Damping is provided by the antisymmetric part of �2,
which gives antisymmetric couplings γij = −γji and total
coupling Kij = kij + γij . The γij therefore represent cou-
plings connected in parallel with the symmetric kij and
can be implemented, in principle, using magnetic materials
and magnetic fields. For a given positive γij , a positive
displacement of mass mj results in a positive force on mi (using
terms related to the schematic of Fig. 1). The resulting positive
displacement of mi provides a negative force on mj due to
γji < 0, which opposes the original displacement of mj and
damps the motion. Stated differently, energy transferred from

mj to mi is not reciprocally transferred back from mi to mj ,
and the motion is quenched. An antisymmetric coupling acts as
a negative feedback mechanism that curbs system oscillations.

Equation (24) is typically written in the form of a homo-
geneous equation [3]. The inhomogeneous term F can be
included in an augmented matrix �̃ formed by appending the
vector F as a column to the right of � and then adding a
correspondingly expanded row of zeros at the bottom. The
vector r is then augmented by including a last element equal
to one to obtain the equivalent homogeneous equation

d2

dt2
r̃ = �̃2 r̃. (27)

This is equivalent to appending the column �F to �2

in Eq. (26), along with the associated row of zeros. The
asymmetry of �̃2 generates unphysical couplings that are not
a problem theoretically but would preclude a real, physical
model. However, �̃2 is readily written as the sum of symmetric
�̃2

S = 1
2 [�̃2 + (�̃2)†] and antisymmetric �̃2

A = 1
2 [�̃2 − (�̃2)†],

which determine the symmetric couplings kij and antisymmet-
ric couplings γij , respectively, as above.

In comparison, the Schrödinger equation can only include
relaxation in certain special cases amenable to complex ener-
gies in the Hamiltonian. A typical application is the coupling
between stable and unstable states and the resulting lifetimes
of the states. An example relating velocity-dependent damping
of classical oscillators to a Schrödinger equation treatment was
provided in [30] in the weak-coupling limit. However, neither
this approximation nor the required complex energies can be
applied more generally. Even a simple two-level system with
relaxation dynamics described by the Bloch equation cannot
be addressed by the Schrödinger equation and requires the
density matrix approach.

IV. REPRESENTATIVE EXAMPLES

Simple two-level systems are used as a prototype for
implementing the quantum-classical mapping. Although they
are already known to be representable by classical rotations
in three-dimensional physical space, they provide sufficient
detail to clarify the connection between real rotations of
N -level quantum states in (i) N2 − 1 dimensions (Liouville
equation) or (ii) 2N dimensions (Schrödinger equation) and
their mapping to (i) N2 − 1 or (ii) 2N classical oscillators
in one-dimensional physical space. The actual number of
oscillators needed can be less, depending on the structure of the
specific Hamiltonian, as illustrated in the examples provided.

A. Closed systems (unitary time evolution)

1. Quantum solution

In terms of real 
1, 
2 and complex V = ω1 − iω2, the
Hamiltonian for a general two-level system can be written in
terms of the Pauli matrices σi(i = 1,2,3) and σ0 = 1 as

H =
(


1 V

V ∗ 
2

)
=

3∑
α=0

ωασα, (28)

with ω0 = (
1 + 
2)/2 and ω3 = (
1 − 
2)/2. The σ0

term commutes with the other terms, so the propagator
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U (t) = e−iH t giving the Schrödinger equation solution as in
Eq. (17) is readily obtained in terms of ωiσi (i = 1,2,3). The
standard expansion of e−i (ω·σ ) t using unit vector ω̂ = ω/ω

gives

U (t) = e−iω0t e−i(ω·σ ) t = e−iω0t [cos ωt − iω̂ · σ sin ωt]

= e−iω0t

(
a b

−b∗ a∗

)
. (29)

The parameters a,b obtained from expanding ω̂ · σ and using
the matrix forms for the σi are

a = cos ωt − iω̂3 sin ωt, b = −(ω̂2 + iω̂1) sin ωt, (30)

recognizable from classical mechanics as the Cayley-Klein
parameters for a rotation by angle 2ωt about ω̂.

Evolution of the Schrödinger state |�〉 ↔ (c1,c2) proceeds
according to Eq. (17), with the corresponding density matrix
states ρij = cic

∗
j evolving according to Eq. (3). The equivalent

classical evolution is considered next.

2. Classical representation (Liouville equation)

Using the σα as the basis and inner product 〈σα|σβ〉 =
1/2Tr(σασβ) = δαβ gives �0α = 0 = �α0 according to Eq. (8).
The remaining 3 × 3 matrix giving the nonzero couplings is
easily determined using the commutation relations [σi,σj ] =
2iεijkσk written in terms of the usual Levi-Civita tensor εijk

(equal to ±1 for cyclic/anticyclic permutations of the indices
j,k,l = 1,2,3 and zero otherwise) summed over repeated
indices for slightly more concise notation. Then

�ij = 〈[σi,σj ]|H 〉 = −2εijk〈σk|ω · σ 〉
= −2ωlεijk〈σk|σl〉 = −2ωkεijk,

� = 2

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ . (31)

The resulting equation of motion,

ṙ = �r = 2ω × r, (32)

represents a rotation of r about axis ω = (ω1,ω2,ω3) at angular
frequency 2ω, as expected from the FVH theorem for arbitrary
two-level systems. However, the equivalence of quantum
dynamics, in the case of two-level systems, to a rotation in
real, physical space cannot be generalized to arbitrary N -level
systems. Representing quantum dynamics by a system of
coupled harmonic oscillators in one physical dimension is

general for any value of N .
The coupling matrix is

�2 = 4

⎛
⎝−(ω2

2 + ω2
3) ω1ω2 ω1ω3

ω1ω2 −(ω2
1 + ω2

3) ω2ω3

ω1ω3 ω2ω3 −(ω2
1 + ω2

2)

⎞
⎠, (33)

giving three mutually coupled oscillators as in Fig. 1. The
couplings obtained from Eq. (16) are

kij /4 = ωiωj , i �= j,

kii/4 = ω2
j + ω2

k − ωiωj − ωiωk i �= j �= k,

= ωj (ωj − ωi) + ωk(ωk − ωi). (34)

Unless two components of ω are zero, any possible ordering
for the relative magnitudes of these components makes at least
one of the kii negative, assuming all components of ω are
positive. Alternatively, kij < 0 if ωi < 0 and ωj > 0. Either
way, negative couplings are a required feature of the quantum-
classical mapping.

3. Classical representation (Schrödinger equation)

The matrix � leading to a solution for (q, p) as a rotation
e−�t of the initial state (q0, p0) is composed of the real and
imaginary parts of H as in Eq. (20), giving

� =

⎛
⎜⎝

0 ω2 
1 ω1

−ω2 0 ω1 
2

−
1 −ω1 0 ω2

−ω1 −
2 −ω2 0

⎞
⎟⎠ (35)

and coupling matrix

�2 =

⎛
⎜⎜⎝

−
2
1 − (ω2

1 + ω2
2) −ω1(
1 + 
2) 0 −ω2(
1 + 
2)

−ω1(
1 + 
2) −
2
2 − (ω2

1 + ω2
2) ω2(
1 + 
2) 0

0 ω2(
1 + 
2) −
2
1 − (ω2

1 + ω2
2) −ω1(
1 + 
2)

−ω2(
1 + 
2) 0 −ω1(
1 + 
2) −
2
2 − (ω2

1 + ω2
2)

⎞
⎟⎟⎠ . (36)

Four coupled oscillators are needed to represent
(q1,q2,p1,p2) ≡ (r1,r2,r3,r4). The mutual couplings kij

(i �= j ) given by Eq. (16) are the corresponding elements of
�2. The self-couplings for i = 1,2 are

kii = 
2
i + ω2

1 + ω2
2 − (ω1 + ω2)(
1 + 
2), (37)

with k33 = k11 and k44 = k22. Negative couplings are required
in general.

The operator � generates simultaneous rotations in the
planes (ri,rj ) associated with the nonzero �ij . The nonzero

mutual couplings in �2 represent noncommuting rotations in
�. One easily shows that noncommuting rotations share a
common coordinate axis in their respective rotation planes,
such as (r2,r1) and (r1,r3). Then �21�13 = (�2)23 gives a
nonzero mutual coupling k23. A rotation in the (r1,r2) plane
does commute with a rotation in the (r3,r4) plane, so one
expects the mapping from rotations to oscillators to generate
at least one mutual coupling equal to zero in this case. For
the particular example here, the structure of � is such that
(�2)13 = 0 = (�2)24, giving zero for k13 and k24. Mass 1 is
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not coupled to mass 3, and mass 2 is not coupled to mass 4.
Similarly, elements �ij that equal zero [signifying no rotation
in the (ri,rj ) plane] make no contribution to couplings kil or
klj , which may be zero, depending on the other elements of �.

4. Quantum dimer

The quantum dimer example provided in [30] corresponds
to real V = ω1, with ω2 = 0, and 
1 = 
2 = ω0, giving
ω3 = 0.

a. Liouville approach. The only nonzero elements of �

in Eq. (31) are then �32 = 2V = −�23, leading to diagonal
entries (�2)22 = (�2)33 = −4V 2 as the only nonzero elements
of �2 in Eq. (33). Thus, only two uncoupled oscillators,
each with natural frequency 2V , are needed to represent this
particular quantum system, as opposed to the maximum limit
of three. The initial conditions determine the specific details
of the time evolution.

For �(t) = [c1(t),c2(t)] and initial condition �(0) = (1,0),
as in [30], one easily constructs the density matrix ρij = cic

∗
j

to obtain r(0) = (0,0,1/2) using ri = 1/2Tr (σi ρ), resulting
in ṙ(0) = [0,−V,0)] from Eq. (32). Then

r(t) = 1

2

⎛
⎝ 0

− sin 2V t

cos 2V t

⎞
⎠ , (38)

which is the expected rotation about axis ω̂ = ω̂1 at angular
frequency 2ω1t = 2V t given by Eq. (30). Since the two
oscillators are out of phase by 90◦, the system can actually be
represented by a single oscillator; the position of one oscillator
automatically gives the position of the other from a simple
phasor diagram.

b. Schrödinger approach. Referring to the 2 × 2 block
structure of �2 in Eq. (36), one finds off-diagonal blocks
equal to zero, since they depend on ω2, the imaginary part
of V . The two remaining nonzero blocks on the diagonal
generate independent evolution of q and p. The q block gives
two coupled oscillators with mutual coupling k12 = −2ω0V

and self-couplings kii = (ω0 − V )2 from Eq. (37). The p
block gives identical couplings. One can instead switch to
a positive value for the mutual coupling, as in [30], since
changing the sign of V only interchanges the normal-mode
eigenvalues −(ω0 ± V )2 of �2. This changes the sense of
rotation generated by H in Hilbert space and hence, by � in
the real four-dimensional space. Using a positive coupling in
this way captures the essential elements of the problem, but
does not, strictly speaking, faithfully map the quantum system
to the oscillator system. There are relatively few cases where
negative couplings can be finessed away in this fashion.

With the definitions in Sec. II B1, the initial condition
c(0) = (1,0) corresponds to (q0, p0) = (1,0,0,0), which ex-
tracts the first column of � in the matrix multiplication
of Eq. (20) to give (q̇0, ṗ0) = (0,0, − ω0, − V ). The four
oscillators must be set in motion with these initial conditions
for their displacements in a mechanical implementation to
correspond to the evolution of | �(t) 〉 = [c1(t),c2(t)].

However, a solution for the motion requires only the initial
displacements. The propagator U (t) is readily obtained from
Eq. (14) in terms of the eigenvectors (1,1) and (1, − 1) for
each 2 × 2 block on the diagonal, padded with zeros to give

the appropriate four-element vector. The given initial condition
picks out the first column of U (t) to reproduce the solution
given in Eqs. (49) and (50) of Ref. [30]. The Schrödinger
equation requires four coupled oscillators for this particular
example, in contrast to two uncoupled oscillators for the
Liouville representation (equivalent to a single oscillator, since
they are always 90◦ out of phase).

5. Symmetric unperturbed levels

Consider 
1 = −
2 = ω3, which arises in representing
two unequal energy levels relative to the mean energy of the
levels.

a. Liouville approach. There are no nonzero elements of
�2 derived from Eq. (33). The system is fully coupled, as
illustrated in Fig. 1, and represents the most general result
for this approach. The Schrödinger approach, discussed next,
provides a simpler representation in this case.

b. Schrödinger approach. The matrix �2 of Eq. (36) is
now diagonal for any general complex perturbation V . Four
uncoupled oscillators, each with natural frequency (

∑
i ω

2
i )1/2,

represent the system. Specifying |�(0)〉 determines the initial
conditions as discussed previously. This is a very simple
system, with each oscillator evolving independently.

The Liouville approach, by contrast, results in a relatively
more complex system, albeit with one less oscillator. Yet,
for the dimer example, the Liouville implementation is much
simpler than the Schrödinger implementation. Which approach
gives the simpler set of oscillators and couplings depends on
the specific problem.

B. Open (dissipative) systems

1. Bloch equation with relaxation

The solution of the Bloch equation for the time dependence
of nuclear magnetization in a magnetic field is relatively
simple for a field along the z axis [36]. As is well-known,
the transverse magnetization precesses about the field at the
Larmor frequency while decaying exponentially at a transverse
relaxation rate 1/T2. The longitudinal magnetization relaxes
to the equilibrium magnetization at a rate 1/T1. The mapping
of this motion to a system of damped oscillators illustrates
the procedure described in Sec. III, as well as the role of
nonreciprocal couplings in the model.

The inhomogeneous term F in Eq. (24) is (0,0,M0/T1),
where M0 is the equilibrium magnetization. Vector r repre-
sents the nuclear magnetization. Denoting ω3 as the Larmor
frequency, the matrix � = � + R is

� =

⎛
⎜⎝

− 1
T2

−ω3 0
ω3 − 1

T2
0

0 0 − 1
T1

⎞
⎟⎠ . (39)

As described earlier, appending a column �F to the right of
�2 followed by a row of zeros at the bottom gives Eq. (27) for
the oscillator equation, with

�̃2 =

⎛
⎜⎜⎜⎝

1
T 2

2
− ω2

3
2ω3
T2

0 0

− 2ω3
T2

1
T 2

2
− ω2

3 0 0

0 0 1
T 2

1
−M0

T 2
1

0 0 0 0

⎞
⎟⎟⎟⎠ (40)
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and r̃4 = 1 augmenting r to represent a static component that
incorporates the inhomogeneous term �F . The necessary cou-
plings are easily read from symmetric �2

S and antisymmetric
�2

A that sum to give �̃2:

�̃2
S =

⎛
⎜⎜⎜⎜⎝

1
T 2

2
− ω2

3 0 0 0

0 1
T 2

2
− ω2

3 0 0

0 0 1
T 2

1
− M0

2T 2
1

0 0 − M0

2T 2
1

0

⎞
⎟⎟⎟⎟⎠ ,

�̃2
A =

⎛
⎜⎜⎜⎜⎝

0 2ω3
T2

0 0

− 2ω3
T2

0 0 0

0 0 0 − M0

2T 2
1

0 0 M0

2T 2
1

0

⎞
⎟⎟⎟⎟⎠ . (41)

A symmetric coupling k34 = −M0/(2T 2
1 ) connected in

parallel with antisymmetric (nonreciprocal) coupling γ34 =
−M0/(2T 2

1 ) provides the contribution to the final steady-state
magnetization r̃3 through coupling to r̃4. The vanishing of
k43 + γ43 ensures there is no coupling from r̃3 to change the
static component r̃4. Although there is no friction term in
Eq. (27), the mechanism that damps r̃3 is fairly transparent.
Since k31 = 0 = k32, r̃3 is only coupled to static r̃4, which
effectively shifts r̃3 to z = r̃3 − M0, giving the equivalent
equation z̈ = z/T 2

1 . The self-coupling k33 is the source of the
imaginary natural frequency i/T1, resulting in the standard
damped solution z(t) = z(0)e−t/T1 .

The mechanism for transverse relaxation is perhaps more
interesting, given that the diagonal elements (�̃2)ii (i = 1,2)
cannot be the source of the damping for the case ω3 = 1/T2.
Since (�̃2)11 = (�̃2)22, the eigenvalues of �̃2 are (�̃2)11 plus the
eigenvalues for the antisymmetric block, which are ±2iω3/T2

(compared to ±2ω3/T2 for symmetric couplings). The normal
mode frequencies, given by the square root of the eigenvalues,
are ω3 ± i/T2. When (�̃2)11 = 0, the antisymmetric coupling
is the sole source of the imaginary frequency producing the
required e−t/T2 decay of the transverse magnetization.

V. SYSTEM INVARIANTS

Dynamical variables that are known to be constant in time
can provide insight into the behavior of dynamical processes.
They are particularly useful when a solution for the time
evolution is not available. The invariants for quantum N -level
systems can be classified in three categories. The most general
category depends only on the initial state of the system. These
invariants are independent of the system Hamiltonian and
the propagator for the time evolution of the system states.
Since this evolution is a rotation, this class of invariants
provides information on the space of accessible states under
any possible rotation of a given initial state.

The next level of invariant requires input from the system
Hamiltonian and provides further information on the subspace
of states accessible under particular rotations. The final
category requires the Hamiltonian and normal modes for the
system, which is input that is also sufficient to calculate the
propagator. Although the accessible state space can then be
explicitly determined, this class of invariants still provides

potentially useful symmetry laws for a given dynamical
system.

A. Hamiltonian-independent invariants

For an N -level system, Tr(ρn) is known to provide as many
as n � N independent invariants [5] (and also [6] for N = 3).
Although the relation applies equally well to both pure and
mixed states, ρn = ρ for a pure state, so for this case the
conservation law only gives a single invariant which merely
expresses the conservation of probability, Tr(ρ) = 1.

B. Hamiltonian-dependent invariants

1. Real rotations

The energy of the oscillator system provides a very general
invariant applicable to either pure or mixed states, but it is
dependent on H . Differentiating Eq. (9) gives r̈ = �ṙ . The
solution ṙ = e�t ṙ(0) is a rotation, so the magnitude or norm
‖ṙ‖ of vector ṙ is constant, along with ‖r‖.

Thus, for oscillators representing real rotations, the total
kinetic energy T = 1/2‖ṙ‖2 of the oscillator system is
conserved. This could be anticipated, since there is only
rotational energy prior to the oscillator mapping. The potential
energy U = −1/2(�2)ij rirj must therefore also be related to
T . Writing U in matrix form and using �2 = −�†� together
with 〈r|�† = 〈�r| = 〈ṙ| gives

U = − 1
2 〈r|�2r〉 = 1

2 〈�r|�r〉 = T (42)

at all times, resulting in total energy 2T . This can be
compared with the virial theorem for the average values
〈T 〉 = −1/2〈F · r〉, noting that the force F = �2r gives 〈U 〉,
and the averages are the same as the constant values.

Comparing states of the same norm, the system cannot
evolve to a state r(t) from an initial state r(0) if it fails to
conserve the energy E = ‖ṙ‖2 = ‖�r‖2 of the initial config-
uration. On the other hand, a state that is allowed energetically
is not necessarily accessible. Most simply, reflecting r(0)
through the origin results in states −r(t) that conserve ‖�r‖
but are not accessible solutions for the time evolution of r(0),
which is expressed as a rotation.

More generally, differentiating Eq. (9) any number of times
gives

‖(d/dt)nr(t)‖ = ‖�nr(t)‖ = ‖�nr(0)‖. (43)

They are not independent, but are included for completeness.
They provide unique information only for a single value of n.

2. Hilbert space rotations

For r → c and � → −iH , the analysis of the previous
section gives

‖Hnc(t)‖ = ‖Hnc(0)‖, (44)

starting with Eq. (19). Although complex rotations can be
transformed into real rotations as discussed in Sec. II B,
Eq. (44) can be used more directly to characterize accessibility
in the Schrödinger state space. As before, the invariants are not
independent, and n = 1 would typically be the simplest choice.
A violation of any invariant renders a state inaccessible. These
invariants are also related to conservation of energy, since
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‖Hnc‖2 = 〈c|HnHn|c〉, the expectation value of H 2n for the
given state.

Consider the extension of the quantum dimer example
of [30] to three coupled monomers such as atoms or molecules
that each have only a ground state and one excited state
of energy ω0. For a linear array and only nearest-neighbor
interactions ω1,

H =
⎛
⎝ω0 ω1 0

ω1 ω0 ω1

0 ω1 ω0

⎞
⎠ . (45)

It is immediately clear from the structure of H that if the system
starts in the state (1,0,0), complete transfer to the state (0,1,0)
is not possible, since ‖H c‖2 is ω2

0 + ω2
1 initially and ω2

0 + 2ω2
1

in the final state. In fact, transfer to any (normalized) state
of the form (0,a,b) is not allowed, while complete transfer
from the initial state to (0,0,1) cannot be ruled out. As an
aside, the matrix ω01 obviously commutes with the rest of H ,
so it merely contributes a global phase e−iω0t to the solution
which can be set equal to zero.

For a circular array, monomers one and three are also nearest
neighbors, so H13 = ω1 = H31 instead of zero as in Eq. (45).
Complete transfer out of monomer one as above from (1,0,0)
to (0,a,b) is allowed only for a = 0 or b = 0. Transfer to
the states (0,1,0) or (0,0,1) are therefore allowed, but are not
necessarily in the solution space.

C. Normal-mode-dependent invariants

Although transforming Eq. (11) to normal coordinates η

is equivalent to finding the solution r(t) for the state vector,
as in Eq. (14), the correspondence between real rotations and
coupled oscillators provides additional invariants for N -level
systems derived from the normal modes of the oscillators.

As is well known, a real antisymmetric matrix, such as �,
has imaginary eigenvalues that appear in conjugate pairs, ±iλi .
In the odd-dimension case, there is an additional eigenvalue
equal to zero. Every such � can also be made block diagonal by
an orthogonal transformation. The transformed matrix consists
of antisymmetric 2 × 2 blocks with (real) elements ±λi . The
equivalence of a rotation generated by � to a system of coupled
oscillators represented by �2 provides a bridge to a normal
mode analysis of system dynamics.

Since �2 is Hermitian, there is a basis consisting of its
orthonormal eigenvectors. If the similarity transformation, T ,
that diagonalizes �2 is constructed from these orthonormal
eigenvectors, then T †�2T = �̃2 is also the transformation that
makes T †�T = �̃ block diagonal. This is the specific square
root of �̃2 (out of many) that can be inverse transformed to
the generator of the rotation, �. The nonzero antisymmetric
elements �̃ij = −�̃ji in this normal mode basis are the real
terms, ±λi , in the eigenvalues ±iλi of �. Since the operator
�̃ generates a rotation according to the equation η̇ = �̃η, the
�̃ij are the angular frequencies for rotations of η(t) in planes
(ηi,ηj ). Furthermore, the 2 × 2 block-diagonal structure of �̃

ensures that nonzero elements �̃ij in different blocks share no
common indices. The rotations generated by each block there-
fore commute, since noncommuting rotations in planes (ηi,ηj )
share a common coordinate axis, as mentioned in Sec. IV A3.

The diagonalized matrix �̃2 then consists of pairs of
degenerate eigenvalues (�̃2)ii and (�̃2)jj equal to −(�̃ij )2. If
the dimension of the real rotation space is odd, the one unpaired
eigenvalue is equal to zero. The normal mode coordinate
associated with this eigenfrequecy is static and invariant. In
addition, each rotation in a plane (ηi,ηj ) maps to uncoupled
oscillators at ηi and ηj with equal natural frequency |�ij |,
but 90◦ out of phase. As a rotation, η2

i + η2
j is constant.

Transforming from this normal-mode basis to the coordinate
basis r provides invariant dynamical variables that can be used
to characterize the behavior of the given system.

More specifically, consider a rotation in three dimensions
about an axis in the (r1,r3) plane, represented by � from
Eq. (31) with ω2 = 0 (and ignoring the scale factor 2 specific
to the original example). Results from this simple example
can almost be obtained by inspection, yet it illustrates fully the
aspects of the more general discussion above. The evolution
equation ṙ = �r drives simultaneous, noncommuting rota-
tions in the (r1,r2) and (r2,r3) planes at frequencies ω3 and ω1,
respectively. The net rotation is about the axis ω = (ω1,0,ω3)
at frequency ω = (ω2

1 + ω2
3)1/2. The transformation T which

diagonalizes �2 in Eq. (33) is a (right-hand) rotation of
the coordinates about the r2 axis by angle θ defined by
tan θ = ω1/ω3. Transforming to normal coordinates gives

η = T †r =
⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠ r, (46a)

�̃2 = T †�2T =
⎛
⎝−ω2 0 0

0 −ω2 0
0 0 0

⎞
⎠ , (46b)

�̃ = T †�T =
⎛
⎝ 0 −ω 0

ω 0 0
0 0 0

⎞
⎠ . (46c)

Matrix �̃ generates a rotation at frequency ω in the (η1,η2)
plane which maps to the two uncoupled oscillators represented
in Eq. (46b) of the same natural frequency, ω = √

(−�̃2)11 =√
(−�̃2)22. As a rotation, the magnitude of (η1,η2) is invariant.

The zero-frequency oscillator given by (�̃2)33 corresponds to
the rotation axis η3 in �̃, which is also a system invariant.
The transformation in Eq. (46a) gives the invariant dynamical
variables

η3 = r1 sin θ + r3 cos θ,

η2
1 + η2

2 = (r1 cos θ − r3 sin θ )2 + r2
2 , (47)

i.e., linear combinations of the ri(t) that are constant in time
for any initial state r(0). These are distinct from excitation
of standard vibrational modes such as η1 �= 0, η2 = 0 = η3,
which give the usual invariants related to the decoupling of the
normal modes.

VI. CONCLUSION

General N -level quantum systems can be represented as
assemblies of classical coupled oscillators, with values for the
classical coupling constants readily obtained from the system
Hamiltonian. There is a direct one-to-one correspondence
between the quantum states of the system and the oscillator
positions. The formalism presented includes both closed and
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open (dissipative) systems. It provides the possibility for
visual, mechanical insight into abstract quantum systems, as
well as a metric for characterizing the interface between quan-
tum and classical mechanics. Since the harmonic oscillator is
the foundation for modeling a wide range of physical systems,
these results might also be expected to have applications
beyond their context here.

For closed systems represented by a density matrix, the
known evolution of states as rotations of a single coherence
vector in a real (but unphysical) hyperspace of n = N2 − 1
dimensions [3,5] has been mapped here to the evolution of
n oscillators in one physical dimension. The evolution of
Schrödinger states has also been generalized here to real
rotations in n = 2N dimensions, which can be mapped to
n oscillators. In principle, n can be reduced to 2(N − 1) by
the normalization condition and choice of a specific value
(typically zero) for the arbitrary and physically meaningless
global phase of the state vector [3]. Only n = N oscillators
are required if the Hamiltonian is real. The scaling of quantum
systems to classical systems is thus linear for Schrödinger
states rather than quadratic for density matrix representations.

The generator of each rotation can be represented as a
linear combination of the generators for SO(n), the group of
rotations about a fixed point in n-dimensional Euclidean space,
which does not appear to have been emphasized previously.
The equivalence of real rotations and classical oscillators then
provides further insight into system dynamics. The group
generators represent separate rotations in orthogonal planes.
Any of the individual orthogonal rotations in two dimensions
maps to two independent oscillators 90◦ out of phase. A
rotation effected by a linear combination of generators maps
to oscillators with couplings that represent the noncommuting
rotations among the generators. In a sense, this provides a
more general analog, in reverse, to the well-known mapping
of one oscillator to a phasor rotation. The dynamics of coupled
oscillators provide previously overlooked invariants (constants
of the motion) for the rotations that represent the dynamics
of N -level systems. In addition, both positive and negative
couplings are required most generally.

Ideal, frictionless, classical coupled oscillators also provide
an exact model for open systems. Dissipation is generated by
antisymmetric couplings which emerge naturally as a result of
extending the formalism to open systems.

The results are applicable to time-independent Hamiltoni-
ans, which is sufficiently general for a great many cases of
practical interest. Time-dependent Hamiltonians (i.e., driven
systems) can be approximated to a chosen level of accuracy
by a sequence of constant Hamiltonians over sufficiently short
time steps. Modeling a time-dependent quantum Hamiltonian
as classical requires new spring constants (or their analogs)
for the mechanical system at each time step, together with a
reinitialization of the velocities derived from the new positions
of the oscillators according to Eq. (9). By contrast, velocities in
the natural dynamics of a system of coupled oscillators would
not change discontinuously with a change in spring constants.
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APPENDIX: WEAK COUPLING APPROXIMATION

The form the exact results reduce to in the limit of weak
system perturbations is considered here, generalizing the
analysis for real H detailed in [30]. The topic is of some interest
in the context of previous treatments of quantum-classical
connections that assume weak coupling at the outset [22–29].
Exact and approximate expressions provide a quantitative
comparison, enabling the accuracy and relevance of such
approximations to be readily assessed.

If off-diagonal elements Hij are sufficiently small compared
to any of the diagonal elements, then ignoring products HijHkl

of two off-diagonal elements in Eq. (22) (second-order terms)
provides a good approximation to the exact results. Each
q̈i = ∑

j −(H 2)ij qj is a linear combination of the qj with
coefficients −∑

k HikHkj . The effect of the weak coupling
approximation is to change the value of the coefficients as
follows. Separating the k = i term from the k summation,
followed by writing the j = i term separate from the j

summation, then taking the k = j term out of the remaining
double sum gives

q̈i = −
∑

j

(H 2)ij qj = −
∑
j,k

HikHkjqj

= −
∑

j

[
HiiHij +

∑
k �=i

HikHkj

]
qj

= −
[
HiiHii +

∑
k �=i

HikHki

]
qi

−
∑
j �=i

[
HiiHij +

∑
k �=i

HikHkj

]
qj

= −
[
HiiHii +

∑
k �=i

HikHki

]
qi −

∑
j �=i

[HiiHij + HijHjj ]qj

−
∑
j �=i

∑
k �= i

k �= j

HikHkjqj ,

q̈i +
[

(Hii)
2 +

∑
k �=i

(Hki)
2

]
qi

= −
∑
j �=i

⎡
⎢⎣(Hii + Hjj )Hij +

∑
k �= i

k �= j

HikHkj

⎤
⎥⎦qj , (A1)

which is Eq. (21) of reference [30] after moving the qi term
included in a summation there to the left side of the equation
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and defining diagonal elements Hnn ≡ ωn. The substitution
Hik = Hki is used above, since H is real and Hermitian.

The sums over index k in Eq. (A1) are clearly identifiable
as second-order terms, while the coefficient involving a single
sum over index j is a product of first-order Hij and larger
diagonal elements. Omitting second-order terms gives the
result in the weak coupling approximation as

q̈i + H 2
iiqi = −

∑
j �=i

(Hii + Hjj )Hijqj . (A2)

Comparison with Eq. (A1) shows the exact result merely
modifies values for the natural frequency of the oscillator
associated with position qi and modifies the couplings to
the other oscillators. Most generally, therefore, it causes no
increase in the complexity of the calculation, so there would
be no particular advantage to using the weak coupling approxi-
mation. On the other hand, in specific cases, the structure of the
Hamiltonian may be such that coupling coefficients of some
coordinates become zero in the weak coupling approximation,

which might simplify a given problem. The classical q-coupled
equations used as a model for comparison to exact results
in [30] lack the Hjj term in Eq. (A2), a further approximation
that would be more difficult to justify, since the diagonal
elements of H cannot all be small relative to each other.

Extending the results considered here to complex H is
straightforward. Equation (21) is of the form r̈ = �2r , with
real, symmetric �2 and r = (q, p). The weak coupling condi-
tion becomes �ij � �nn, which simply adds the requirement
that the imaginary parts of Hij also be sufficiently small
compared to the diagonal elements. Then, in Eqs. (A1) and
(A2), q → r and H → �.

Finally, the secular approximation, applied, for example,
in perturbation theory, provides a different standard for sim-
plifying analysis. For a given operator, off-diagonal elements
that are sufficiently small compared to the smallest difference
between eigenvalues of the operator can be set equal to
zero.
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