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We discuss the uniqueness of quantum states compatible with given measurement results for a set of observables.
For a given pure state, we consider two different types of uniqueness: (1) no other pure state is compatible with the
same measurement results and (2) no other state, pure or mixed, is compatible with the same measurement results.
For case (1), it was known that for a d-dimensional Hilbert space, there exists a set of 4d − 5 observables that
uniquely determines any pure state. We show that for case (2), 5d − 7 observables suffice to uniquely determine
any pure state. Thus, there is a gap between the results for (1) and (2), and we give some examples to illustrate this.
Unique determination of a pure state by its reduced density matrices (RDMs), a special case of determination by
observables, is also discussed. We improve the best-known bound on local dimensions in which almost all pure
states are uniquely determined by their RDMs for case (2). We further discuss circumstances where (1) can imply
(2). We use convexity of the numerical range of operators to show that when only two observables are measured,
(1) always implies (2). More generally, if there is a compact group of symmetries of the state space which has
the span of the observables measured as the set of fixed points, then (1) implies (2). We analyze the possible
dimensions for the span of such observables. Our results extend naturally to the case of low-rank quantum states.
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I. INTRODUCTION

In a d-dimensional Hilbert space Hd , the description of
any quantum state ρ generated by a source can be obtained
by quantum tomography. For any density matrix ρ, which is
Hermitian and has trace 1, d2 − 1 independent measurements
are sufficient and necessary to uniquely specify ρ. When
ρ = |ψ〉〈ψ | is a pure state, one may not need as many
measurements to uniquely determine |ψ〉. As we will see later,
however, exactly what is meant by “uniquely” in this context
needs to be specified.

Consider a set of m linearly independent observables

A = (A1,A2, . . . ,Am), (1)

where each Ai is Hermitian. Measurements on state ρ with
respect to these observables give the following average values:

A(ρ) := (tr ρA1, tr ρA2, . . . , tr ρAm) ∈ Rm. (2)

We denote the set of these A(ρ) for all states ρ as

Cm(A) := {A(ρ) : ρ acts on Hd}. (3)

For a pure state |ψ〉, these values are given by

A(|ψ〉) := (〈ψ |A1|ψ〉,〈ψ |A2|ψ〉, . . . ,〈ψ |Am|ψ〉), (4)

and we denote the set of these values for all pure states |ψ〉 as
the joint numerical range

Wm(A) := {A(|ψ〉) : |ψ〉 ∈ Hd}. (5)

In this work, we consider two different kinds of “unique
determinedness” for |ψ〉:

(1) We say |ψ〉 is uniquely determined among pure states
(UDP) by measuring A if there does not exist any other pure
state which has the same measurement results as those of |ψ〉
when measuring A.

(2) We say |ψ〉 is uniquely determined among all states
(UDA) by measuring A if there does not exist any other state,
pure or mixed, which has the same measurement results as
those of |ψ〉 when measuring A.

It is known that there exists a family of 4d − 5 observables
such that any pure state is UDP, in contrast to the d2 − 1
observables in the general case of quantum tomography [1].
The physical meaning for this case is clear: it is useful
for the purpose of quantum tomography to have the prior
knowledge that the state to be reconstructed is pure or nearly
pure. Many other techniques for pure state tomography have
been developed, and experiments have been performed to
demonstrate the reduction of the number of measurements
needed [2–8].

When the state is UDP, to make the tomography meaningful,
one needs to make sure that the state is indeed pure. This is not
in general practical, but one can readily generalize the above-
mentioned UDP results to low-rank states, where the physical
constraints (e.g., low temperature, locality of interaction) may
ensure that the actual physical state (which ideally supposed
to be pure) is indeed low rank. If the state is UDA, however,
in terms of tomography one does not need to bother with
these physical assumptions because in the event there is only a
unique state compatible with the measurement results, which
turns out to be pure (or low rank).

There is also another clear physical meaning for the states
that are UDA by measuring A. Consider a Hamiltonian of the
form

HA =
m∑

i=1

αiAi. (6)

Then, any unique ground state |ψ〉 of HA is UDA by measuring
A. This is easy to verify: if there is any other state ρ that gives
the same measurement results, then ρ has the same energy

012109-11050-2947/2013/88(1)/012109(12) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.012109


JIANXIN CHEN et al. PHYSICAL REVIEW A 88, 012109 (2013)

as that of |ψ〉, which is the ground-state energy. Therefore,
any pure state in the range of ρ must also be a ground state,
which contradicts the fact that |ψ〉 is the unique ground state.
In other words, UDA is a necessary condition for |ψ〉 to be a
unique ground state of HA. It is in general not sufficient, but
the exceptions are likely rare [9,10].

The uniqueness properties for pure states, for both UDP and
UDA, have also been studied extensively in the case of mul-
tipartite quantum systems, where the observables correspond
to reduced density matrices (RDMs). That is, the observables
are chosen to act nontrivially on only some subsystems. For an
n-particle system and a constant k < n, there are a total of ( n

k )
k-RDMs, and the corresponding measurements A are those
�k-body operators. For example, for a three-qubit system and
k = 2, one can choose A as all the one- and two-particle Pauli
operators. Of course, one can also choose to look at some
of the ( n

k )-RDMs, rather than all of them. For instance, for
a three-particle system, one can look at 2-RDMs of particle
pairs {1,2} and {1,3}.

It is known that almost all three-qubit pure states are UDA
by their 2-RDMs [11]. These authors also show that UDP
implies UDA for three-qubit pure states, for 2-RDMs. This
result can be further improved to 2-RDMs of particle pairs
{1,2} and {1,3} [9]. More generally, one can consider a three-
particle system of particles 1,2,3 with Hilbert spaces whose
dimensions are d1,d2,d3, respectively. If d1 � d2 + d3 − 1,
then almost all pure states are UDA by their 2-RDMs of particle
pairs {1,2} and {1,3}. In contrast, if d1 � 2, then almost all
pure states are UDP by their 2-RDMs of particle pairs {1,2}
and {1,3}, as shown by Diosi [12].

For n-particle quantum systems with equal dimensional
subsystems, almost all pure states are UDA by their k-RDMs of
just over half of the parties (i.e., k ∼ n/2). Furthermore, ∼n/2
properly chosen RDMs among all the ( n

k ) k-RDMs suffice
[13]. W -type states are UDA by their 2-RDMs, and n − 1
of those 2-RDMs are enough [14]. General symmetric Dicke
states are UDA by their 2-RDMs [15]. It has been shown
that the only n-particle pure states which can not be UDP by
their (n − 1)-RDMs are those GHZ-type states (of the form∑

i ai |i〉⊗n), and the result is further improved to the case of
UDA [16]. Their results also show that UDP implies UDA for
n-qubit pure states, for (n − 1)-RDMs.

Despite these many results, there is no systematic study of
these two different types of uniqueness for pure states. This
will be the focus of this paper, where we are interested in
knowing for given measurements A whether UDP and UDA
are the same or are different. We will give a general argument
that there is a gap between the number of observables needed
for the two different cases. However, in many interesting
circumstances, they can coincide. Our discussions extend natu-
rally to the case of low-rank quantum states instead of just pure
states. Here, one can also look at two kinds of uniqueness when
measuring given observables A: one is uniqueness among all
low-rank states, the other is among all states of any rank.

We organize the paper as follows. In Sec. II, we first show
that there is a set of 5d − 7 observables that ensures every pure
state is UDA, which should be compared to the UDP result
4d − 5. Thus, in general there is a gap between the optimal
results for the UDP and UDA cases, and we illustrate this with

some examples. Section III discusses the case of observables
corresponding to RDMs of a multipartite quantum state, where
for the three-particle case, we show that if d1 � min(d2,d3),
then almost all pure states are UDA by their 2-RDMs of particle
pairs {1,2} and {1,3}, improving the bounds given in Ref. [17].
However, this still leaves a gap with the Diosi result for the
case of UDP in Ref. [12]. We further discuss circumstances
where UDP can imply UDA for all pure states. In Sec. IV, we
show that when there are only two independent measurements
performed, then UDP always implies UDA by making use
of convexity of the numerical range of operators. In a more
general case, if there is a compact group of symmetries of the
state space which has the span of the operators measured as
its set of fixed points, then UDP implies UDA for all pure
states. We analyze the possible dimensions for those fixed-
point sets. A summary and some discussions are included in
Sec. VI.

II. NUMBER OF OBSERVABLES FOR UDA

In this section, we discuss the minimum number of
observables needed to have all pure states be UDA. We start
by choosing a Hermitian basis {λi}d2−1

i=0 for the operators on
Hd . Without loss of generality, we choose λ0 = √

d − 1I , the
identity operator on Hd , which has trace d. We further require
that the λi’s are orthogonal in the sense that, for i,j � 0,

tr λiλj = d(d − 1)δij . (7)

The d × d Hermitian matrices form a real inner-product
space with inner product 〈A,B〉 = tr(AB), so such a basis
{λi}d2−1

i=0 exists for any dimension d. For instance, for the qubit
case (d = 2), we can choose the Pauli basis

λ1 =
(

0 1

1 0

)
, λ2 =

(
0 −i

i 0

)
, λ3 =

(
1 0

0 −1

)
. (8)

For the qutrit case (d = 3), one can choose λi = √
3Mi for

i > 0, where Mis are the Gell-Mann matrices given by

M1 =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠ , M2 =

⎛
⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎠ ,

M3 =

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠ , M4 =

⎛
⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎠ ,

(9)

M5 =

⎛
⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎠ , M6 =

⎛
⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎠ ,

M7 =

⎛
⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎠ , M8 = 1√

3

⎛
⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎠ .

For general d, one can choose λi =
√

d(d−1)
2 Mi for i > 0,

where Mi’s are the generalized Gell-Man matrices. We can
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now write any density operator ρ as

ρ = 1

d
(I + �r · �λ), (10)

where �λ = (λ1,λ2, . . . ,λd2−1), and where �r =
(r1,r2, . . . ,rd2−1) has real entries.

We have tr ρ2 � 1, therefore �r · �r � 1, and the equality
holds if ρ is a pure state. However, not every state satisfying
�r · �r = 1 is a pure state. Indeed, ρ is a pure state if and only
if ρ2 = ρ, which gives equations that �r needs to satisfy. If
one of the observables is a multiple of the identity, then we
can drop it from the list of observables without affecting UDA
and UDP. If two states agree on an observable Ai , then they
agree on Ai + tI for any real scalar t , so we can adjust each of
the observables A = (A1, . . . ,Am) to have trace zero without
affecting UDA or UDP. Hence, hereafter we assume all Ai are
traceless.

For any observable Ai , we can expand in terms of {λi} as

Ai =
d2−1∑
j=1

αijλj . (11)

Then the average value of Ai is given by

tr(Aiρ) = 1

d

⎛
⎝d +

∑
j

rjαij d(d − 1)

⎞
⎠ = 1 + (d − 1)�r · �αi,

(12)

where �αi = {αi1,αi2, . . . ,αi(d2−1)}.
To discuss the problem for any pure state to be UDA, the

constant 1 and constant factor d − 1 can be ignored, as these
are the same constants for all states. Therefore, we have

tr(Aiρ) ∼ �r · �αi, (13)

where ∼ means that the average value of Ai for the state ρ is
geometrically equivalent to the projection of �r onto �αi .

Alternatively, define T : Rd2−1 → Rm by T (�r) = (�r ·
α1, . . . ,�r · �αm). Let L be the linear subspace of Rd2−1 spanned
by �α1, . . . ,�αm, and let π be the orthogonal projection from
Rd2−1 onto L. Then, π and T have the same kernel, namely
L⊥. Thus, for states ρ1,ρ2, we have T (ρ1) = T (ρ2) if and only
if π (ρ1) = π (ρ2), so in considering UDA and UDP we can
treat T as being the orthogonal projection onto L.

If we subtract the density matrix I/d from all states, then
the translated set of states sits in the real (d2 − 1)-dimensional
subspace of trace-zero Hermitian matrices. In this sense,
we are actually working with real geometry in Rd2−1. All
quantum states then sit inside the (d2 − 1)-dimensional unit
ball, with pure states corresponding to unit vectors, but not
every vector on the unit (d2 − 2)-dimensional sphere is a pure
state. The observables span an m-dimensional subspace that
all the quantum states will be projected onto. We will simply
say the subspace is spanned by A when no confusion arises,
and we will no longer distinguish an operator Ai from the
corresponding vector �αi . Indeed, we only consider the real
span of A, and we denote it by S(A). For each S(A), there
is an orthogonal subspace in Rd2−1 of dimension d2 − 1 − m,
which we denote byS(A)⊥. Here, we are taking the orthogonal

complement in the space of traceless Hermitian matrices, so
that every V ∈ S(A)⊥ is traceless.

We now are ready to state our first theorem.
Theorem 1. For a d-dimensional system (d > 2), there

exists a set of 5d − 7 observables for which every pure state
is UDA.

To see why this is the case, note that in the above-mentioned
geometrical picture, it is clear that a pure state |ψ〉〈ψ | is
UDA by measuring A if there does not exist any operator
V ∈ S(A)⊥, such that |ψ〉〈ψ | + V is positive. One sufficient
condition will then be that any operator V ∈ S(A)⊥ has at
least two positive and two negative eigenvalues. We will use
this sufficient condition to construct a desired S(A)⊥.

In order to construct S(A)⊥, we provide a set of
m = d2 − 5d + 6 linearly independent Hermitian matrices
H1,H2, . . . ,Hm ∈ Md (C) explicitly, such that the Hermitian
matrix

m∑
j=1

rjHj

has at least two positive eigenvalues for any nonzero real vector
r = (rj ) ∈ Rm.

Our construction is motivated by and similar to the diagonal
filling technique used in Ref. [18], but along the other direction
of the diagonals. This then means that measuring d2 − 1
−(d2 − 5d + 6) = 5d − 7 observables is enough for any pure
state to be UDA, which proves the theorem. There are indeed
technical details to be clarified that we leave to Appendix A.

If we compare our results with those given in Ref. [1],
which shows that measuring 4d − 5 observables are enough
for any pure state to be UDP, there exists an obvious gap. We
claim that this gap indeed can not be closed in general. To see
this, let us look at the simplest case of d = 3, where the results
just compared state that 7 observables are enough for any pure
state to be UDP but 8 observables are enough for any pure
state to be UDA.

If one can measure a particular set A with 7 observables and
have all pure states be UDA, then also every state also must
be UDP for measuring A. According to [1], this only happens
if S(A)⊥ contains a single invertible traceless operator V ,
meaning V is rank 3. Without loss of generality, we can assume
the largest eigenvalue V to be positive with an eigenstate |ψ〉.
Then, |ψ〉 is not UDA by measuring A since as observed in
Ref. [1] there exists a mixed state which also has the same
average values as those of |ψ〉. Therefore, one can not only
measure 7 observables for all pure states to be UDA.

For general d, our construction needs 5d − 7 observables.
We do not know whether this is the optimal construction, but
it is very unlikely one can get this down to 4d − 5. In other
words, in general UDA and UDP for pure states should be
indeed two different concepts and there should always be gaps
between the number of observables needed to be measured
for each case to uniquely determine any pure quantum state.
This is one exception, though, which is for the qubit case (i.e.,
d = 2) where it is shown in Ref. [1] that for all pure states
to be UDP, one needs to measure 3 = 22 − 1 variables, which
then uniquely determine any quantum state among all states.

Finally, we remark that our results in Theorem 1 naturally
extend to the case of low-rank states. That is, for a rank
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q < d/2 quantum state ρ, we can similarly consider two
different cases: (1) ρ is uniquely determined by measuring A
among all rank � q states (which was considered in Ref. [1]),
(2) ρ is uniquely determined by measuring A among all
quantum states of any rank.

Theorem 2. For a d-dimensional system (d > 2) measuring
(4q + 1)d − (4q2 + 2q + 1) observables is enough for a rank
�q state to be uniquely determined among all states.

Compared to the results in Ref. [1], where 4q(d − q) − 1
observables are needed to uniquely determine any rank � q

states among all rank �q states, when d is large the difference
in the leading term has a d gap. The proof idea is similar to
that of Theorem 1, so we leave the details to Appendix A.

III. CASE OF REDUCED DENSITY MATRICES

In this section, we discuss the case where the Hilbert space
Hd is a multipartite quantum system, where the observables
correspond to the reduced density matrices (RDMs). That is,
the observables are chosen to be acting nontrivially only on
some subsystems. For instance, for a three-qubit system, the
observables corresponding to the 2-RDMs of particle pairs
{1,2} can be chosen as

A = (X1,X2,Y1,Y2,Z1,Z2,X1X2,X1Y2,X1Z2,Y1X2,Y1Y2,

Y1Z2,Z1X2,Z1Y2,Z1Z2), (14)

where Xi,Yi,Zi are Pauli X,Y,Z operators acting on the ith
qubit.

For simplicity in this section we consider only three-particle
systems, labeled by 1,2,3, and each with Hilbert space dimen-
sion d1,d2,d3, respectively. That is, Hd = Hd1 ⊗ Hd2 ⊗ Hd3

and d = d1d2d3. Nevertheless, our method naturally extends
to systems of more than three particles.

Recall that for a three-particle system, it is known that
almost all three-qubit pure states are UDA by their 2-RDMs
[11]. This result can be further improved to 2-RDMs of particle
pairs {1,2} and {1,3} [9]. More generally, if d1 � d2 + d3 − 1,
then almost all pure states are UDA by their 2-RDMs of particle
pairs {1,2} and {1,3} [17]. In contrast, if d1 � 2, then almost
every pure state is UDP by its 2-RDMs of particle pairs {1,2}
and {1,3} [12].

We notice that different from the discussion in Sec. II, one
no longer considers uniqueness for all pure states, but ‘almost
all’ of them. This means there exists a measure zero set of pure
states which are not uniquely determined. For instance, for the
three-qubit case, any state which is local unitarily equivalent
to the GHZ-type state

|GHZ〉type = a|000〉 + b|111〉 (15)

can not be UDP, as any state of the form a|000〉 + beiθ |111〉
has the same 2-RDMs as those of |GHZ〉type. This means that,
for a three-qubit pure state |ψ〉, it is either UDA, or not UDP.
In other words, if any three-qubit pure state |ψ〉 is UDP, then
it is UDA by its 2-RDMs of particle pairs {1,2} and {1,3}. In
this sense, we say in this case UDP implies UDA for all pure
states. However, for the general case of a three-particle system,
there is a gap between known results of UDA and UDP. Our
following result improves the bound for the UDA case.

Theorem 3. If d1 � min(d2,d3), then almost every tripartite
quantum state |φ〉 ∈ Hd1 ⊗ Hd2 ⊗ Hd3 is UDA by its 2-RDMs
of particle pairs {1,2} and {1,3},

To see why this is the case, an arbitrary pure state |φ〉 of
this system can be written as

|φ〉123 =
d1∑

i=1

d2∑
j=1

d3∑
k=1

cijk|i〉1|j 〉2|k〉3. (16)

If there is another state ρ which agrees with |φ〉 in its
subsystems {1,2} and {1,3}, then we can find a pure state
|ψ〉1234 ∈ Hd1 ⊗ Hd2 ⊗ Hd3 ⊗ Hd4 which agrees with ρ on the
subsystem {1,2,3} and also agrees with |φ〉123 in subsystems
{1,2} and {1,3}.

Since the rank of the 2-RDM of the subsystem {1,2} is at
most d3, the pure state |ψ〉1234 can be written as a superposition
of |vl〉|El〉 as follows:

|ψ〉1234 =
d3∑

l=1

|vl〉|El〉, (17)

where

|vl〉 =
d1∑

i=1

d2∑
j=1

cij l|i〉1|j 〉2 (18)

for any 1 � l � d3. Here, {|El〉}d3
i=1 will be vectors (perhaps

unnormalized) in Hd3 ⊗ Hd4 .
For almost all states |φ〉, the set of {|vl〉}d3

i=1 will be linearly
independent. Let us write |El〉 = ∑d3

k=1 |k〉3|elk〉4. For any 1 �
l � d3, we will have

|ψ〉1234 =
d1∑

i=1

d2∑
j=1

d3∑
k,l=1

cij l|i〉1|j 〉2|k〉3|elk〉4. (19)

Now let us consider the subsystem {1,3}. Since |φ〉123 and
|ψ〉1234 have the same RDMs for particles {1,3}, this gives

tr2 |φ〉〈φ| = tr{2,4} |ψ〉〈ψ |. (20)

Substituting Eqs. (16) and (17) into Eq. (20), and comparing
each matrix element, results in the following equalities (for all
m,m′,n,n′):

d2∑
j=1

cmjnc
∗
m′jn′ =

d2∑
j=1

d3∑
k,k′=1

cmjkc
∗
m′jk′ 〈ek′n′ |ekn〉. (21)

Now, let us define xijkl = 〈eij |ekl〉. Then, Eq. (21) is a linear
equation system with variables xijkl . It is not hard to verify
that

xijkl =
{

1 if i = j,k = l,

0 otherwise
(22)

is a solution to the equation system, which corresponds to the
state |φ〉123.

Now, we need to show that when d1 � min{d2,d3}, Eq. (21)
has only one solution which is given by Eq. (22). It turns out
that this is indeed the case which then proves Theorem 3.
In fact, the linear equations above are generically linearly
independent. To see this, let us fix n,n′ and m,m′, the
right-hand side of Eq. (21) is

∑d3
k,k′=1〈α|m′k′ |α〉mkxk′n′kn where
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|α〉mk = ∑d2
j=1 cmjk|j 〉. Then, the coefficient matrix can be

written as the following:

⎛
⎜⎜⎜⎜⎝

〈α|11|α〉11 〈α|11|α〉12 . . . 〈α|1d3 |α〉1d3

〈α|11|α〉21 〈α|11|α〉22 . . . 〈α|1d3 |α〉2d3

...
...

. . .
...

〈α|d11|α〉d11 〈α|d11|α〉d12 . . . 〈α|d1d3 |α〉d1d3

⎞
⎟⎟⎟⎟⎠ . (23)

The [d1(i − 1) + j,d3(p − 1) + q] entry in the above matrix
is 〈α|ip|α〉jq .

If there is more than one solution, then the determinant of
the above matrix should be zero. Note that the determinant
can be written as a polynomial of cmjk’s and c∗

m′jk′’s. Since∏
ciii appears only once in the polynomial, the determinant

of the top d2
3 by d2

3 submatrix must be nonzero generically.
Therefore, d2

1d2
3 linear equations are sufficient to determine d4

3
variables.

However, we do not know whether the sufficient condition
given by Theorem 3 for almost all three-particle pure states to
be UDA by its 2-RDMs of particle pairs {1,2} and {1,3} is also
necessary. This still leaves a gap between the result of Theorem
3 for UDA, and the result for UDP in [12]. They both only
coincide when d1 = d2 = d3 = 2, i.e., the three-qubit case. It
remains open for other cases, whether UDP can imply UDA.

Following a similar discussion as in Sec. II, our result in
this section also extends to uniqueness of low-rank quantum
states. In particular, we have the following theorem.

Theorem 4. Almost every tripartite density operator ρ acting
on the Hilbert space Hd1 ⊗ Hd2 ⊗ Hd3 with rank no more
than  d1

d3
� can be uniquely determined among all states by its

2-RDMs of particle pairs {1,2} and {1,3}.
This theorem establishes a unique determination result for

low-rank mixed states given their RDMs. The proof is a direct
extension of that for Theorem 3, but with more lengthy details
that we will include in Appendix B.

Let us look at some consequences of Theorem 4. Consider
a four-qubit system with qubits 1,2,3,4, and look at the qubits
1,2 as a single systems 1′. Then, Theorem 4 says also that
almost all four qubit states of rank 2 are UDA by their RDMs
of particles {1′,3} = {1,2,3} and {1′,4} = {1,2,4}, or one can
say that almost all four qubit states of rank 2 are UDA by
their 3-RDMs. This is indeed consistent with the multipartite
result in Ref. [13] which states that almost all four-qubit pure
states are UDA by their 3-RDMs, and our result is indeed
stronger. This demonstrates that our analysis naturally extends
to systems of more than three particles. We also remark that the
rank of a state ρ which could be UDA by its k-RDMs needs to
be relatively low, otherwise one can always find another state
ρ ′ with lower rank which has the same k-RDMs as those of
ρ [19].

Finally, we remark that for the three-qubit case, the GHZ-
type states and all their local unitary equivalents are the only
states that are UDA by their 2-RDMs. One may wonder for the
systems discussed in Theorems 3 and 4 as to which states are
undetermined. Unfortunately, it is not easy to give a complete
characterization of these undetermined states, as methods used
in the proof of Theorems 3 and 4 do not directly give that.
However, what we do know is that there are certainly states

beyond the generalized GHZ type, i.e.,
∑min(d1,d2,d3)

i=1 αi |iii〉, or
their local unitary equivalents, which are undetermined.

As an example, consider a graph state |ψ1〉 of five qubits
which is stabilized by the stabilizer group with generators

g1 = X1Z2Z5, g2 = Z1X2Z3, g3 = Z2X3Z4,
(24)

g4 = Z3X4Z5, g5 = Z1Z4X5.

Let us consider this as a three-particle system with qubits
{1,2} the first particle, qubits {3,4} the second particle, and
qubit {5} the third particle. This is then a three-particle system
with different local dimensions satisfying the dimension
condition given by Theorem 3. Note that |ψ1〉 is undetermined
by the RDMs of particles {1,2,3,4} and {1,2,5}. This is because
that the state |ψ2〉 which is stabilized by the stabilizer group
with generators {g1,g2,g3,g4,−g5} has the same RDMs of
particles {1,2,3,4} and {1,2,5} as those of |ψ1〉. Furthermore,
|ψ1〉 has RDMs of rank 4 for both the first and second particles,
and RDM of rank 2 for the third particle, which certainly is not
local unitary equivalent to the generalized GHZ-type states.

IV. CASE OF ONLY TWO OBSERVABLES

In Secs. II and III, we discussed the difference and
coincidence between the two kinds of uniqueness for pure
states UDA and UDP, which in general are not the same
thing. However, in certain interesting circumstances such as
the three-qubit case with respect to 2-RDMs, and in general the
n-qubit case with respect to (n − 1)-RDMs, they do coincide.
Starting from this section we would like to build some general
understanding of the circumstances when UDP implies UDA
for all pure states.

We start from the simplest case of m = 2, where only
two observables are measured, i.e., A = (A1,A2). Intuitively,
in this extreme case almost no pure state can be uniquely
determined, either UDA or even UDP. However, there are also
exceptions. For instance, if one of the observables, say A1, has
a nondegenerate ground state |ψ〉, then |ψ〉 is UDA (hence,
of course, UDP) even by measuring A1 only. One would hope
this is the only exception, that is, for a pure state |ψ〉, either
it is UDA, or it is not UDP, when only two observables are
measured. We make this intuition rigorous by the following
theorem.

Theorem 5. When only two observables are measured,
i.e., A = (A1,A2), UDP implies UDA for any pure state |ψ〉,
regardless of the dimension d.

To prove this theorem, recall that measuring A (i.e.,
measuring every observable in A) for all quantum states ρ

returns the set Cm(A) given by Eq. (3). We know that Cm(A)
is a convex set, meaning for any �x,�y ∈ Cm(A), we have
(1 − s)�x + s �y ∈ Cm(A) for any 0 < s < 1.

For pure states, the corresponding set of average values is
given by Wm(A) as defined in Eq. (5). Unlike Cm(A), Wm(A)
in general is not convex. Nevertheless, it is easy to see that
Wm(A) = Cm(A) when Wm(A) is convex.

For m = 2, the Hausdorff-Toeplitz theorem [20,21] gives
convexity of the numerical range of any operator, which in turn
shows that W2(A) is convex. We explain it briefly here. For
any operator B acting on a Hilbert space Hd , the numerical
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range of B is the set of all complex numbers 〈ψ |B|ψ〉, where
|ψ〉 ranges over all pure states in Hd .

Note that one can always write B as

B = 1
2 [(B + B†) + (B − B†)]

= 1
2 [(B + B†) + i(−iB + iB†)]. (25)

If we define A1 := (B + B†)/2 and A2 := (−iB + iB†)/2,
then clearly both A1 and A2 are Hermitian. Then, W2(A) is
nothing but the numerical range of B = A1 + iA2 and hence
is convex.

Furthermore, by studying the properties of the numerical
range, it was shown in Ref. [22] (using different terminology)
that if a pure state |ψ〉 is UDP, the point �x := A(|ψ〉) must be
an extreme point of W2(A). Here, �x is an extreme point of the
convex set W2(A) if there do not exist �y,�z ∈ W2(A), such that
�x = (1 − s)�y + s�z for some 0 < s < 1.

Because W2(A) = C2(A), �x is also an extreme point of
C2(A). One can further show that for any extreme point �x
of C2(A), and any quantum state ρ with A(ρ) = �x, any pure
quantum state |φ〉 in the range of ρ will also have A(|φ〉) = �x.
This then implies that if a pure state |ψ〉 is UDP by measuring
A, it must also be UDA, which proves the theorem. Again,
all the technical details of the proof will be presented in
Appendix C.

In an attempt to extend Theorem 5 to the m � 3 case, a
natural question that one could ask is whether or not UDP
implies UDA whenever Wm(A) is convex. Unfortunately, this
is not the case, as demonstrated by the following example.

For the qutrit case (d = 3), consider the observables A =
(M1,M2,M3), where the Mi’s are the Gell-Mann matrices
given in Eq. (9). These are the Pauli operators embedded in
the qutrit space. It is easily verified that in this case, Wm(A)
is the Bloch sphere together with its interior and is thus
convex. Nonetheless, the unique pure state compatible with
measurement result (0,0,0) is the state |2〉, even though there
are many mixed states sharing this measurement result, such
as 1

2 (|0〉〈0| + |1〉〈1|).
Therefore, although the Hausdorff-Toeplitz theorem

Refs. [20,21] is famous for showing the convexity of numerical
range of any operator, there is indeed a deeper reason than
just the convexity of the numerical range which governs the
validity of Theorem 5. We leave the more detailed discussion
to Appendix C.

V. SYMMETRY OF THE STATE SPACE

In this section, we discuss some circumstances where UDP
implies UDA in a more general context where more than two
observables are measured, i.e., m > 2. Our focus is on the
symmetry of the set of all quantum states. For a d-dimensional
Hilbert space Hd we denote this set of states by Kd , that is,

Kd = {ρ | ρ acts on Hd , tr(ρ) = 1}. (26)

Note that Kd is convex, as we know that for any ρ1,ρ2 ∈
Kd , (1 − s)ρ1 + sρ2 ∈ Kd for all 0 < s < 1. Furthermore, the
extreme points of Kd are all the pure states. Kd is also called
the state space for all the operators acting on Hd .

We now explain the intuition. If Kd has a certain symmetry,
then two pure states |ψ1〉 and |ψ2〉 that are “connected” by the

FIG. 1. Symmetry of the Bloch ball.

symmetry will give the same measurement results, and states
|ψ〉 fixed by the symmetry will also be fixed by the projection
onto the space of observables. In this situation, UDP implies
UDA for all pure states.

To make this intuition concrete, let us first consider an
example for d = 2, i.e., the qubit case. We know that Kd can
be parametrized as in Eq. (10), where for d = 2, λ1 = X, λ2 =
Y, λ3 = Z are chosen as Pauli matrices given in Eq. (8). Here,
Kd is the Bloch ball as shown in Fig. 1. The Bloch ball is
clearly a convex set and the extreme points are those pure
states on the boundary, which give the Bloch sphere.

We know that geometrically, measuring the observables in
A corresponds to the projection onto the plane spanned by A.
For example, if we measure the Pauli X and Y operators, then
geometrically this corresponds to the projection of the Bloch
ball onto the xy plane. Since the Bloch ball has reflection
symmetry with respect to the xy plane, two pure states (e.g.,
points B and C) connected by that symmetry will project onto
the same measurement result P , as will all mixtures of B and
C. Hence, neither UDP nor UDA hold for such pure states for
measuring X and Y . On the other hand, pure states fixed by the
reflection symmetry are also fixed by the projection onto the
xy plane. These are precisely the points on the Bloch sphere
that are in the xy plane (e.g., the points E and G in Fig. 1),
and for such pure states both UDP and UDA hold. Therefore,
for the observables X,Y we conclude that UDP = UDA.

Now, let us look at another case where we only measure
the Pauli X operator. Consider the group of symmetries of the
Bloch ball consisting of rotation around the x axis. (Rotation by
angle α is shown in Fig. 1. In that figure, point B will become
point F after this particular rotation, and indeed both points B

and F yield the same measurement result, which is represented
by point P on the x axis.) Note that two points on the Bloch
sphere will project to the same measurement result on the x axis
if and only if they are in the same orbit under the rotation group.
Thus, a measurement result will come from a single pure state
exactly when that pure state is a fixed point, and hence either
both or neither of UDP and UDA hold for each pure state. For
example, the point E is fixed by the rotation, and is uniquely
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determined by the measurement of X among all states. E

corresponds to the −1 eigenstate of the Pauli X operator.
Therefore, the rotational symmetry of the Bloch ball along the
x axis gives UDP =UDA for any pure state when measuring
the Pauli X operator, which corresponds to the x axis.

Mathematically, a symmetry of Kd is an affine automor-
phism of Kd . If U ∈ Md is unitary, the map taking ρ to UρU †

is such an affine automorphism (which for d = 2 will just be
rotation around some axis of the Bloch ball). For instance, the
rotation symmetry along the x axis by an angle α is given
by conjugation by the unitary operator exp(−iXα/2). If V is
the conjugate linear map given by complex conjugation in the
computational basis (V |ψ〉 = |ψ∗〉), then the map taking ρ to
VρV † is the transpose map. For d = 2, this map is reflection
of the Bloch ball in the xy plane.

Recall that for a set of observables A, we denote the
real linear span by S(A). When discussing the uniqueness
problems, it makes no difference if we append the identity
operator to A. Let us then assume A = (I,A1, . . . ,Am). We
are now ready to put our intuition into a theorem.

Theorem 6. Assume there exists a compact group G of affine
automorphisms of Kd whose fixed point set is Kd

⋂
S(A).

Then, each pure state acting onHd which is UDP for measuring
A is also UDA.

In the first example above, the group for the reflection
consists of the two-element group generated by the reflection.
In the rotation example, we can take the group to consist of all
rotations around the given axis. We will leave the detailed
mathematical proof of Theorem 6 to Appendix D, where
operator algebras are one ingredient of the proof.

To motivate some further consequences of Theorem 6,
consider a simple example. If A consists of a basis of diagonal
matrices (i.e., a set of mutually commuting observables), then
for any pure state, UDP implies UDA by Theorem 6. Here,
the group of symmetries can be taken to be conjugation by all
diagonal unitaries. This group has fixed-point set Kd

⋂
S(A).

In a more general case, if the complex span of S(A) is a
*-subalgebra of the operators acting on Hd , then UDP = UDA
for all pure states for measuring A. This is a natural corollary
of Theorem 6 that we will also discuss in detail in Appendix D.

VI. CONCLUSION AND DISCUSSION

In this work, we have discussed the uniqueness of quantum
states compatible with given results for measuring a set of
observables. For a given pure state, we consider two different
types of uniqueness, UDP and UDA. We have taken the first
step to study their relationship systematically. In doing so, we
have established a number of results, but also leave with many
open questions.

First of all, although in general UDP and UDA are
evidently different concepts, their difference is surprisingly
“not that large.” Specifically in the sense of general counting
of the number of variables one needs to measure to uniquely
determine all pure states in a d-dimensional Hilbert space.
Compared to full quantum tomography which requires d2 − 1
variables measured to uniquely determine any quantum state,
the 5d − 7 observables we have constructed to uniquely
determine any pure state among all states are a significant
improvement. It is indeed larger than the 4d − 5 observables

given in Ref. [1] to uniquely determine any pure state among
all pure states, but the difference is only linear in d. We do not
know whether there could be another construction for which
we could further close the linear difference between UDA and
UDP, to leave only a constant gap for large d.

When the Hilbert space is a multipartite quantum system,
and the observables correspond to the RDMs, we focused
on the situation when “almost all pure states” are uniquely
determined. We considered a three-particle system with
Hilbert space Hd = Hd1 ⊗ Hd2 ⊗ Hd3 , and showed that if
d1 � min(d2,d3), then almost all pure states are UDA by their
2-RDMs of particle pairs {1,2} and {1,3}. This improves the
results of [17], where d1 � d2 + d3 − 1 is required; however,
it still leaves a gap compared to the Diosi UDP result which
states that for d1 � 2, almost all pure states are UDP by their
2-RDMs of particle pairs {1,2} and {1,3}. Because our proof
only gives a sufficient condition for UDA, we do not know
whether it can be further improved. We also do not have an
example showing there is indeed a gap between UDA and
UDP for almost all three-particle pure states to be uniquely
determined by 2-RDMs of particle pairs {1,2} and {1,3}.

Finally, we considered situations for which we can show
that UDP implies UDA. These include (i) the general two-
qubit system; (ii) the three-qubit system when we consider
uniqueness for almost all pure states and the measurements
correspond to 2-RDMs; (iii) when only two observables are
measured; and (iv) the observables measured correspond to
some symmetry of the state space. However, we do not know
how far we are from enumerating all the possible situations
that UDP implies UDA, when considering uniqueness for all
pure states or almost all pure states. In principle, one can even
consider the relationship between UDP and UDA for special
subsets of pure states.

We believe our systematic study of the uniqueness of
quantum states compatible with given measurement results
sheds light on several aspects of quantum information theory
and its connection to different topics in mathematics. These
include quantum tomography and the space of Hermitian
operators, unique ground states of local Hamiltonians and
general solutions to certain linear equations, measurements
and numerical ranges of operators, and the geometric meaning
of measurements and the symmetry of state space. We thus
conclude with several open questions that we believe warrant
further investigation.
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APPENDIX A: PROOF OF THEOREMS 1 AND 2

Theorem 1 can be implied by the following lemma.
Lemma 1. There exists a set of m = d2 − 5d + 6 linearly

independent Hermitian matrices H1,H2, . . . ,Hm ∈ Md (C),
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such that the Hermitian matrix

m∑
j=1

rjHj

has at least two positive eigenvalues for any nonzero real vector
r = (rj ) ∈ Rm.

Proof. We prove the statement by giving an explicit
construction. Our proof is motivated by and similar to the
diagonal filling technique used in Ref. [18], but along the
other direction of the diagonals.

We will need the Lemma 9 from Ref. [18] about totally
nonsingular matrix, which we restate as Lemma 3 in the
following. For simplicity, we also assume that the totally
nonsingular matrix is real. Therefore, for any length L ∈ N
and L � 2, there is L − 1 linearly independent real vectors
such that every nonzero linear combination of them has at
least two nonzero entries.

Let H = (Hjj ′ ) ∈ Md (C) be a matrix. We will always fix
the diagonal to be zero, namely, Hjj = 0 for 0 � j � d −
1. In the upper triangular part of the matrix not including
the diagonal, there are 2d − 3 lines of entries parallel to the
antidiagonal. That is, each line contains entries Hjj ′ with j <

j ′ and j + j ′ = k where k goes from 1 to 2d − 3. We will call
it the kth line of the matrix in the following. We also call the
set of entries Hjj ′ with j + j ′ = k the kth antidiagonal. It is
easy to see that the length Lk of the kth line is

Lk =
{[

k+1
2

]
for k � d − 1,[

2d−1−k
2

]
otherwise.

So the length Lk � 2 for 3 � k � 2d − 5, and we can
find Lk − 1 real vectors for which every nonzero linear
combination has at least two nonzero entries. For each of
the Lk − 1 vectors, we can form two Hermitian matrices. One
of them is the symmetric one whose kth line is filled with
the vector, and the lower triangular part determined by the
Hermitian condition. Such a matrix is a real symmetric matrix
having nonzero entries only on the kth antidiagonal. We will
call it a real kth line matrix. The other is the one with kth line
filled with the vector multiplied by i = √−1, and the lower
part is determined by the Hermitian condition. This is a matrix
consisting of purely imaginary entries on the kth antidiagonal
and we call it an imaginary kth line matrix.

Now, we prove that the constructed matrices satisfy our
requirement. First, we prove that the matrices are linearly
independent. It suffices to show that the matrices of the nonzero
kth line is linearly independent. Let {vj } be the set of linearly
independent real vectors chosen for the kth line. We need to
show that {(vj ,vj ),(ivj , − ivj )} is linearly independent over
C. If the contrary is true, that is, there exists complex numbers
cj ,dj not all zero such that∑

j

cj (vj ,vj ) +
∑

j

dj (ivj , − ivj ) = 0.

This is equivalent to∑
j

cj vj + i
∑

j

dj vj = 0,
∑

j

cj vj − i
∑

j

dj vj = 0.

From the above two equations, we get
∑

j cj vj = 0 and∑
j dj vj = 0, which is a contradiction.
Next, we prove that for any nonzero real coefficient r ∈ Rm,

the matrix H = ∑
rjHj has at least two positive eigenvalues.

Let k0 be the largest k such that there is a kth line matrix Hj

whose coefficient rj is nonzero. Then, either the real k0th line
matrices or the imaginary ones have nonzero coefficients. By
the construction, this implies that there are at least two nonzero
entries on the k0th line of the matrix H . Let the nonzero entries
be a,b ∈ C. We then have a principle submatrix of H that has
the form ⎛

⎜⎜⎜⎝
0 x y a

x̄ 0 b 0

ȳ b̄ 0 0

ā 0 0 0

⎞
⎟⎟⎟⎠,

where x,y are two unknown numbers and ā represents
the complex conjugate of a. This matrix has trace 0 and
determinant |ab|2. Therefore, it has exactly two positive
eigenvalues. As it is a principle submatrix of matrix H , follows
from Theorem 7, H has at least two positive eigenvalues.

The number of matrices thus constructed is the summation

m =
2d−5∑
k=3

2(Lk − 1),

which can be computed to be

d2 − 5d + 6. �

Discussion. We note that our construction will also imply
that the matrix has at least two negative eigenvalues, thus at
least rank 4. But, our bound is even better than the (d − 3)2

bound on the dimension of subspaces in which every matrix
has rank �4. This is not a contradiction as we are considering
all real combinations. For example, the case of d = 4 has two
matrices for our purpose, namely,

H1 =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎠ and H2 =

⎛
⎜⎜⎜⎝

0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

⎞
⎟⎟⎟⎠.

These two matrices do satisfy our requirements, but their span
over C contains a rank-2 matrix H1 + iH2.

Generalization. Similarly, length Lk � q + 1 for 2q + 1 �
k � 2d − 2q − 3, and we can find Lk − q real vectors for
which every nonzero linear combination has at least q + 1
nonzero entries. For each of the Lk − q vectors, we can also
form two Hermitian matrices. Such constructed matrices are
linearly independent and any real linear combination has at
least q + 1 positive eigenvalues.

We restate our result as Lemma 2 which will lead to
Theorem 1.

Lemma 2. There exists a set of m = d2 − (4q +
1)d + (4q2 + 2q) linearly independent Hermitian matrices
H1,H2, . . . ,Hm ∈ Md (C), such that the Hermitian matrix

m∑
j=1

rjHj
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has at least q + 1 positive eigenvalues for any nonzero real
vector r = (rj ) ∈ Rm.

We just follow the lines of the proof of Lemma 1. To
complete our argument, we need to show that any 2(q + 1) by
2(q + 1) invertible traceless, Hermitian, upper left triangular
matrix has exactly q + 1 positive eigenvalues.

Let us prove this claim by induction. When q = 1, it is
already known. Let us assume this claim holds true for any
q � r . Then, for q = r + 1, we can write such matrix A in the
following form:⎛

⎜⎜⎜⎜⎜⎜⎝

0 x1 x2 . . . x2r+1 x2r+2 a

x̄1 0 y1 . . . y2r b 0

x̄2 ȳ1 0 . . . c 0 0
...

...
...

...
...

...

ā 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

One may observe that, by deleting the first and the last rows
and columns, we will have a 2r × 2r invertible, traceless,
Hermitian, upper left triangular submatrix.

From our assumption, this submatrix has exactly r positive
eigenvalues which means A has at least r positive eigenvalues
and at least r negative eigenvalues. Note that its determinant
equals to (−1)q+1|ab . . . |2. This follows that A has exactly
r + 2 positive eigenvalues which completes our argument.

The number of matrices thus constructed is the summation

m = 2
2d−2q−3∑
k=2q+1

(Lk − q)

= 2
d−1∑

k=2q+1

([
k + 1

2

]
− q

)

+ 2
2d−2q−3∑

k=d

([
2d − 1 − k

2

]
− q

)

= d2 − (4q + 1)d + (4q2 + 2q).

Lemma 3 (Lemma 9, Ref. [18]). Let M be a d × d

totally nonsingular matrix, with d � n. Let v be any linear
combination of n of the columns of M . Then v contains at
most n − 1 zero elements.

Theorem 7 (Theorem 4.3.15, [23]). Let A be a n × n

Hermitian matrix, let r be an integer with 1 � r � n, and
let Ar denote any r × r principle submatrix of A (obtained by
deleting n − r rows and the corresponding columns from A).
For each integer k such that 1 � k � r we have

λ
↑
k (A) � λ

↑
k (Ar ) � λ

↑
k+n−r (A).

APPENDIX B: PROOF OF THEOREM 4

Theorem 8. Almost every tripartite density operator ρ ∈
B(Hd1 ⊗ Hd2 ⊗ Hd3 ) with rank no more than  d1

d3
� is UDA by

its 2-RDMs of particle pairs {1,2} and {1,3}.
Proof. For any ρ123 ∈ B(Hd1 ⊗ Hd2 ⊗ Hd3 ), we can choose

|φ〉1234 to be the pure state whose 3-RDM of particles {1,2,3}
is exactly ρ123. We can further assume d4 � rank ρ. Let us

write

|φ〉1234 =
∑

i1,i2,i3,i4

λi1i2i3i4 |i1〉1|i2〉2|i3〉3|i4〉4. (B1)

If there is another σ123 agrees with ρ123 in subsystems {1,2}
and {1,3}. Then, we can find some pure state |ψ〉1235 whose
3-RDM of particle set {1,2,3} is σ123. In general, |vi3i4〉12 =∑

i1i2
λi1i2i3i4 |i1〉1|i2〉2 are linearly independent and they will

span the support of ρ12.
Hence, any pure state |ψ〉1235 which agrees with |φ〉1234 in

subsystem {1,2} can be expanded as follows:

|ψ〉1235

=
∑
i3,i4

∣∣vi3i4

〉
12

∣∣Ei3i4

〉
35

=
∑
i3,i4

∑
i1,i2

λi1i2i3i4 |i1〉1|i2〉2

∑
i ′3

|i ′3〉3

∣∣ei3i4,i
′
3

〉
5

=
∑

i1,i2,i3,

i4,j3

λi1i2i3i4 |i1〉1|i2〉2|j3〉3

∣∣ei3i4,j3

〉
5. (B2)

Recall that |ψ〉1235 and |φ〉1234 agree in subsystem {1,3}, we
will have

tr{2,5}(|ψ〉〈ψ |1235) = tr{2,4}(|φ〉〈φ|1234). (B3)

Substituting Eqs. (B1) and (B2) into Eq. (B3), and com-
paring each matrix element, results in the following equalities
(for all i1,i

′
1,j3,j

′
3):∑

i2,i3,i4,

i ′3,i
′
4

λi1i2i3i4λ
∗
i ′1i2i

′
3i

′
4

〈
ei ′3i

′
4,j

′
3

∣∣ei3i4,j3

〉 =
∑
i2,j4

λi1i2j3j4λ
∗
i ′1i2j

′
3j4

.

Similarly, following from the fact that |ψ〉1235 and |φ〉1234 agree
in subsystem {1,2}, we have the equations∑

i3,i4,j3,

i ′3,i
′
4

λi1i2i3i4λ
∗
i ′1i

′
2i

′
3i

′
4

〈
ei ′3i

′
4,j3

∣∣ei3i4,j3

〉 =
∑
i3,i4

λi1i2i3i4λ
∗
i ′1i

′
2i3i4

for any i1,i2,i
′
1,i

′
2.

Let us denote xp3,p4,q3,p
′
3,p

′
4,q

′
3
= 〈ep3p4,q3 |ep′

3p
′
4,q

′
3
〉 for

any p3,p4,q3,p
′
3,p

′
4,q

′
3. If there is only one solution

{xp3,p4,q3,p
′
3,p

′
4,q

′
3
} that satisfies the above two linear systems,

then

σ123 = tr{5} |ψ〉〈ψ |1235

=
∑

i1,i2,i3,i4,j3,

i ′1,i
′
2,i

′
3,i

′
4,j

′
3

λi1i2i3i4λ
∗
i ′1i

′
2i

′
3i

′
4

〈
ei ′3i

′
4,j

′
3

∣∣ei3i4,j3

〉

×|i1〉〈i ′1|1 ⊗ |i2〉〈i ′2|2 ⊗ |j3〉〈j ′
3|3

is completely determined.
There are d2

1d2
3 + d2

1d2
2 linear equations and d4

3d2
4 vari-

ables. Under our assumption, we have d4
3d2

4 � d4
3 (rank ρ)2 �

d2
1d2

3 + d2
1d2

2 . Similar to the proof of Theorem 3, the coefficient
matrix generically has full rank which implies that there
is at most one solution. Thus, a generic low-rank density
operator ρ123 is UDA by its 2-RDMs of particle pairs {1,2}
and {1,3}. �
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APPENDIX C: PROOF OF THEOREM 5

We begin by presenting without proof a result that was
proved as Theorem 1(i) in Ref. [22]. Before we state the result,
recall from Sec. IV that W2(A) is the numerical range of A1 +
iA2 and is thus convex by the Hausdorff-Toeplitz theorem
[20,21]. It therefore makes sense to talk about extreme points
of W2(A) in this case.

Proposition 1. Let �x ∈ W2(A). Then �x is an extreme point
of W2(A) if and only if

Mx := {λ|ψ〉 : λ ∈ C,A(|ψ〉) = �x}

is a linear subspace of Hd .
We are now in a position to prove Theorem 5.
Proof of Theorem 5. Suppose that |ψ〉 is UDP and de-

fine �x := (〈ψ |A1|ψ〉,〈ψ |A2|ψ〉). Then Mx = {λ|ψ〉 : λ ∈ C},
which is linear, so �x is an extreme point of W2(A) by Proposi-
tion 1. Because W2(A) = C2(A) in this case by convexity, �x is
also an extreme point of C2(A). Suppose now that there exists a
mixed state ρ = ∑

i pi |ψi〉〈ψi | with �x = ( Tr(A1ρ), Tr(A2ρ)).
Then, �x = ∑

i pi(〈ψi |A1|ψi〉,〈ψi |A2|ψi〉). Since �x is extreme
in C2(A), it follows that �x = (〈ψi |A1|ψi〉,〈ψi |A2|ψi〉) for all
i, which contradicts the fact that |ψ〉 is UDP unless each |ψi〉
is the same up to global phase (i.e., ρ = |ψ〉〈ψ |). �

Based on the proof of Theorem 5, we might expect that UDP
implies UDA for all pure states whenever Wm(A) is convex.
However, the example provided in Sec. IV showed this not to
be the case. We now expand upon the reason for this apparent
discrepancy, which lies buried in the proof of Proposition 1.

In the case when Wm(A) is convex, the “only if” implication
of Proposition 1 still holds for arbitrary m. However, the proof
of the “if” implication relies on the fact that if �x := A(|φ〉)
and �y := A(|ψ〉), then for any s ∈ (0,1) we can find α,β ∈ C
such that s �x + (1 − s)�y = A(α|φ〉 + β|ψ〉). In other words,
the proof of the proposition uses the fact that Wm(A) is not
only convex, but that convex combinations are in a sense
well behaved between the input and output of A(· · · ). For
convenience, we refer to this property as strong convexity for
the remainder of this section.

The standard proofs of the Hausdorff-Toeplitz theorem
show that strong convexity, not just convexity itself, always
holds when m = 2. To see how strong convexity can fail when
m > 2 even when convexity holds, we again return to the
example of Sec. IV. In this case, we have A(|0〉) = (0,0,1) and
A(|1〉) = (0,0,−1). However, even though W3(A) is convex
and thus there exists a pure state |ψ〉 with A(|ψ〉) = (0,0,0),
the only such pure state is |ψ〉 := |2〉, which is not contained
in the span of |0〉 and |1〉.

We might hope that strong convexity, rather than convexity
itself, provides the natural generalization of Theorem 5. That
is, we might hope that if Wm(A) is strongly convex, then UDP
implies UDA for all pure states. It turns out that this is a true but
vacuous statement: if Wm(A) is strongly convex then it must be
the case that m � 2, so Theorem 5 itself applies directly. This
fact seems to be implicit in many papers on the joint numerical
range, but we prove it here for completeness.

Before stating the result, we briefly note that we can assume
without loss of generality that A contains I and is linearly
independent, as adding the identity to A has no effect on

convexity, UDA, or UDP, and furthermore these properties
only depend on the span of the observables in A.

Proposition 2. Let A = (I,A1, . . . ,Am) be a linearly inde-
pendent set. Then Wm+1(A) is strongly convex if and only if
m � 2.

Proof. The “if” direction, as already mentioned, follows
from any of the usual proofs of the Hausdorff-Toeplitz
theorem.

For the “only if” direction, suppose that that Wm+1(A) is
strongly convex and assume (in order to get a contradiction)
that m � 3. By ([24], Theorem 4.1), there exists X ∈ Md,2 with
X∗X = I such that X∗AX := {I,X∗A1X, . . . ,X∗AmX} spans
all of M2. By letting |φ〉 and |ψ〉 be the column vectors of X,
we see that strong convexity of Wm+1(A) immediately implies
convexity of Wm+1(X∗AX). Since convexity of Wm+1(X∗AX)
depends only on the span of X∗AX, it follows that W4(B) is
also convex, where B := {λ0,λ1,λ2,λ3} is the Pauli basis given
by Eq. (8). However, it is easily verified that W4(B) is the Bloch
sphere embedded in four-dimensional space and hence is not
convex, which gives the desired contradiction. �

It thus seems that numerical range and convexity arguments
are not able to tell us anything nontrivial about the UDP and
UDA problem beyond the m = 2 case of Theorem 5.

APPENDIX D: SYMMETRIES AND UDP AND UDA:
PROOF OF THEOREM 6

We will see that if there is a compact group of symmetries
whose fixed-point set is the linear span of observables
(A1, . . . ,Am), then UDP for these observables implies UDA
for any pure state. We start with the following result about
fixed points of compact groups.

Theorem 9. Let G be a compact group of unitaries on a real
or complex finite-dimensional Hilbert space H , and let L be
the set of fixed points of G. Let μ be Haar measure on G, and
define P : H → H to be the linear map satisfying

〈Pξ,η〉 =
∫

G

〈gξ,η〉 dμ(g) (D1)

for ξ,η ∈ H . Then P is the orthogonal projection onto L,
Pg = gP = P for all g ∈ G, and P is in the convex hull
of G.

Proof. Left and right invariances of Haar measure imply
that Pg = gP = P for all g ∈ G. The definition of P implies
that L ⊂ im P . Now, gP = P for all g ∈ G implies im P ⊂ L,
and hence im P = L. Next, im P = L and the definition of P

give P 2 = P . To show that P † = P we use the fact that the
integrals of f (g) and f (g−1) are the same for Haar measure,
together with the assumption that G is a group of unitaries:

〈ξ,Pη〉 = 〈Pη,ξ 〉∗ =
∫

G

〈gη,ξ 〉∗dμ(g)

=
∫

G

〈ξ,gη〉dμ(g) =
∫

G

〈g†ξ,η〉dμ(g)

=
∫

G

〈g−1ξ,η〉dμ(g) =
∫

G

〈gξ,η〉dμ(g)

= 〈Pξ,η〉. (D2)

Finally, by the Alaoglu-Birkhoff mean ergodic theorem ([25],
Proposition 4.3.4) P is in the strong closure of the convex hull
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of G. Since H is finite dimensional, then the space of linear
operators on H is also finite dimensional, so the convex hull
of the compact set G is compact and hence closed. �

Symmetries of Kd are given by conjugation by unitaries or
by the transpose map or by composition of these two types
of symmetries. (An affine automorphism of Kd preserves
transition probabilities, cf. [26], so this is a consequence of
Wigner’s theorem [27].)

If we view the space of observables in Md as a real Hilbert
space [with the usual inner product 〈X,Y 〉 = tr(XY )], then
conjugation by unitaries and the transpose map both preserve
this inner product, so are given by unitaries on this Hilbert
space.

If L is a (real) linear subspace of observables containing
the identity, then L will be the real linear span of L ∩ Kd .
Thus, any symmetry of Kd will fix L ∩ Kd if and only if that
symmetry when extended to a map on Md fixes L. If G is
a compact group of symmetries whose fixed-point set is L ∩
Kd , then the corresponding maps on Md will have fixed-point
set L.

Theorem 10. Let A be a finite set of observables on Hd with
real linear span L. Assume there exists a compact group G of
affine automorphisms of Kd whose fixed-point set is L ∩ Kd .
Then, each pure state which is UDP for measuring A is also
UDA.

Proof. As discussed above, we may view G as a compact
group of unitaries with fixed-point set L. Define P as in
Theorem 9. Fix a pure state ρ.

Suppose first that ρ /∈ L ∩ Kd . Then, there is some g ∈ G

such that g(ρ) �= ρ. Since Pg = P , both g(ρ) and ρ are pure
states with the same image in L ∩ Kd under the map P . Thus,
UDP fails for ρ (and hence trivially UDA fails). Now suppose
ρ ∈ L ∩ Kd . Let σ ∈ Kd be a preimage of ρ under P . Then

1 = 〈Pσ,ρ〉=
∣∣∣∣
∫

G

〈gσ,ρ〉 dμ(g)

∣∣∣∣ �
∫

G

||gσ‖‖ρ‖ dμ(g) � 1,

and equality can hold only if gσ = ρ for all g, i.e., if and only
if σ ∈ L. Then, σ = Pσ = ρ, so for such ρ both UDP and
UDA hold. �

Corollary 1. For d = 2, for all pure states and all sets A of
observables, UDP implies UDA.

Proof. Let A1 = I,A2, . . . ,Am be observables in M2 and
let L = S(A) be their real linear span. We will show that
there is a finite group of affine automorphisms G of the state
space Kd of M2 with fixed-point set L ∩ Kd . There are three
cases, depending on the dimension of the fixed-point set. The

fixed-point set in the Bloch sphere will be the central point, a
diameter of the Bloch sphere, or the intersection of a plane
(through the center) with the Bloch sphere. In each case,
reflection of the Bloch sphere in the fixed-point set generates
an order-2 group of affine automorphisms with fixed-point set
L ∩ Kd . Now, the corollary follows from Theorem 10. �

Corollary 2. Let A = A1, . . . ,Ap be observables in Md . If
the (complex) linear span of A is a *-subalgebra A of Md , then
UDP = UDA for pure states measured by these observables.

Proof. UDP and UDA for a set of observables are not
affected if we include the identity among those observables, so
hereafter we assume that Id ∈ A. Note that A is the linear span
of the unitaries inA. Furthermore,A is a von Neumann algebra
containing the identity Id , so by the bicommutant theorem

([28], Theorem 2.77) (A′)′ = A, where for X ⊂ Md , X′
denotes the algebra of matrices that commute with all matrices
in X. Combining these two statements shows that A is the set
of matrices that commute with all unitaries in A′, and thus is
the set of fixed points of G = {AdU | U is a unitary inA′}. It
follows that L = Asa (the Hermitian matrices in A) is the set
of observables fixed by the compact group G. The corollary
follows from Theorem 10. �

Example 1. Let A = {E11, . . . ,Edd}. Then the complex
linear span of A consists of the diagonal matrices. From
Corollary 2 it follows that for each pure state on Md , UDP
for A implies UDA.

We can generalize the last example by taking the *-algebra
consisting of diagonal observables with the restriction that
certain diagonal entries coincide. For example, if d = 7 we
can look at diagonal matrices of the form diag(a,a,b,b,b,c,d)
whose linear span will be four dimensional. The space of
Hermitian members of this algebra is four dimensional. If
we choose four observables including the identity spanning
this space, then UDA = UDP for all pure states when
measuring these observables. (We could drop the identity
from this list if we wish.) In this way for any d we
can find a set of k observables for any k � d for which
UDA = UDP.

We can also find many larger sets of observables for which
UDA = UDP. For example, for any d we can consider the *-
algebra of all block-diagonal matrices with k blocks that are of
size di × di for 1 � k � p, where d1 + d2 + · · · dp = d. The
subspace of Hermitian matrices in this algebra has dimension∑

i d
2
i , so any such dimension is realizable as the number of

observables in a set of observables for which UDA = UDP
holds for all pure states.
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