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Anomalous magnetic moment of an electron near a dispersive surface
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Changes in the magnetic moment of an electron near a dielectric or conducting surface due to boundary-
dependent radiative corrections are investigated. The electromagnetic field is quantized by normal mode expansion
for a nondispersive dielectric and an undamped plasma, but the electron is described by the Dirac equation
without matter-field quantization. Perturbation theory in the Dirac equation leads to a general formula for the
magnetic-moment shift in terms of integrals over products of electromagnetic mode functions. In each of the
models investigated, contour integration techniques over a complex wave vector can be used to derive a general
formula featuring just integrals over transverse electric and transverse magnetic reflection coefficients of the
surface. Analysis of the magnetic-moment shift for several classes of materials yields markedly different results
from the previously considered simplistic “perfect-reflector” model, due to the inclusion of physically important
features of the electromagnetic response of the surface such as evanescent field modes and dispersion in the
material. For a general dispersive dielectric surface, the magnetic-moment shift of a nearby electron can exceed
the previous prediction of the perfect-reflector model by several orders of magnitude.
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I. INTRODUCTION

The coupling of the quantized electromagnetic and electron
fields to each other gives rise to radiative corrections in
quantum electrodynamics. One of the quantities altered by
these radiative corrections is the electron’s magnetic moment,
which is particularly interesting because it can be measured to
staggeringly high precision [1,2]. The presence of material
boundaries affects the fluctuations of the electromagnetic
field, thus alters radiative corrections, and thereby causes the
magnetic moment for an electron near a surface to differ
from its value in free space [3–9]. This could in principle
be an important effect to consider since precision g-factor
measurements of leptons not only provide stringent tests of
quantum electrodynamics, but also potentially open up a
low-energy route to testing physics beyond the standard model.

Previous literature on this subject has shown that measure-
ment of the shift is not within the reach of contemporary
experiments. However, all these previous investigations have
made the crude simplification that the surface may be regarded
as perfectly reflecting. This simplifies calculations, but the
perfect-reflector model has obvious physical deficiencies: it
does not account for electromagnetic field modes that are
evanescent outside the medium, neither does it reproduce
the fact that any real medium becomes transparent at high
frequencies. Thus, to make a realistic prediction of the
potential measurability of this effect, one needs to consider
a surface which is imperfectly reflecting and dispersive.

The idea that the use of a more realistic model of the
material may significantly affect the shift is not suggested
by the results of other electrodynamic boundary-dependent
effects. For example, in the calculation of the Casmir-Polder
force on an atom in front of a surface [10], the perfect-reflector
model is completely adequate for estimates and its results
are reproduced in the expected limiting cases, e.g., taking the
refractive index of a nondispersive medium to infinity [11] or
the plasma frequency of a plasma surface to infinity [12].
The situation is strikingly different for the spin magnetic
moment of an electron near a surface where, as we will

show, different models for the electromagnetic response of
the surface give drastically different results, not necessarily
obtainable as limiting cases of each other. Something similar
has already been observed for the self-energy shift of a free
electron near a nondispersive surface [13] and has since
been investigated also for dispersive dielectric and conducting
surfaces [14]. The reason for these disagreements between
different models has been found to be related to the fact that
a free particle admits excitations of arbitrarily low frequency
which are dealt with very differently in the various models.
However, the low-frequency part of the photon spectrum
turns out to dominate the shift, so that one necessarily gets
completely different results for the self-energy in models
with different low-frequency electromagnetic response. By
contrast, for bound atomic electrons, the gap to the nearest
energy level provides a natural low-frequency cutoff for
electronic excitations, so that for the Casimir-Polder shift due
to a surface any difference in the low-frequency behavior of
the model of the electromagnetic response of the surface turns
out not to matter to leading order.

In order to determine the quantum field-theoretical correc-
tions to the electron’s magnetic moment, one usually calculates
the vertex diagram to the respective order of interest [cf.
Fig. 1(a) to one-loop order]. The reducible one-loop diagrams
[cf. Figs. 1(b)–1(d)] are taken care of through mass and charge
renormalization. Thus, in free space the evaluation of the mag-
netic moment to one-loop order e2 ≡ α is a straightforward
calculation and graduate textbook material (cf., e.g., [15]).
However, this changes radically if the electromagnetic field
is subject to reflection by a surface. Then, even one-loop
calculations of quantum electrodynamics get rather compli-
cated [16], first because of the loss of translation invariance,
and second because of the localization of the electron that is
required if the calculations are to make physical sense and
be interpretable. The photon propagator becomes boundary
dependent, so that standard mass and charge renormalization
are no longer applicable. Mass renormalization is affected at
all orders, and charge renormalization from the two-loop level
up, as illustrated by Fig. 2.

012107-11050-2947/2013/88(1)/012107(18) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.012107


ROBERT BENNETT AND CLAUDIA EBERLEIN PHYSICAL REVIEW A 88, 012107 (2013)

(a) (b) (c) (d)

FIG. 1. One-loop reducible and irreducible corrections to the bare
vertex.

Most of such technical problems can be avoided by taking
a different, more appropriate approach. As we seek only
the correction to the magnetic moment due to the presence
of the surface, it follows that any boundary-independent
contributions can be discarded in our calculation. The bare
electron propagator is not affected by the presence of boundary,
provided the electron is at least a few Compton wavelengths
away from the surface of the medium so that the interaction
between them is wholly electromagnetic, which is the case we
are interested in here. Then, the one-loop vacuum polarization
diagram can be discarded when coupled to a static external
field, and to one-loop order the charge and its renormalization
are the same as in free space. None of the three remaining
one-loop diagrams contain any particle-antiparticle loops.
Consequently, for the calculation of the boundary-dependent
corrections to the magnetic moment at one-loop level, it
suffices to work with a first-quantized electron interacting with
a second-quantized photon field. This allows us to borrow
well-tried techniques from quantum optics. We shall use
perturbation theory to determine the energy shift −μ · B0,
due to the presence of the material surface, of the electron’s
spin in a weak external magnetic field B0, and then extract
the magnetic moment as the coefficient μ of the term linear
in B0.

In the next section, we give the derivation of the shift in
terms of mode functions of the electromagnetic field. Then,
Sec. III A deals with the electromagnetic mode functions for
a nondispersive dielectric, Sec. III B with those for a plasma
model, and Sec. III C with the case of a dispersive dielectric.
In Sec. IV, we show in detail how to evaluate the required
integrals for the various different models, and in Sec. V we
discuss the results of the various models. Finally, in Sec. VI,
we discuss the experimental relevance of our results. We use
natural units with c = 1 = h̄ and ε0 = 1 = μ0 throughout.

II. PERTURBATION THEORY

Our starting point is the Dirac equation coupled to an
electromagnetic field Aμ:

[−iγ μ(∂μ + ieAμ) + m]ψ = 0. (1)

+...

+...

FIG. 2. Possible n-loop insertions to the external legs of the vertex
diagram. A double line represents a boundary-dependent propagator.

In order to best exploit the similarities with quantum optical
problems, we shall use the Dirac equation in its noncovariant
form

i
∂

∂t
ψ = [α · (p − eA) + e� + βm]ψ, (2)

where γ 0 = β, γ i = βαi , and Aμ = (�, − A). In order to
derive the energy shift of a stationary electron in a weak
and static magnetic field and close to a reflecting surface, we
aim at a nonrelativistic approximation. A routine method of
achieving this is to approximate the Dirac equation by means
of a Foldy-Wouthuysen transformation, as has been done for
working out the magnetic-moment correction of the electron
near a perfect reflector [9]. However, this approach requires
great care in all its steps since several successive orders in the
nonrelativistic expansion turn out to contribute to the shift.
Additionally, in the only comparable previous literature [9],
a second unitary transformation is applied to the transformed
Hamiltonian (an approach that the authors term the “Paris
Method”). This second transformation only works for the
perfect reflector, meaning that a straightforward extension of
Ref. [9]’s work to other surfaces is not possible. Hence, we
adopt a more generally applicable approach. We work directly
with the Dirac equation and apply perturbation theory using
the solutions of the Dirac equation in a static magnetic field
introduced in Ref. [17] as unperturbed 4-spinor states.

We subject the electron to a constant classical magnetic
field B0 acting initially the along ẑ axis; B0 = B0ẑ, as shown
in Fig. 3. Generalization of our results to include the case
of magnetic fields parallel to the surface will be provided
later. A suitable classical vector potential that generates such
a field B0 is A0 = − 1

2 (r × B0). Added to this is the quantized
photon field AQ, so that the total vector field entering the Dirac
equation (2) is

A = A0 + AQ. (3)

The Dirac equation for a particle in a constant magnetic field
can be solved exactly, whence the unperturbed Hamiltonian is

H0 = α · π + βm with π = p − eA0. (4)

We show in Appendix A how the eigenstates of the Schrödinger
Hamiltonian for a particle in a constant magnetic field can
be obtained and how one can easily generate those of the
corresponding Dirac Hamiltonian from them. The Hamiltonian

FIG. 3. (Color online) Basic setup.
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can be expressed in terms of the creation and annihilation
operators for right-circular quanta that serve to move states
from one Landau level to the next and obey the bosonic
commutation relations

[b̂R,b̂
†
R] = 1, [b̂R,b̂R] = 0 = [b̂†R,b̂

†
R]. (5)

The perturbation (Dirac) Hamiltonian that describes the
interaction of the electron with the quantized field is

Hint = −eγ0γ · AQ = −eα · AQ. (6)

We note that the scalar component � of the quantized
field shifts all states uniformly, so has no impact on the
magnetic moment. The energy shift is given by second-order
perturbation theory as

	E = e2
∑

 ′

e

∫
d3k

|〈
 ′
e,1k,λ|α · AQ|
e,0〉|2

E − E′ , (7)

where 1k,λ indicates a one-photon state with wave vector k
and polarization λ, and 
e represents the state of the electron
coupled to the classical field A0. The Dirac eigenstates 
e for
each Landau level may be written in terms of the corresponding
Schrödinger eigenstates |ν〉, as shown in Appendix A.

The quantized electromagnetic field is written in terms of
mode functions fkλ:

AQ =
∑

λ

∫
d3k (fkλâkλe

−iωt + f∗
kλâ

†
kλe

iωt ), (8)

where âkλ and â
†
kλ are the photon annihilation and creation

operators for each wave vector and polarization. Any normal-
ization constants that may appear for the modes in different
classes of models have been absorbed into the functions fkλ

in order to preserve the generality of the expressions to be
derived.

Substituting the quantized vector field AQ from Eq. (8) and
the Dirac eigenstate 
e as derived in Appendix A into Eq. (7),
we have for the energy shift of an electron in Landau level ν

and spin state s

	E = e2
∑
ν ′,s ′

∑
λ

∫
d3k

× |〈ν,s|(H0 + Eν)α · fkλ(H0 + Eν ′)|ν ′,s ′〉|2
4(Eν − Eν ′ − ω)Eν(Eν + m)|Eν ′ |(|Eν ′ | + m)

, (9)

where ω is the photon frequency. As we are aiming for the
energy-level shift of a localized stationary or slow-moving
electron, we perform a nonrelativistic expansion which implies
that the electron’s rest mass is much bigger than all other
relevant energy scales. In this sense, we expand, loosely
speaking, in powers of 1/m, and we shall keep contributions
to the magnetic moment up to order 1/m3. For the surface-
dependent corrections to the magnetic moment that we are
interested in, this is in fact an expansion in 1/(mz), which is
the ratio of the electron’s Compton wavelength to the distance z

of the electron from the surface, and thus very small indeed for
all even remotely realizable values of the distance z. The above
expression contains terms that are of order 1/m2 and higher;
however, it turns out that none of the 1/m2 terms contribute
to the magnetic moment, all the contributions to which are of
order 1/m3 and higher. We note that fourth-order perturbation

theory can contribute only terms of order 1/m4 or higher, and
therefore does not need to be considered here.

Since the spin magnetic moment is obtained from the
coefficient of the terms of 	E that are linear in σzB0, one
needs to carefully enumerate all the possible effects which
may generate a dependence on B0. With this in mind, we find
that we must go beyond the dipole approximation for the field
AQ because the multipole expansion

AQ(r) = AQ(r0) + [(r − r0) · ∇]AQ(r0) + · · · (10)

contains powers of the displacement operator r − r0, whose
matrix elements are proportional to B

−1/2
0 [see Eq. (A15) in

Appendix A]. For almost all contributions to the energy shift
we shall find that the dipole approximation works and we
need to take along only AQ(r0), but there is going to be just
one exception for which we shall have to take along the next
term in the above expansion. This may seem unusual from a
viewpoint of quantum optics, but this is ultimately due to the
entirely classical effect of the magnetic field causing particle
trajectories to bend. We shall see that to order 1/m3 there is
only one term for which the curvature of the trajectory matters
and the variation of the quantum field AQ along the curved
trajectory causes transitions between one Landau level and
the next.

Despite us being interested in the energy shifts only for
particles, not antiparticles, we need to sum in Eqs. (7) and (9)
over all intermediate states, both particle and antiparticle ones.
It is convenient to parse the problem and consider the arising
matrix elements separately for particle-particle and particle-
antiparticle transitions. Using the explicit matrix form of the
unperturbed Hamiltonian H0 from Eq. (4) and from now on
suppressing the subscript kλ on the mode functions fkλ that
signals its dependence on photon wave vector and polarization,
we have

(H0 + Eν ′)(α · f)(H0 + Eν) =
(

Hee Heē

Heē Hēē

)
. (11)

The explicit forms of the matrix elements are

Hee = (Eν ′ + m)(σ · f)(σ · π ) + (Eν + m)(σ · π )(σ · f),

Heē = (σ · π )(σ · f)(σ · π ) + (Eν ′ − m)(Eν + m)(σ · f),

Hēē = (Eν − m)(σ · π )(σ · f) + (Eν ′ − m)(σ · f)(σ · π),

where the momentum of the particle moving in the external
magnetic field has been denoted by

π = p − eA0. (12)

We list Hēē only for completeness; it is irrelevant for the energy
shift of initial states that are particle rather than antiparticle
states.

In order to find magnetic-moment contributions up to order
1/m3, we expand each term in Eq. (9) for large m and extract
all terms proportional to σzB0, while taking care to include,
where necessary, the effects of the multipole expansion of the
field [Eq. (10)]. When manipulating the above matrix elements
one needs to remember that π contains a differential operator
that does not commute with any quantity that is a function of
position; its commutator with a function g(r) is [πi,g(r)] =
−i∇ig(r). With that in mind, we use the algebra of the σ

matrices, σiσj = δij + iεijkσk , and decompose Hee along the
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lines of Eq. (A14) to rewrite it as

Hee = b̂
†
R[iβ0(Eν + Eν ′ + 2m)f− − (Eν ′ − Eν)β0(σ × f)−]

+ b̂R[−iβ0(Eν+Eν ′ + 2m)f+ + (Eν ′ − Eν)β0(σ × f)+]

+ (Eν + Eν ′ + 2m)fzpz + (Eν ′ − Eν)(σ × f)z
+ (Eν ′ + m)σ · (∇ × f). (13)

The expression we need to consider is

e2
∑
ν ′,s ′

∑
λ

∫
d3k

|〈ν,s|Hee|ν ′,s ′〉|2
4(Eν − Eν ′ − ω)Eν(Eν + m)Eν ′(Eν ′ + m)

.

(14)

Carrying out the large-m expansion and discarding terms
higher than order 1/m3, we find that none of the σ × f terms
contribute to the energy shift to this order, as the denominator
of Eq. (14) is already yielding terms of order 1/m4. The weak
magnetic field expansion B0 → 0 of the energy difference
Eν − Eν ′ − ω generates factors of eB0/(mω). Thus, the
significant terms from the numerator have to be of order m2.
Of those, the terms in f−f ∗

− and f+f ∗
+ and those involving

p2
z are spin independent, so do not contribute to the magnetic

moment. This leaves three terms, whose matrix elements are
proportional to

〈ν,s|f−|ν ′,s ′〉〈ν ′,s ′|σ · (∇ × f∗)|ν,s〉 + H.c.,

〈ν,s|f+|ν ′,s ′〉〈ν ′,s ′|σ · (∇ × f∗)|ν,s〉 + H.c., (15)

|〈ν,s|σ · (∇ × f)|ν ′,s ′〉|2 + H.c.

One might think that the first two terms can not contribute
since the matrix elements on the left can not change the spin s

and the matrix elements on the right at first sight appear not to
be capable of changing ν, but the latter is true only in the dipole
approximation. Taking along the next-to-leading term in the
multipole expansion of σ · (∇ × f∗), we see that they in fact
do admit transitions between Landau levels. The contribution
to the energy shift from transitions into the intermediate state
with ν ′ = ν − 1 is

	Equad(ν ′ = ν − 1)

= e3B0

2m3

∑
λ

∫
d3k

iβ0

ω2

√
ν

× f−〈ν − 1,s|(r − r0) · ∇[σ · (∇ × f∗)]|ν,s〉 + H.c.,

(16)

and the contribution from those with ν ′ = ν + 1 is very similar.
Substituting the matrix elements of the position operator from
Eq. (A15), we see that the factors of β0 cancel and this
contribution is indeed of order B0 in the external magnetic
field. The sum of the ν ′ = ν + 1 and ν ′ = ν − 1 terms can
be written as a set of second partial derivatives of mode
functions. We can simplify the resulting expression if we take
into account the orthogonality properties of the polarization
vectors of the electromagnetic field (which we shall discuss
in detail in the next section) and the fact that some terms are
odd under the even integration over all photon modes and
hence drop out. We find for the total contribution from these

quadrupole terms1

	Equad = −e3σzB0

4m3

∑
λ

∫
d3k

1

ω2

×
(
fy

∂2f ∗
y

∂x2
−fy

∂2f ∗
x

∂x∂y
+fx

∂2f ∗
x

∂y2
−fx

∂2f ∗
y

∂x∂y

)
+ H.c.

The third line of Eqs. (15) contributes for s 	= s ′, and in this
case the dipole approximation is enough to deliver all terms
that are relevant for the magnetic moment to order 1/m3. This
spin-dependent term contributes

	Espin = e3B0σz

4m3

∑
λ

∫
d3k

1

ω2
(|(∇ × f)x |2 + |(∇ × f)y |2).

(17)

The sum of quadrupole and spin-dependent contributions gives
the particle-particle portion of the shift,

	Eee = 	Equad + 	Espin. (18)

We now turn our attention to the matrix element be-
tween initial particle and intermediate antiparticle states Heē.
Disentangling a product of three σ matrices is a slightly
lengthier procedure than dealing with just two of them in
Hee, but the calculation runs along exactly the same lines:
one repeatedly applies the algebra of the σ matrices. In
addition to the noncommutation of the momentum π with
any function of position, one now also has to take note that the
vector product π × π does not vanish but has a z component
(π × π )z = −2iβ2

0 , which comes about because the x and
y components of π do not commute, i.e., [πx,πy] = −2iβ2

0 .
Then, straightforward calculation yields

Heē = −2β2
0 (b̂†Rb̂

†
Rf−σ− + bRbRf+σ+)

+ b̂
†
Rβ0{2ipz(f−σz + σ−fz)

+ i(∇ × f)− − [σ × (∇ × f)]−}
+ bRβ0{2ipz(f+σz + σ+fz) − i(∇ × f)+
+ [σ × (∇ × f)]+} + 2β2

0 b̂
†
Rb̂R(f−σ+ + f+σ−)

+ 2β2
0f+σ− − (σ · f)π2 + ef · B0 + ieσ · (f × B0)

+ (σ · f)(Eν ′ − m)(Eν + m).

The denominator of Eq. (9) now gives terms of order 1/m5,
and nonrelativistic expansions of the various energy terms
supplement this with factors of eB0/m2. Therefore, an obvious
contribution to the energy shift of order eB0/m3 comes from
the final term in Heē and whose square contributes with m4 in
the numerator. It gives

	Eeē,1 = e3B0

2m3

∑
s ′

∑
λ

∫
d3k (1 + 2ν + s + s ′)|〈s|σ · f |s ′〉|2

= e3B0σz

2m3

∑
λ

∫
d3k |fz|2. (19)

1Energy shifts depend on the state being spin-up or spin-down. Here
and throughout this paper we abbreviate this dependence by writing
energy shifts as proportional to the Pauli spin matrix σz which should
be understood as a shorthand for 〈s|σz|s〉.
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The only other possible contributions are those for which the
factor of 1/m5 supplied by the denominator is multiplied by
a numerator of order β2

0m2 ≡ −eB0m
2/2. Such contributions

arise from the cross multiplication of the last term in Heē

with terms that carry β2
0 or eB0. Among those, the terms with

b̂
†
Rb̂

†
R and b̂Rb̂R can be ruled out as they lead into intermediate

states with ν ′ = ν ± 2 for which the other factor, the matrix
elements of the final term in Heē, vanishes. Therefore, the
only contribution we still need to consider comes from a term
proportional to∑

s ′
〈s|2β2

0ν(f−σ+ + f+σ−) + 2β2
0f+σ− + eB0(σ · f)(2ν + 1)

+ ef · B0 + ieσ · (f × B0)|s ′〉〈s ′|σ · f∗|s〉 + H.c.

As nothing inside the matrix elements depends on s ′, the sum
of |s ′〉〈s ′| gives the identity operator. Multiplying out all the
σ matrices and collecting terms proportional to σz is then
straightforward and gives

	Eeē,2 = −e3B0σz

4m3

∑
λ

∫
d3k |fz|2.

Here, we have again taken into account the orthogonality
properties of the electromagnetic polarization vectors, on
account of which, e.g.,

∑
λ

∫
d3k fxf

∗
y = 0. Going beyond

the dipole approximation is not necessary here and does not
generate any additional contributions from Heē to the accuracy
of the energy shift that interests us. Thus, the energy shift due
to intermediate antiparticle states is

	Eeē = 	Eeē,1 + 	Eeē,2 = e3B0σz

4m3

∑
λ

∫
d3k |fz|2. (20)

From the total energy shift 	E = 	Eee + 	Eeē, we extract
the following magnetic-moment shift, via 	E = −	μ⊥σzB0:

	μ⊥ = − e3

4m3

∑
all

modes

{
|fz|2 + |(∇ × f)x |2

ω2
+ |(∇ × f)y |2

ω2

+ 1

ω2

(
fx

∂2f ∗
y

∂x∂y
+ fy

∂2f ∗
x

∂x∂y
− fy

∂2f ∗
y

∂x2

− fx

∂2f ∗
x

∂y2
+ H.c.

)}
. (21)

This constitutes the first major result of this paper: an
expression that delivers the magnetic-moment shift for an
electron interacting with any quantized electromagnetic field
subjected to boundary conditions. We have presented the
calculation with an externally applied magnetic field B0 that
is perpendicular to the surface of the medium in mind, but
the orientation of any surface has not actually entered the
calculation at any stage. Hence, we can quite easily find
the corresponding shift for a magnetic field parallel to the
surface by choosing the mode functions f(r) such that they
are solutions of the wave equation with a differently oriented
surface of the dielectric or, equivalently, cycle the Cartesian
coordinates in Eq. (21). One can also apply the formula to the
case of nonplanar surfaces, provided one can convert the mode
functions to Cartesian coordinates.

We note that our derivation and the resulting Eq. (21) can
of course not be used to calculate the anomalous magnetic
moment in free space. While one could fudge an estimate
by cutting off the integral over photon frequencies at ω ∼ m,
which would give the correct order of magnitude e3/m, a
correct calculation would require the field quantization not just
of the photon, but also of the electron. As explained earlier,
if we are interested only in the shift of the magnetic moment
compared to its free-space value and if the interaction with
the surface is wholly electromagnetic so that the electron is
not subject to boundary conditions due to the presence of the
surface, the electron propagator is not affected by the interac-
tion with the surface and we can calculate the shift by using a
quantum-optical approach and quantize only the photon field.

III. ELECTROMAGNETIC MODE FUNCTIONS

A. Nondispersive dielectric

We wish to determine the magnetic-moment shift (21) for
a range of models for the material and start by considering a
semi-infinite slab of nonmagnetic, nondispersive material that
fills the half-space z > 0 as shown in Fig. 3. The dielectric
function is

ε(r) = 1 + �(z)(n2 − 1), (22)

where n2 � 1 is the index of refraction. Maxwell’s equations
in a dielectric but nonmagnetic medium with the dielectric
function ε(r) give the following equation for the quantized
vector field AQ:

∇ × (∇ × AQ) = −ε(r)
∂2AQ

∂t2
. (23)

For a piecewise constant dielectric function, like the one in
Eq. (22), the solutions of the above differential equation are
found most efficiently by employing the generalized Coulomb
gauge, defined by

∇ · [ε(r)AQ] = 0, (24)

so that, except directly at the interface z = 0, Eq. (23) reduces
to the standard wave equation with plane-wave solutions.
These plane-wave solutions are then patched together at the
interface z = 0 by imposing the continuity conditions that
follow directly from Maxwell’s equations

ε(z)Ez(r)|z=0− = ε(z)Ez(r)|z=0+ ,

E‖(r)|z=0− = E‖(r)|z=0+ , (25)

B(r)|z=0− = B(r)|z=0+ .

In the following, we shall write wave vectors that exist on
the vacuum side as k, and those on the dielectric side as kd .
A superscript R will denote a reflected wave vector with a
reversed z component. It will be convenient to decompose
wave vectors k into components parallel to the surface (k‖) and
perpendicular to it (kz). Modes will be labeled by their direction
of incidence, incident momentum k, and polarization λ, and
will be broken down into incident, reflected, and transmitted
parts. Our notation is such that sgn(kz) = sgn(kd

z ) on the real
axis, which corresponds to connecting incident and transmitted
waves. Modes that are incident from inside the dielectric may
suffer total internal reflection at the interface, and thus be
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evanescent on the vacuum side. This means that there is a
certain range of values for kd

z whose corresponding kz are pure
imaginary. The mode functions are

fleft
kλ,nondisp = 1

(2π )3/2

1√
2ω

{
�(−z)

[
eik·rêλ(k)

+RL
λ eikR ·rêλ(kR)

] + �(z)T L
λ eikd ·rêλ(kd )

}
,

fright
kλ,nondisp = 1

(2π )3/2

1√
2ω

1

n

{
�(z)

[
eikd ·rêλ(kd )

+RR
λ eikdR ·rêλ(kdR)

] +�(−z)T R
λ eik·rêλ(k)

}
,

(26)

where the polarization vectors êλ(k) obey the gauge condition
k · êλ(k) = 0. A convenient choice is a decomposition into
transverse electric (TE) and transverse magnetic (TM) modes
through

êTE(k) = 1

k‖
(ky, − kx,0),

êTM(k) = 1

kk‖

(
kxkz,kykz, − k2

‖
)
. (27)

The reflection and transmission amplitudes in the mode
functions (26) are given by the Fresnel coefficients

RL
TE = kz − kd

z

kz + kd
z

, T L
TE = 2kz

kz + kd
z

,

RL
TM = n2kz − kd

z

n2kz + kd
z

, T L
TM = 2nkz

n2kz + kd
z

,

RR
λ = −RL

λ , T R
λ = kd

z

kz

T L
λ

with z components of the wave vectors in vacuum and in the
medium connected by the laws of refraction,

kd
z =

√
n2

(
k2
z + k2

‖
) − k2

‖ . (28)

The modes are the same as in Refs. [13,16,18] but with slightly
different conventions concerning their normalization. They are
normalized such that the radiation Hamiltonian is represented
as a collection of harmonic oscillators

Hrad = 1

2

∫
d3r

[
ε(r)Ȧ2

Q + (∇ × AQ)2
]

(29)

=
∑

λ

∫
d3k ω

(
a
†
kλakλ + 1

2

)
. (30)

The modes form an orthogonal and complete set, as explicitly
shown in Refs. [18,19]. That this must be so can easily be seen
by writing Eq. (23) for the mode functions in the form [20]

1√
ε(r)

∇ ×
[
∇ × 1√

ε(r)

√
ε(r)fkλ(r)

]
= ω2

√
ε(r)fkλ(r).

(31)

Evidently, this is an eigenvalue problem for a Hermitian
operator acting on

√
ε(r)fkλ, which must therefore form a

complete set of orthogonal functions satisfying∫
d3r ε(r)f ∗

kλ(r)fk′λ′(r) = 1

2ω
δλλ′δ(3)(k′ − k). (32)

Substituting these modes into Eq. (21), we find that the
magnetic-moment shift can be written in the form

	μ⊥ = − e3

4m3

∑
ϑ=±1,λ

∫
d2k‖

{∫ ∞

0
dkz gϑ

λ (k‖,kz)
[
1 + ∣∣RL

λ

∣∣2]

+ 1

n2

∫ −�

−∞
dkd

z gϑ
λ (k‖,kz)

∣∣T R
σ

∣∣2

+ϑ

∫ ∞

0
dkz gϑ

λ (k‖,kz)R
L
λ (e2ikzz + e−2ikzz)

+ ϑ

n2

∫ 0

−�

dkd
z gϑ

λ (k‖,kz)
∣∣T R

σ

∣∣2
e2ikzz

}
, (33)

where the functions gϑ
λ (k‖,kz) are

g+
TE = k2

‖
k3

, g−
TE = k2

z

2k3
, g+

TM = 2k2
‖ + k2

z

2k3
, g−

TM = 0.

(34)

The critical value of kd
z , below which the modes are evanescent

on the vacuum side, is � = √
n2 − 1 k‖. The functions

gϑ
λ (k‖,kz) have a branch cut due to k =

√
k2
z + k2

‖ in their
denominators, but are otherwise analytic in kz. We place
this cut at kz = ±ik‖ . . . ± i∞. The contributions from the
various types of modes to Eq. (33) are easily identifiable: the
integrals over kd

z = −∞ . . . − � and kz = 0 . . . ∞ correspond
to right- and left-incident traveling modes, respectively, while
the integral over kd

z = −� . . . 0 corresponds to evanescent
modes. kd

z has branch points at kz = ±i�/n; we place the
branch cut in-between. Using dkd

z = n2(kz/kd
z ) dkz, we can

manipulate the first two integrals of Eq. (33), which are all
independent of z, into

∫ ∞

0
dkz gϑ

λ (k‖,kz)

[
1 + ∣∣RL

λ

∣∣2 + kz

kd
z

∣∣T R
λ

∣∣2
]

= 2
∫ ∞

0
dkz gϑ

λ (k‖,kz), (35)

where the equality follows since kz and kd
z are here both real.

The remaining two integrals of Eq. (33) are z-dependent terms
and can be written as

ϑ

∫ ∞

0
dkz gϑ

λ (k‖,kz)R
L
λ (e2ikzz + e−2ikzz)

+ϑ

∫ i�/n

0
dkz

kz

kd
z

gϑ
λ (k‖,kz)

∣∣T R
σ

∣∣2
e2ikzz. (36)

We observe that for real kd
z and pure imaginary kz

RL
σ

∣∣
kd
z =−K

− RL
σ

∣∣
kd
z =K

= kz

kd
z

T R
σ T R∗

σ

∣∣∣∣
kd
z =−K

, (37)

which permits us to combine the integrals (36) into one,

ϑ

∫
C

dkz gϑ
λ (k‖,kz)R

L
λ e2ikzz (38)
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-

-

FIG. 4. (Color online) Complex kz plane for nondispersive
dielectric.

with the contour C as shown in Fig. 4. Thus, we have for the
magnetic-moment shift

	μ⊥ = − e3

4m3

∑
ϑ=±1,λ

∫
d2k‖

[ ∫
C

dkz gϑ
λ (k‖,kz)R

L
λ e2ikzz

+ 2
∫ ∞

0
dkz gϑ

λ (k‖,kz)

]
. (39)

The second term in the brackets can be left out since it does not
depend on the position z of the particle. It arises from the same
electromagnetic field fluctuations but in vacuum, i.e., without
any dielectric medium present, as is easy to see by taking
the limit n → 1 and hence RL

λ → 0 in the above equation.
Therefore, we subtract it as a free-space counterterm and obtain
for the renormalized, position-dependent magnetic-moment
shift

	μ⊥ = − e3

4m3

∑
ϑ=±1,λ

∫
d2k‖

∫
C

dkz ϑgϑ
λ (k‖,kz)R

L
λ e2ikzz.

(40)

The integrand is analytic in the lower half of the complex
kz plane, so we can freely deform the contour C into that
labelled as C ′ in Fig. 4. Carrying out the sum over ϑ and the
angular part of the k‖ integration, we find the following explicit
expressions for the magnetic-moment shifts 	μ⊥ and 	μ‖ in
magnetic fields perpendicular and parallel to the surface of the
dielectric medium:

	μ⊥ = − e3

32π2m3

∫ ∞

0
dk‖

∫
C ′

dkz

k‖
k3

× [(
2k2

‖ − k2
z

)
RL

TE + (
2k2

‖ + k2
z

)
RL

TM

]
e2ikzz, (41)

	μ‖ = − e3

32π2m3

∫ ∞

0
dk‖

∫
C ′

dkz

k‖
2k3

× [(
3k2

‖ + 2k2
z

)
RL

TE + (
3k2

‖ − 2k2
z

)
RL

TM

]
e2ikzz. (42)

The shift 	μ‖ for the case of the externally applied magnetic
field directed parallel to the surface of the dielectric has been
evaluated in exactly the same way as 	μ⊥, but by cycling the
Cartesian indices in Eq. (21) so as to describe a differently
oriented surface, as explained below Eq. (21).

The integrals in Eqs. (41) and (42) can be calculated exactly.
However, we postpone discussion of their calculation and

results until after consideration of a plasma surface, in order
to be able to compare and contrast the two models.

B. Plasma surface

We now consider the simplest model of a dispersive
medium: an undamped plasma of freely moving charge
carriers. The dielectric function for a half-space is then

ε(r,ω) = 1 − �(z)
ω2

p

ω2
, (43)

where ωp ≡
√

Ne2/mc is the plasma frequency which charac-
terizes the material made up from charge carriers of effective
mass mc, charge e, and an average density N . As discussed in
detail in Ref. [21], Maxwell’s equations yield the equation to
be satisfied by the quantized vector field, and thus by the mode
functions, as

∇ × [∇ × fkλ(r)] + �(z)ω2
pfkλ(r) = ω2fkλ(r). (44)

Using Coulomb gauge one can simplify this to the wave
equation, with a shifted frequency inside the material, and its
solutions are traveling and evanescent waves. The continuity
of the parallel wave vector k‖ means that the relation between
the z component of the wave vector inside the material kd

z , and
the one in vacuum kz, is now given by

kd2
z = k2

z − ω2
p. (45)

As ωp is real, it is possible for kz and kd
z to be simultaneously

imaginary, i.e., there exist solutions to the wave equation which
fall away exponentially on both sides of the interface; these
are surface plasmons. Equation (45) also tells us that if kd

z is
real, then kz must also be real, so that one can not have modes
originating from within the medium that become evanescent
on the vacuum side. Thus, we expect to reproduce some of the
features of the perfect reflector model. However, for kz < ωp

the wave vector inside the medium kd
z is pure imaginary and

therefore the modes are traveling waves on the vacuum side
but evanescent inside the medium. So, there are three types
of modes: TE, TM, and surface plasmon (SP). The TE and
TM modes are always traveling waves in vacuum and can
be traveling or evanescent waves in the medium. They can
be written in almost the same form as in Eq. (26) for the
nondispersive dielectric. In order to see what is different, we
note that the left-hand side of Eq. (44) is a Hermitian operator
acting on fkλ, which implies the orthonormality relation∫

d3r f∗
k′λ′(r)fkλ(r) = 1

2ω
δλλ′δ(3)(k′ − k). (46)

The difference between this and the orthonormality relation
(32) for the nondispersive case is a factor of ε(r) under the
integral. However, this is compensated by the different relation
between kz and kd

z which now gives dkd
z = (kz/kd

z )dkz and
therefore δ(kz − k′

z) = (kz/kd
z )δ(kd

z − kd
z

′
) in Eq. (46). We find

that, apart from the different dielectric function to be used
within the reflection and transmission coefficients, the only
difference in the TE and TM modes for the plasma as compared
to the nondispersive dielectric is an overall factor of n in the
right incident modes. Thus, the TE and TM modes for the
plasma are obtained from the nondispersive dielectric modes
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in Eq. (26) via the replacements

fleft
kλ,plasma = fleft

kλ,nondisp[n2 → ε(ω)],

fright
kλ,plasma = nfright

kλ,nondisp[n2 → ε(ω)].

The SP mode is derived by considering modes that
exponentially decay on both sides of the surface. Defining

κ ≡ ikz =
√

k2
‖ − ω2

SP,

κd ≡ −ikd
z =

√
k2
‖ − ε(ωSP)ω2

SP,

one finds the solutions of Eq. (44) to be of the form
exp(κz + ik‖ · r‖) for z < 0 and exp(−κdz + ik‖ · r‖) for
z > 0, with the polarization vectors as in Eq. (27). The
continuity conditions (25) then relate the mode amplitudes
on both sides of the interface. For the TE polarization, the
resulting equations turn out to contradict each other whence
there is no TE surface plasmon. For the TM polarization, the

combination of these continuity conditions yields the relation

κd = −ε(ωSP)κ, (47)

which shows that surface plasmons can occur only for
frequencies where ε(ω) is negative and delivers the surface
plasmon dispersion relation

ω2
SP = k2

‖ + ω2
p

2
−

√
k4
‖ + ω4

p

4
. (48)

As before, we find normalization constants by requiring that
for each of the TE, TM, and SP modes, the Hamiltonian
reduces to that of a set of harmonic oscillators [Eq. (30)].
For the SP mode, the set of oscillators exists only for the TM
polarization and the sum over modes is just a two-dimensional
integral over k‖, as the dispersion relation (48) fixes ω at the
surface plasmon frequency ωSP, which also fixes kz.

The mode function for the surface plasmon is specific to
the plasma model; it reads as [12,21]

fk,SP = 1

2π

1√
p(k‖)

[
�(−z)

(
k̂‖ − ik‖

κ
ẑ
)

eik‖·r‖+κz + �(z)

(
k̂‖ + ik‖

κd
ẑ
)

eik‖·r‖−κdz

]
, (49)

with the norming function

p(k‖) = ε4 − 1

ε2
√−(1 + ε)

, ε ≡ ε(ωSP). (50)

Substituting the mode functions into Eq. (21), we find that, similarly to the case of the nondispersive dielectric, the magnetic-
moment shift due to the TE and TM modes may be written as

	μ
TE,TM
⊥ = − e3

4m3

∑
ϑ=±1,λ

∫
d2k‖

{∫ ∞

0
dkz gϑ

λ (k‖,kz)
[
1 + ∣∣RL

λ

∣∣2 + ϑRL
λ (e2ikzz + e−2ikzz)

] + ϑ

∫ 0

−∞
dkd

z gϑ
λ (k‖,kz)

∣∣T R
σ

∣∣2
}
,

(51)

where the functions gϑ
λ (k‖,kz) are the same as in Eq. (34) for

the nondispersive dielectric.
Again, the z-independent terms of this integral make up

the free-space counterterm to be subtracted. In this case, these
are all terms except the one proportional to RL

λ . In order to
see that these really give the free-space contribution, we use
dkd

z = (kz/kd
z )dkz to rewrite them as∫ ωp

0
dkz gϑ

λ (k‖,kz)
(
1 + ∣∣RL

λ

∣∣2)
+

∫ ∞

ωp

dkzg
ϑ
λ (k‖,kz)

(
1 + ∣∣RL

λ

∣∣2 + kz

kd
z

∣∣T L
λ

∣∣2
)

. (52)

Here, kz is always real, as there are no evanescent modes on
the vacuum side. However, kd

z is imaginary for kz < ωp, which
means that in the first integral |RL

λ |2 = 1. The second integral
can be simplified by applying Eq. (35), as kz and kd

z are both
real. Therefore, Eq. (52) is just a constant, independent of the
properties of the material and the same as one would get in free
space. Subtracting it as free-space counterterm from 	μ

TE,TM
⊥ ,

we arrive at the same expression as in Eq. (40), except with the
contour running straight along the real axis as shown in Fig. 5.
The integrands (up to the explicit form of ε within RL

λ ) for the

TE and TM modes in the plasma model are identical to those
for the nondispersive dielectric. Just as with the nondispersive
case, we deform this contour into the lower half-plane. We
note that for the plasma model the TM reflection coefficient
has a pole at −iκ =

√
ω2

SP − k2
‖ . We are left with a contribution

from the contour integral over C ′ that is identical to Eqs. (41)
and (42) (the corresponding quantities in the nondispersive
case), and a contribution proportional to the residue of the TM
reflection coefficient. Now, we add the surface plasmon part,

-

FIG. 5. (Color online) Complex kz plane for plasma surface.
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which is derived by substituting the surface plasmon mode
functions (49) into the expression (21) for 	μ⊥. This gives
the magnetic-moment shift due to the surface plasmon as

	μSP
⊥ = − e3

8πm3

∫ ∞

0
dk‖k‖

2k2
‖ − κ2

p(k‖)κ2
e2κz, (53)

	μSP
‖ = − e3

8πm3

∫ ∞

0
dk‖k‖

3k2
‖ + 2κ2

2p(k‖)κ2
e2κz. (54)

Adding these to the results for 	μ
TE,TM
⊥ we find that they

exactly cancel the contributions from the residue part of the
contour integration along C ′, similarly to what has been found
in the calculation of atomic energy-level shifts near a plasma
surface [12]. Thus, for the plasma surface the total magnetic-
moment shift, i.e., the sum over TE, TM, and surface plasmons
contributions, is given precisely by Eqs. (41) and (42). In other
words, the magnetic-moment shift for both the nondispersive
dielectric surface and the plasma surface can be found from
the same integral simply by inserting the appropriate dielectric
function into the reflection coefficients. The additional modes
arising in the plasma model are automatically taken care of
by the more complicated structure of the expression in the
complex kz plane over which the contour is deformed, with
the same end result.

C. Dispersive dielectric

The next model we would like to consider is a dispersive
dielectric. For this we need to move the pole in the dielectric
function of a plasma away from zero frequency to a finite
transverse optical phonon resonance ωT , which corresponds to
the inclusion of a restoring force into the equation of motion for
the electrons within the material [22]. The dielectric function
is then

ε(r,ω) = 1 − �(z)
ω2

p

ω2 − ω2
T

. (55)

The dispersion relation for the surface polariton turns from
Eq. (48) into

ω2
SP = k2

‖ + 1
2

(
ω2

p + ω2
T

) −
√

k4
‖ − k2

‖ω
2
T + 1

4

(
ω2

p + ω2
T

)2
.

(56)

The quantization of the electromagnetic field in terms of
normal modes is now hindered by the fact that the field
equation

∇ × [∇ × AQ(r,ω)] + �(z) ω2
p

1 − ω2
T /ω2

AQ(r,ω) = ω2AQ(r,ω)

(57)

can not be written as a Hermitian eigenvalue problem, which
would have guaranteed the orthogonality and completeness
of the modes. Thus, for a first-principles derivation of the
magnetic moment shift for this kind of surface, one would
need to include both dispersion and absorption into the model
and construct a Huttner-Barnett–type field theory for the
electromagnetic field interacting with the dielectric medium
(for a suitable formulation see, e.g., [23]).

An alternative approach [24] is to use a Lifshitz-style
method [25] and write the expectation values of squares of

FIG. 6. (Color online) Complex kz plane for dispersive dielectric
surface.

electromagnetic field operators, as in Eq. (21), in terms of
a Green’s tensor with an arbitrary permittivity ε(r,ω). This
tensor turns out to depend only on the reflection coefficients of
the surface [26], just as our formulas (41) and (42) do. Thus, for
an end result that can depend only on the surface’s reflection
coefficients, one necessarily gets the same expressions (41)
and (42), as before, for the magnetic-moment shifts. Likewise,
the Feynman propagator of the Huttner-Barnett field theory
constructed in Refs. [23,27] depends only on the same
reflection coefficients, thus leading to the same conclusion
that such a field-theoretical approach necessarily reproduces
Eqs. (41) and (42) for the magnetic-moment shift.

The continued validity of Eqs. (41) and (42) for a dispersive
dielectric is facilitated by the fact the integration path C ′ in
the complex kz plane is not affected by the introduction of
the transverse optical resonance ωT . The complex kz plane
for a dispersive dielectric model is shown in Fig. 6 with the
abbreviations

Kz,± = 1√
2

{
ω2

p + ω2
T − k2

‖

±
√

k4
‖ + 2k2

‖
(
ω2

p − ω2
T

) + (
ω2

p + ω2
T

)2
}1/2

and

kz,± =
√

1
2

(
ω2

p + ω2
T

) ±
√

k4
‖ − k2

‖ω
2
T + 1

4

(
ω2

p + ω2
T

)2
.

While the structure of the complex kz plane is considerably
more complicated for the dispersive dielectric model as
opposed to the plasma model, none of the additional cuts or
poles interfere with the integration path C ′, and thus Eqs. (41)
and (42) can be applied as they are.
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IV. EVALUATING THE MAGNETIC-MOMENT SHIFT

In order to calculate the magnetic-moment shifts (41) and
(42) for the various models of the surface, we divide up the
integrals into the contribution from the two straight lines on
either side of the cut, kz = (−i∞,−ik‖] and kz = [−ik‖,
−i∞), and the contribution from the small circle around kz =
−ik‖. The integral around this small circle proves awkward to
evaluate, so we subtract that point and consider it separately.
This separate integral turns out to be elementary; the result
appears below as the terms outside the integrals. We write
the full results in terms of the complex frequency ξ = iω and
of η = kz/ω, which is the cosine of the complex angle of
incidence. For isotropic media, this means that the dielectric
function ε is a function only of ξ and the material parameters
of the surface, such as n, ωp, and ωT . The magnetic-moment
shifts for the magnetic field B0 perpendicular and parallel to
the interface are

	μ⊥ = e3

16π2m3

{∫ ∞

0
dξ ξ

∫ ∞

1
dη

[
(3η2 − 2)RL

TE

+ (η2 − 2)

(
RL

TM − ε(0) − 1

ε(0) + 1

)]
e2ξηz

− ε(0) − 1

ε(0) + 1

3

4z2

}
, (58)

	μ‖ = e3

16π2m3

{
1

2

∫ ∞

0
dξ ξ

∫ ∞

1
dη

[
(η2 − 3)RL

TE

+ (5η2 − 3)

(
RL

TM − ε(0) − 1

ε(0) + 1

)]
e2ξηz

− ε(0) − 1

ε(0) + 1

1

z2

}
(59)

with

RL
TE = η −

√
[ε(ξ ) − 1] + η2

η +
√

[ε(ξ ) − 1] + η2
,

(60)

RL
TM = ηε(ξ ) −

√
[ε(ξ ) − 1] + η2

ηε(ξ ) +
√

[ε(ξ ) − 1] + η2
.

We note that there is no need for the subtraction from RL
TE of

RL
TE(kz → −ik‖) because that is zero.
As shown later, for certain dielectric functions there may

arise problems due to noncommutation between limits of
physical parameters and the limit kz → −ik‖, which corre-
sponds to the static limit ω → 0, and this will prove to be
crucial to the analysis and comparison of the results for the
various models of the surface. The subtraction of the point
at kz → −ik‖ is, in these variables, the subtraction of the
point {ξ → 0,η → ∞}. Taking this two-dimensional limit
risks the obvious pitfall of potential noncommutation of the
ξ and η limits. This complication arises with the TE part
of the integrals for the plasma surface. We emphasize that
this is not an artifact of using these variables; even in an
alternative formulation with {ξ → 0,η → ∞} expressed as
a single-variable limit, the issue manifests itself, though in
a different way. Fortunately, this one problematic case can
be dealt with differently, as detailed in Appendix C. Thus,
the above formulas deliver the magnetic-moment shift for a

specified dielectric function ε(r,ω), as long as the limits ξ → 0
and η → ∞ of the reflection coefficients commute.

If one carries out the corresponding calculation in either a
Huttner-Barnett field theoretical approach, as in Refs. [23,27],
or a noise-current approach [24], then the magnetic-moment
shift is more naturally expressed not as an integral over
(kz,k‖), as in Eqs. (41) and (42), but as one over (ω,k‖).
Hence, for ease of comparison with such approaches, we now
proceed to derive alternative expressions for the magnetic-
moment shifts. Carefully considering the complex variable
transformation from kz to ω one can transform Eqs. (41)
and (42) to

	μ⊥ = − e3

32π2m3

∫ ∞

0
dk‖

∫
C ′

dω
k‖

kzω2

× [
(3k2

‖ − ω2)RL
TE + (k2

‖ + ω2)RL
TM

]
e2ikzz, (61)

	μ‖ = − e3

32π2m3

∫ ∞

0
dk‖

∫
C ′

dω
k‖

2kzω2

× [
(k2

‖ + 2ω2)RL
TE + (5k2

‖ − 2ω2)RL
TM

]
e2ikzz, (62)

with the transformed path C ′ as shown in Fig. 7 and kz =
−i

√
k2
‖ − ω2 for |ω| > k‖ along C ′. These formulas can be

simplified by subtracting the 1/ω2 term of the integrand’s
Laurent expansion around ω = 0 and treating it separately,
when it integrates to zero along C ′. Then, using the fact that
the integrands are even in ω and re-writing the integrals in
terms of the complex frequency ξ = iω, we obtain

	μ⊥ = e3

16π2m3

∫ ∞

0
dk‖

∫ ∞

0
dξ

k‖
ξ 2

×
⎧⎨
⎩e2

√
k2
‖+ξ 2z√

k2
‖ + ξ 2

[
(3k2

‖ + ξ 2)RL
TE + (k2

‖ − ξ 2)RL
TM

]

− e2k‖zk‖RL
TM(0)

⎫⎬
⎭ , (63)

cut from

FIG. 7. (Color online) Integration path C ′ in the complex ω plane.

012107-10



ANOMALOUS MAGNETIC MOMENT OF AN ELECTRON NEAR . . . PHYSICAL REVIEW A 88, 012107 (2013)

	μ‖ = e3

16π2m3

∫ ∞

0
dk‖

∫ ∞

0
dξ

k‖
2ξ 2

×
⎧⎨
⎩e2

√
k2
‖+ξ 2z√

k2
‖ + ξ 2

[
(k2

‖ − 2ξ 2)RL
TE + (5k2

‖ + 2ξ 2)RL
TM

]

− 5e2k‖zk‖RL
TM(0)

⎫⎬
⎭ (64)

with

RL
TE =

√
ξ 2 + k2

‖ −
√

ε(ξ )ξ 2 + k2
‖√

ξ 2 + k2
‖ +

√
ε(ξ )ξ 2 + k2

‖
,

RL
TM =

ε(ξ )
√

ξ 2 + k2
‖ −

√
ε(ξ )ξ 2 + k2

‖

ε(ξ )
√

ξ 2 + k2
‖ +

√
ε(ξ )ξ 2 + k2

‖
,

and RL
TM(0) ≡ RL

TM(ξ = 0). This result can also be obtained
from a noise-current approach [24].

The results in Eqs. (63) and (64) are completely equivalent
to those in Eqs. (58) and (59). Which ones are preferable
depends on the particular model, but generally speaking the
difficulty in evaluating either is about the same for most
dielectric functions ε(ξ = iω).

V. RESULTS

A. Nondispersive

Inserting the dielectric function ε(ω) = n2 into
Eqs. (58)–(60), one can evaluate the integrals exactly.
The results for the magnetic-moment shifts in a magnetic field
perpendicular and parallel to the surface are

	μ⊥ = − e3

32π2m3z2

1

(n4 − 1)3/2

×
[√

n4 − 1(5 − 2n + n2 − 2n3 − 3n4 + n5)

− n4
√

n2 − 1(1 + 2n2) arctanh

(
(n − 1)

√
1 + n2

1 + (n − 1)n

)

+ 2(n2 − 1)(1 + n2)5/2 ln(n +
√

n2 − 1)

]
, (65)

	μ‖ = − e3

192π2m3z2

1

(n4 − 1)3/2

×
[√

n4 − 1(26 − 9n + 8n2 − 23n3 − 3n4 + n5)

+ 3n4
√

n2 − 1(2 − 3n2) arctanh

(
(n − 1)

√
1 + n2

1 + (n − 1)n

)

+ 9(n2 − 1)(1 + n2)5/2 ln(n +
√

n2 − 1)

]
. (66)

If we expand these shifts in a series for large values of the
refractive index n we obtain

	μ⊥ = − e2

4π

e

2m

(
n

4πm2z2
− 1

4πm2z2
+ O(1/n)

)
, (67)

	μ‖ = − e2

4π

e

2m

(
n

24πm2z2
+ 1

4πm2z2
+ O(1/n)

)
, (68)

which shows that the perfect-reflector limit does not exist
and the shift diverges for n → ∞. This is evidently un-
physical, as it implies that the magnetic moment could be
increased arbitrarily by increasing the refractive index n of
the surface. However, as we shall show below, this is in
fact a misconception and it is that model of a dispersionless
medium which is unphysical. Detailed comparison with the
results for the magnetic-moment shifts near a perfect reflector
[cf. Eq. (7.12) of [9]] reveals the rather curious fact that the
next-to-leading terms independent of n in Eqs. (67) and (68),
if taken on their own, do in fact reproduce the results of the
perfect-reflector case. It is easy to check that this is not a simple
calculational error: if one takes the limit n → ∞ in the reflec-
tion coefficients (60) first and evaluates the equivalent of inte-
grals (58) and (59) afterwards (as shown in Appendix B), one
reproduces the results of Ref. [9]. The calculation also reveals
the mathematical origin of the discrepancy: the TE reflection
coefficient differs depending on whether either the perfect-
reflector limit n → ∞ or the static limit {ξ → 0,η → ∞},
or kz → −ik‖, is taken first. This indicates that the correct
magnetic-moment shift close to a specific material can only
be obtained if the model chosen for the surface correctly
reproduces the true low-frequency behavior of the dielectric
susceptibility of the material. We shall elaborate on this point
later on.

B. Plasma surface

Inserting the dielectric function (43) into the reflection
coefficients (60), we find that the η → ∞ and ξ → 0 limits
of RL

TE do not commute. This means we can not use the TE
parts of Eqs. (58) and (59) for this particular model. However,
for the TE parts of these integrals we can go back to the stage
before we deformed the contour and carry out the integration
along the path C because the TE reflection coefficients are very
simple so that the integrals are unproblematic to calculate. As
illustrated in Fig. 5, the contour C before deformation runs
straight along the kz axis, passing under the cut. We show in
Appendix C how to calculate the integrals along the path C for
the TE contributions. The contributions from the TM modes
can be evaluated from Eqs. (58) and (59). To calculate the
integrals we first replace the integration over η by one over
κ = ξη. In the resulting two-dimensional integral we can then
change the order of integration and go from

∫ ∞
0 dξ

∫ ∞
ξ

dκ to∫ ∞
0 dκ

∫ κ

0 dξ . The integration over ξ is elementary, and we are
left with just a one-dimensional integral over κ . Simplifying
the latter by scaling κ to s = κ/ωp we obtain

	μ⊥,TM = e3

16π2m3

{
− 3

4z2

+ 2ω2
p

∫ ∞

0
ds e2sωpz 1 + t2(s)

t2(s)[2 + t2(s)]3/2

×{2t(s) − [1 + 2t2(s)] arccot[t(s)]}
}
, (69)
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FIG. 8. (Color online) Comparison of plasma (solid line) and
perfect-reflector results (dashed line). (Both axes are in dimensionless
natural units.)

	μ‖,TM = e3

16π2m3

{
− 1

z2

+ω2
p

∫ ∞

0
ds e2sωpz 1 + t2(s)

t2(s)[2 + t2(s)]3/2

×{3t(s) − [5 + 3t2(s)]arccot[t(s)]}
}
, (70)

with the abbreviation

t(s) ≡
√√

1 + 1

s2
− 1. (71)

Note that we have included the constant terms from Eqs. (58)
and (59) since these originate from the TM reflection coeffi-
cient. The remaining integral over s is sufficiently complicated
that it is best done numerically, which is easy since the
exponential ensures fast convergence. We add to this the TE
contribution calculated in Appendix C and show the full results
in Fig. 8.

The |ωpz| → ∞ asymptotics of Eqs. (69) and (70) is
straightforward to work out by applying Watson’s lemma.
One finds that the s integrals give terms of order 1/(ωpz3)
and are thus negligible compared to the 1/z2 leading-order
contributions in the first summands and from the TE part
(worked out in Appendix C). The |ωpz| → ∞ limit of the
overall result reproduces the perfect-reflector result [and the
n-independent terms in Eqs. (67) and (68)], as shown in
Appendix C. This makes sense physically, as the lack of
evanescent modes on the vacuum side means that for ωp → ∞
the plasma model becomes equivalent to the perfect reflector,
thus reproducing its results.

By contrast, the plasma model does not reproduce the
results of the nondispersive dielectric for large n. The con-
sideration of a dispersive dielectric model in the following
section will shed further light onto this issue and point to the
origin of this discrepancy in the very different low-frequency
behavior of the electromagnetic response of conductors and
insulators.

We also note that for the plasma model the ωp → 0
and η → ∞ limits of the TM reflection coefficient do not
commute, causing the magnetic-moment shift to diverge as
ωp → 0, when it should clearly be zero at this point. This
arises because the static limit of the dielectric constant is ill

defined for ωp → 0 and has already been discussed in detail
in the context of the mass shift of an electron near a plasma
surface [14]. Of course, if we take ωp → 0 before carrying out
any of the integrals over photon wave vectors, there is no such
problem and the shift vanishes as expected.

We have shown above that the shift for the nondispersive
dielectric has a distance dependence of 1/z2 for all z and all
n [cf. Eqs. (65) and (66)]. However, for the plasma model we
find that for small distances, i.e., small |ωpz|, the shift varies as
1/z3. The TE part of the shift contributes only logarithmically
at small |ωpz|, as shown in Eq. (C11). So, the short-distance
asymptotics of the shift is dominated by the TM parts of
Eqs. (58) and (59), which we have already simplified into
Eqs. (69) and (70). To find the small |ωpz| asymptotics, we
scale the integration variable s to a new variable equaling sωpz

and then expand for small |ωpz|. The resulting series may then
be integrated term by term and gives

	μ⊥(|ωpz| � 1) = e3

4m3z2

{
1

16
√

2π

1

ωpz
+ O(ωpz)

}
, (72)

	μ‖(|ωpz| � 1) = e3

4m3z2

{
5

32
√

2π

1

ωpz
+ O(ωpz)

}
. (73)

The leading 1/z3 dependence seen here arises because at small
distances the interaction between the electron and the surface is
dominated by electrostatic interaction of the electron with the
surface plasmon. Therefore, one should be able to derive the
1/z3 term by considering the surface plasmon part of the mode
functions (49) alone. To this end, using the dielectric function
(43) and the dispersion relation (48), we write the norming
function p(k‖) [Eq. (50)] and the imaginary z component of
the wave vector κ ≡ ikz as functions of k‖ and ωp and then
substitute them into Eqs. (53) and (54). Changing variables
such that the z dependence is taken out of the exponential and
expanding for small |ωpz|, we find the leading term for the
perpendicular case given by the trivial integral

e3

16m3
√

2πz3ωp

∫ ∞

0
dx x2e−2x = − e3

64m3
√

2πz3ωp

, (74)

which is in agreement with the 1/z3 term in Eq. (72). For
the parallel case, the corresponding calculation reproduces
Eq. (73), as expected. Thus, the 1/z3 dependence of the shift at
short distances does indeed originate entirely from the surface
plasmon part of the mode functions, as observed in Ref. [28]
for the magnetic energy shift of a neutral atom interacting with
a plasma surface.

For large distances, the dependence of the magnetic-
moment shift remains 1/z2, as shown in Appendix C. Since
the inverse of the plasma frequency ωp is the only length scale
in the plasma model, large- and small-distance regimes are
defined by |ωpz| � 1 and |ωpz| � 1, respectively, and hence
to speak of large distances is the same as speaking of large ωp.

C. Dispersive dielectric

A dispersive dielectric has features in common with
the nondispersive model, e.g., that modes originating from
within the material can be evanescent on the vacuum side.
Likewise, the TE reflection coefficient exhibits the same kind
of problem with noncommuting limits: the limit of a large
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FIG. 9. (Color online) Magnetic-moment shift for dispersive and
nondispersive dielectric models as a function of static susceptibility,
for the case of the magnetic field B0 perpendicular to the surface and
|ωT z| = {0.01,0.015,0.02}.

dielectric response, which is now described by ωp → ∞, is
not interchangeable with the static limit ω → 0. Thus, for large
ε we expect the dispersive dielectric to give similar results to
the nondispersive dielectric.

We evaluate Eqs. (58) and (59) numerically, and find a
peak in the magnetic-moment shift relative to the perfect-
reflector result. To facilitate the discussion of this peak and the
comparison of different models, we now choose to write the
dielectric function in terms of the static limit of the dielectric
susceptibility

χ (0) = ε(0) − 1 = ω2
p

/
ω2

T .

We find peaks in 	μ⊥ and 	μ‖ at
√

χ (0) ≈ 2, with the height
of the peak being inversely proportional to ωT z, as shown in
Fig. 9 for the case where the external magnetic field B0 is
perpendicular to the interface. We also plot the corresponding
shift for the nondispersive case, where χ (0)nondisp = n2 − 1. If
we were to continue the plot to very large values of χ (0), the
graphs for the two models would very slowly converge into
one linearly rising line. By contrast, the result for the perfect
reflector, also shown in Fig. 9, is much smaller and has the
opposite sign.

The peak appears if the choice of parameters is such that
|ωT z| � 0.07 for B0 perpendicular, and � 0.25 for B0 parallel
to the surface. For smaller values of |ωT z|, the peak moves
closer to

√
χ (0) ≡ ωp/ωT ≈ 2, and increases in height. To

gauge the enhancement that dispersion brings to the shift we
calculate the ratio of the height of the dispersive peak to the
nondispersive result at the same χ (0), and find

	μ⊥disp

	μ⊥nondisp
≈ 30.3 eV nm

|ωT z| ,

(75)
	μ‖disp

	μ‖nondisp
≈ 81.6 eV nm

|ωT z| .

A typical value for the frequency ωT in a metal is on
the order of a few eV (see, for example, [29]), meaning
that a significant enhancement relative to the nondispersive
case would be observed only at extremely small distances
z. However, restricting oneself to considering the properties
of only elemental solids would be shortsighted. Structures
engineered on the nanoscale can have transverse resonance
frequencies ωT significantly smaller than any ordinary ma-

terial; examples include an InSb semiconductor grating with
ωT (and ωp) in the range of a few meV [30]. These types of
materials are at a focal point of strong contemporary interest
in low-frequency plasmonics. With appropriate assumptions
about the approximation of a part of such a structure as a
planar surface, we find that for distances z of a few tens of
nanometers one may get an enhancement factor on the order
of 103 relative to the nondispersive case.

The apparent problem of the behavior of the nondispersive
result in the limit of large refractive index n → ∞ can be
clarified by comparing it with the behavior of the dispersive
shift at large χ (0). In this regime, the shift for the dispersive
dielectric model becomes linear in

√
χ (0) and agrees with

the nondispersive results; so for large χ (0) the two models
are equivalent. The crucial additional observation is to note
that for a nondispersive dielectric with large χ (0) we have
χ (0) ≈ n2, which is to say that a large refractive index
necessarily implies a large static susceptibility. Therefore,
in the nondispersive model one can not sensibly make a
distinction between an arbitrarily large refractive index and
an arbitrarily large static susceptibility. Investigation of the
dispersive dielectric has shown that the latter interpretation
is the correct one: the magnetic-moment shift grows with
increasing static susceptibility, but an arbitrarily large static
susceptibility is, of course, physically impossible. So, while
the shift in the nondispersive case does indeed increase without
bound as the refractive index n is increased, this is not due to
any problem with the calculation, but is in fact the result of the
static susceptibility growing without bound and an inevitable
consequence of the unrealistic exclusion of dispersion from
the model.

Consideration of the shifts in terms of the static susceptibil-
ity also emphasizes the close relationship between plasma and
perfect-reflector models. In both of these models, the static
susceptibility is infinite right from the start, which means that
their results do agree in the limit ωp → ∞.

The differences between the four models discussed above
very clearly show that in order to predict the magnetic-moment
shift for a given setup, one must choose a model which
is physically appropriate for the low-frequency behavior of
electromagnetic response of the material at hand. In other
words, it matters whether the material is a conductor or an
insulator. These two classes of material are not obtainable as
limiting cases of each other because the conductor models
ignore the existence of evanescent modes (which is a direct
consequence of their static susceptibilities being infinite).
The calculations for each class of model diverge from each
other because of noncommutation of a variety of limits of
the reflection coefficient, namely, between the static limit
(kz → −ik‖) and whichever limit we have to take in order
to compare models. For example, we note that the n → ∞
and kz → −ik‖ limits of the nondispersive TE reflection
coefficient do not commute, which leads to the n → ∞ limit
of the result for a nondispersive dielectric to disagree with
the perfect-reflector result. A further important example is
that the limit of vanishing transverse resonance frequency
ωT → 0 and the static limit kz → −ik‖ of the dispersive TE
reflection coefficient do not commute, which means that taking
ωT → 0 [χ (0) → ∞] in the dispersive dielectric results will
not reproduce the plasma results, while naive comparison
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Perfect reflector Nondispersive dielectric

Dispersive dielectricPlasma surface

Conductors Insulators

FIG. 10. Commutation properties of the various models discussed
in the text. Each arrow indicates a limit which takes one dielectric
function to another. Solid (dashed) arrows indicate a limit that, when
applied the reflection coefficients, commutes (does not commute)
with the limit kz → −ik‖. The consequence of this is that the
magnetic-moment results for two models connected by solid (dashed)
arrows are (are not) obtainable as limiting cases of one another.

of the dielectric functions (43) and (55) suggests that they
should. Since this plays such an important roles for the physical
interpretation of the results, we summarize the commutation
(or lack thereof) between the various limits of the reflection
coefficients in Fig. 10.

For the plasma model, we found a 1/z3 dependence of the
magnetic moment shift at small distances, i.e., small |ωpz|, and
that the leading 1/z3 term can be found either by determining
the asymptotics of the complete shift, or by considering
only the part due to the interaction with just surface plasmons.
The asymptotics of the integrals for the shift in the dispersive
dielectric case are too awkward to analyze directly. Instead, we
give the results one obtains by considering only the interaction
with the surface polariton, i.e., by using Eqs. (55) and (56) in
Eqs. (53) and (54):

	μ⊥(|ωpz| � 1) ≈ e3

64π
√

2m3z3

1√
2ω2

T + ω2
p

, (76)

	μ‖(|ωpz| � 1) ≈ 5e3

128π
√

2m3z3

1√
2ω2

T + ω2
p

. (77)

Surprisingly, for these short distances |ωpz| � 1, we find that
the ωT → 0 limits of Eqs. (76) and (77) do agree with the
corresponding results for the plasma, Eqs. (72) and (73), unlike
the results for general distances |ωpz| � 1. This is because
these results depend only on the surface plasmon part of
the mode functions and electrostatic interactions, but there
is no reflection of traveling photon modes, and hence any
noncommutation of limits in the reflection coefficient does not
come into play.

At large distances |ωpz| � 1, the shift decreases as 1/z2,
which is obvious when applying Watson’s lemma to the
integrals in Eqs. (58) and (59) or, more conveniently, to those in
Eqs. (63) and (64). In fact, its asymptotics is given by the same
expressions as in Eqs. (65) and (66) except with n replaced
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FIG. 11. (Color online) Magnetic-moment shift for dispersive
dielectric and plasma models as a function of scaled distance |ωpz|
from the surface, for the case of the magnetic field B0 perpendicular
to the surface and ωT /ωp = {0.02,0.04,0.06}.

by
√

1 + (ωp/ωT )2, i.e., by the square root of the dielectric
function at zero frequency, which is expected because at
large distances only the static electromagnetic response of the
surface matters and dispersion plays no role to leading order.
Figure 11 shows the shift for dispersive dielectric and plasma
models as a function of distance.

VI. EXPERIMENTAL RELEVANCE

Expressing magnetic-moment shifts as relative shifts 	μ/μ

to the Dirac magnetic moment μ = e/2m, we have for the
perpendicular component of the nondispersive shift in SI units

	μ⊥nondisp

μ
= h̄

c3ε0

e2

16π2m2z2
f (n) ≈ 10−11 nm2

z2
, (78)

where f (n) is the remaining part of Eq. (65), and is of
order unity. For a distance z ≈ 1 nm, Eqs. (75) (and the
discussions following them) show that the enhancement due to
the inclusion of dispersion can be of order 104 under favorable
conditions. Thus, we have a magnetic-moment shift of up to
one part in 107. The current experimental accuracy for g/2
in free space is on the order of one part in 1012 [1], so that
the shift calculated here would compare very favorably to this.
As the distance increases to the order of a micron, the effect
decreases towards the limits of current experimental accuracy.
For example, an electron 0.1 μm away from the same surface
as above would have its magnetic moment shifted by only one
part in 1011.

This leads one to ask if the current best techniques for
measuring the g factor would be suitable for making a
measurement of the surface-dependent shift of the magnetic
moment. Since one of the sticking points in such experiments is
that accurate measurement of the externally applied magnetic
field B0 is mostly impossible, g-factor experiments usually do
not measure the magnetic moment directly, but instead they
find its ratio to either a known magnetic moment, or to the
cyclotron frequency of the particle under consideration. In case
of the latter for surface-dependent magnetic-moments shifts,
one would need to take into account the shift in cyclotron
frequency of a particle near a surface, which arises due to
the position-dependent self-energy of the particle [9,13,14].
Crucially, the leading term of the surface-dependent cyclotron
frequency shift is of order α/(mz) and thus much bigger than
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the magnetic-moment shift which is of order α/(mz)2 [cf.
Eq. (78)]. So, an experiment which adapts the techniques
used for measuring the free-space g factor to find its surface-
dependent part would effectively be measuring the change
due to the surface in its self-energy, not in its magnetic
moment. While direct experimental confirmation of a shift
in the self-energy would, of course, be interesting in its own
right, its existence represents a significant obstacle to isolation
and observation of the magnetic-moment shift.

VII. SUMMARY AND CONCLUSIONS

We have shown that the magnetic-moment shift near
a nondispersive imperfectly reflecting surface has notable
differences from the corresponding shift near a perfectly
reflecting surface, differing by orders of magnitude and in
some cases even in its sign. The inclusion of dispersion can
significantly modify the magnitude of the effect, and that
this modification can be tuned by choice of material. We
have given a general formula for the calculation of magnetic-
moment shifts, into which one can simply insert the relevant
dielectric function and evaluate the integrals to obtain the shift
as dependent on the distance from the surface and various
parameters characterizing the electromagnetic response of the
surface.

The work presented here has also considerably extended
the horizon of the traditional theory of cavity quantum
electrodynamics. While the effect that causes the shift of the
magnetic moment of an electron close to a surface is essentially
the same as the one that causes the Casimir-Polder shift of
energy levels in neutral atoms close to a surface, the theory
required for the magnetic-moment shift is considerably more
involved. On the one hand, this is because the nature of the
spin requires a relativistic treatment, but on the other hand, the
much more subtle but ultimately more important reason is that
dynamics of the system is qualitatively more complicated: a
neutral atom interacting with a surface involves the exchange
of virtual excitations between just the photon field and the
atomic electron, whereas the shift of magnetic moment of
an electron near a surface involves virtual excitations being
exchanged in a triangle between the photon field, the center-
of-mass motion of the electron, and its spin states. This is also
the reason as to why there is no simple resonance effect when
the spin-flip frequency in a magnetic field coincides with an
absorption resonance in the material of the surface.
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APPENDIX A: SCHRÖDINGER AND DIRAC EQUATIONS
FOR A PARTICLE IN A CONSTANT MAGNETIC FIELD

In order to derive the eigenstates of the Dirac equation
for a particle in a constant classical magnetic field B0, one
first solves the corresponding Schrödinger problem and then
uses its solutions to generate the Dirac eigenstates [17]. The
Schrödinger Hamiltonian for a charged particle moving in a

constant magnetic field B0 = B0ẑ is

HS =
(
px + eB0

2 y
)2

2m
+

(
py − eB0

2 x
)2

2m
+ p2

z

2m
. (A1)

One can reduce this to a harmonic oscillator by introducing
annihilation and creation operators and rewriting the positions
and momenta in terms of those:

x̂ = 1

β0

√
2

(b̂x + b̂†x), p̂x = iβ0√
2

(b̂†x − b̂x), (A2)

ŷ = 1

β0

√
2

(b̂y + b̂†y), p̂y = iβ0√
2

(b̂†y − b̂y). (A3)

where β0 = √−eB0/2. (Note that we use e = −|e|.) The
operators b̂x and b̂y are then combined to form creation and
annihilation operators for right- and left-circular quanta

b̂R = 1√
2

(b̂x − ib̂y), b̂
†
R = 1√

2
(b̂†x + ib̂†y),

b̂L = 1√
2

(b̂x + ib̂y), b̂
†
L = 1√

2
(b̂†x − ib̂†y).

In terms of these, the canonical momenta are then given by

π̂x = p̂x + eB0

2
ŷ = iβ0(b̂†R − b̂R),

π̂y = p̂y − eB0

2
x̂ = β0(b̂†R + b̂R),

so that the Hamiltonian reads as

HS = −eB0

m

(
b̂
†
Rb̂R + 1

2

)
+ p2

z

2m
. (A4)

Thus, the Hamiltonian is equivalent to a harmonic oscillator
of right-circular excitations and possesses infinite degeneracy
with respect to the left-circular quanta. Eigenstates |ν〉 of the
Schrödinger Hamiltonian HS can therefore be generated by
repeated application of the creation operator b̂

†
R to the ground

state |ν = 0〉 which is defined by b̂R|ν = 0〉 = 0.
We can now use the Schrödinger eigenstates to derive the

corresponding Dirac eigenstates. Following [17], we start by
noting that eigenfunctions of the Dirac equation

(α · π + βm)ψ ≡ H0ψ = Eνψ (A5)

may be obtained from solutions of(
H 2

0 − E2
ν

)
X = (H0 − Eν)(H0 + Eν)X = 0. (A6)

Evidently, if a state X satisfies the above equation, then

ψ = (H0 + Eν)X (A7)

is a solution of the Dirac eigenvalue problem, Eq. (A5). To find
the eigenvalues E2

ν of H 2
0 we calculate H 2

0 , which on account
of (α · π )2 = π2 − eσzB0 and the anticommutation properties
of the Dirac matrices, reads as

H 2
0 = π2 − eσzB0 + m2. (A8)

Therefore, we can relate H 2
0 to the Schrödinger Hamiltonian

HS ,

H 2
0 = 2mHS − eσzB0 + m2, (A9)
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and then the eigenvalues E2
ν of H 2

0 follow from Eq. (A4) and
the eigenvalues s of the spin operator Sz = σz/2,

E2
ν = m2 + p2

z − 2eB0
(
ν + s + 1

2

)
. (A10)

We now choose the states X in such a way that they distinguish
spin-up and spin-down states, and particle and antiparticle
states, i.e., we choose them to be eigenfunctions of σz with
eigenvalues s = ± 1

2 , and of β ≡ γ0 with eigenvalues 1 for a
particle and −1 for an antiparticle. Equation (A9) implies that
the Dirac eigenstates can be expressed in terms of a product
state of the nonrelativistic eigenstates |ν〉 and the spin state
|s〉, which we choose to write as |ν,s〉 ≡ |ν〉 ⊗ |s〉:

|
e〉 = H0 + Eν√
2Eν(Eν + m)

|ν〉χ (↑,↓) for s = ±1

2
, (A11)

where χ (↑)† = (1,0,0,0), χ (↓)† = (0,1,0,0). For antiparticle
eigenstates, the negative root of (A10) applies, the normal-
ization factor in the denominator of Eq. (A11) turns into√−2Eν(−Eν + m), and we use χ (↑)† = (0,0,1,0), χ (↓)† =
(0,0,0,1).

For calculations it is expedient to express momentum
components in terms of

π+ = πx + iπy = 2iβ0b̂
†
R, (A12)

π− = πx − iπy = −2iβ0b̂R. (A13)

Thus, for a general vector Q we have

Q · π = iβ0Q−b̂
†
R − iβ0Q+b̂R + Qzpz (A14)

with

Q+ = Qx + iQy, Q− = Qx − iQy.

In the main text we also need the matrix elements of the
position operator. Noting that [31]

x = 1

2β0
(b̂R + b̂L + b̂

†
R + b̂

†
L) = x0 + 1

2β0
(b̂R + b̂

†
R),

y = i

2β0
(b̂R − b̂L − b̂

†
R + b̂

†
L) = y0 + i

2β0
(b̂R − b̂

†
R),

we have

〈ν + 1|(x̂ − x̂0)|ν〉 = 1

2β0

√
ν + 1,

〈ν − 1|(x̂ − x̂0)|ν〉 = 1

2β0

√
ν,

(A15)

〈ν + 1|(ŷ − ŷ0)|ν〉 = − i

2β0

√
ν + 1,

〈ν − 1|(ŷ − ŷ0)|ν〉 = i

2β0

√
ν.

APPENDIX B: REPRODUCTION
OF PERFECT-MIRROR RESULT

In the derivation of Eqs. (58) and (59) it was argued that
the subtraction and readdition of the point {ξ → 0,η → ∞}
from the TE reflection coefficients would not be necessary
since RL

TE is zero at this point for any physically reasonable
dielectric function. However, this does not apply to the perfect
reflector which has a TE reflection coefficient of −1 at all

frequencies, so that Eqs. (58) and (59) can not be used for
calculating the magnetic-moment shift near a perfect reflector.
Instead, we go one step back and start from Eqs. (41) and (42).
At first glance it appears that the branch cut due to kd

z might
meet that due to k when the limit n → ∞ is taken. However,
in fact the branch cut due to kd

z disappears since the perfect
reflector excludes all right-incident modes, so that kd

z does not
appear in the integrand. Therefore, the contour of integration
simply runs straight along the kz axis. This can also be
seen formally by using the integral over C ′, taking the limit
n → ∞ (which eliminates the branch cut) and then deforming
the contour back up to the real axis. Either way, one obtains

	μ⊥,PM = − e3

32π2m3

∫ ∞

0
dk‖

∫ ∞

−∞
dkz

k‖
k3

× [(
2k2

‖ − k2
z

)
(−1) + (

2k2
‖ + k2

z

)
(+1)

]
e2ikzz

= e3

32π2m3z2
, (B1)

	μ‖,PM = − e3

32π2m3

∫ ∞

0
dk‖

∫ ∞

−∞
dkz

k‖
2k3

×
[(

3k2
‖ + 2k2

z

)
(−1) + (

3k2
‖ − 2k2

z

)
(+1)

]
e2ikzz

= − e3

32π2m3z2
, (B2)

where we have carried out the kz integration first and used∫ ∞

−∞
dkz

k‖ e2ikzz(
k2
z + k2

‖
)3/2 = 4|z| K1(2k‖|z|). (B3)

Equations (B1) and (B2) reproduce the shifts calculated by [9],
and the n-independent terms in Eqs. (67) and (68). This
calculation shows another way of looking at the fundamental
disparity between the perfect-reflector and nondispersive
dielectric models: the branch cut due to kd

z meets that due
to k if n is taken to be finite at the start of the calculation and
then made infinite at the end, while if n is infinite from the
start the branch cut never appears in the first place.

APPENDIX C: TE PART OF PLASMA SURFACE

Using Eq. (41) but with the integration contour C ′ changed
back to C for the plasma model before deformation (cf. Fig. 5),
one can write the TE part of the shift for the plasma surface as

	μ⊥,TE = − e3

32π2ω2
pm3

∫ ∞

0
dk‖

∫ ∞

−∞
dkz

k‖
(
2k2

‖ − k2
z

)
(
k2
‖ + k2

z

)3/2

× (
2k2

z − ω2
p − 2kz

√
k2
z − ω2

p

)
e2ikzz, (C1)

where the reflection coefficient has been written out explicitly
using Eq. (45) and the branch cut is taken to be between the
branch points at ±ωp. Care must be taken when evaluating this
integral due to the physical requirement sgn(kz) = sgn(kd

z )
from refraction; so, we outline the calculation here. First, we
note that the order of integration matters, and that the integral
is convergent only if the kz integration is carried out first. To
circumvent this problem, we introduce a cutoff � on the k‖
integral. This improves the convergence of the double integral
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so that we are allowed to interchange the order of integrations.
The k‖ integral can then be calculated exactly and gives

	μ⊥,TE = − e3

32π2ω2
pm3

lim
�→∞

[ ∫ ∞

−∞
dkz (2� − 5|kz|)

× (
2k2

z − ω2
p − 2kz

√
k2
z − ω2

p

)
e2ikzz + O(1/�)

]
.

(C2)

We first consider the term with the square root. For the
contribution from the region |kz| > ωp, we have (omitting the
overall constants){∫ −ωp

−∞
dkz +

∫ ∞

ωp

dkz

}
e2ikzz(2� − 5|kz|)

(−2kz

√
k2
z − ω2

p

)
.

(C3)

Noting that kz

√
k2
z − ω2

p is even in kz because of the physical
constraint sgn(kz) = sgn

√
k2
z − ω2

p, we can simplify this to

= 2
∫ ∞

ωp

dkz cos(2kzz)(2� − 5|kz|)
(−2kz

√
k2
z − ω2

p

)
. (C4)

Next, we consider the region |kz| < ωp, where kd
z =

√
k2
z − ω2

p

is imaginary. As illustrated in Fig. 5, the integration path runs
along one and the same side of the cut, which means that the
factor kz

√
ω2

p − k2
z is now odd in kz. Applying the constraint

sgn(kz) = sgn
√

k2
z − ω2

p to the vicinity of kz ≈ ωp, we are
directed to choosing the complex sheet of the square root
such that in the lower half-plane

√
k2
z − ω2

p = −i
√

ω2
p − k2

z .
These considerations lead us to write the integral analogous
to Eq. (C4) but from the region |kz| < ωp as

2
∫ ωp

0
dkz (2� − 5kz)

(−2kz

√
ω2

p − k2
z

)
sin(2kzz). (C5)

The rest of Eq. (C2) is a trivial integral, and combining this
with Eqs. (C4) and (C5) gives

= − e3

16π2m3
lim

�→∞

{
1

ω2
p

∫ ωp

0
dkz

[(
2k2

z − ω2
p

)
cos(2kzz)

− 2kz

√
ω2

p − k2
z sin(2kzz)

]
(2� − 5kz)

+ 1

ω2
p

∫ ∞

ωp

dkz cos(2kzz)
(
2k2

z − ω2
p − 2kz

√
k2
z − ω2

p

)

× (2� − 5kz)

}
. (C6)

The integrals proportional to � give expressions with the
Bessel function J2(2ωpz), sin(2ωpz), and cos(2ωpz), but all

together they conspire to add up to zero. Defining

ITE ≡ 1

ω2
p

{ ∫ ωp

0
dkzkz

[(
2k2

z − ω2
p

)
cos(2kzz)

− 2kz

√
ω2

p − k2
z sin(2kzz)

] +
∫ ∞

ωp

dkz kz cos(2kzz)

× [(
2k2

z − ω2
p

) − 2kz

√
k2
z − ω2

p

]}
, (C7)

we therefore have

	μ⊥,TE = 5e3

16π2m3
ITE and 	μ‖,TE = e3

8π2m3
ITE, (C8)

where the case for B0 parallel to the interface has been
evaluated in exactly the same way. The integral ITE may be
evaluated analytically; one finds

ITE = 1

4z2
+ 3

4z4ω2
p

− 4zω3
p

15
+ πωpY1(−2ωpz)

2z

+ 3πY2(−2ωpz)

4z2
− πH2(2ωpz)

4z2
+ πωpH3(2ωpz)

2z
,

(C9)

where Yn is the nth Bessel function of the second kind, and
Hn is the nth Struve function. This result displays the expected
behavior that limz→−∞ ITE = 0, i.e., that there is no magnetic-
moment shift due to a surface that is infinitely far away.

The “perfect-mirror” limit of this object is

lim
ωp→∞ ITE = 1

4z2
, (C10)

which means that for the plasma surface the TE modes do
not result in unlimited growth of the magnetic-moment shift
for large values of the permittivity, in contrast to what was
observed for the nondispersive dielectric in Eqs. (67) and (68).

Inspection of Eqs. (69) and (70) in the limit |ωpz| → ∞
shows that the s integrals give rise to terms proportional
to 1/(ωpz3), whence only the 1/z2 terms in front of them
contribute to leading order. We then have in total

	μ⊥(ωp → ∞) = e3

16π2m3

(
5

4z2
− 3

4z2

)
= e3

32π2m3z2
,

	μ‖(ωp → ∞) = e3

16π2m3

(
1

2z2
− 1

z2

)
= − e3

32π2m3z2

in agreement with the perfect-mirror limit, and also with the
n-independent terms from Eqs. (67) and (68).

We note that the asymptotics of ITE for small |ωpz| are

ITE(|ωpz| � 1) = −ω2
p

16
[1 + 4γ + 4 ln(−ωpz)], (C11)

where γ is the Euler constant ≈ 0.577.
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