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Semiclassical coherent-states propagator
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In this work, we derived a semiclassical approximation for the matrix elements of a quantum propagator in
coherent states (CS) basis that avoids complex trajectories; it only involves real ones. For that purpose, we used the
symplectically invariant semiclassical Weyl propagator obtained by performing a stationary phase approximation
(SPA) for the path integral in the Weyl representation. After that, for the transformation to CS representation
SPA is avoided; instead a quadratic expansion of the complex exponent is used. This procedure also allows us to
express the semiclassical CS propagator uniquely in terms of the classical evolution of the initial point without the
need of any root search typical of van Vleck–Gutzwiller-based propagators. For the case of chaotic Hamiltonian
systems, the explicit time dependence of the CS propagator has been obtained. The comparison with a realistic
chaotic system that derives from a quadratic Hamiltonian, the cat map, reveals that the expression here derived
is exact up to quadratic Hamiltonian systems.
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I. INTRODUCTION

Path integrals appear as a useful calculation tool for
many quantum and statistical mechanical problems [1], while
coherent states (CS) are widely known to represent quantum
states with the most classical resemblance. In the case of
an harmonic oscillator, they obey the classical equations of
motion and are minimal uncertain states. Also, the CS form
an overcomplete basis, which is a necessary ingredient for the
construction of a path integral [2]. This implies the existence
of several forms of path integrals, all quantum mechanically
equivalent, but each leading to a different semiclassical limit.
The formulation of path integrals applied to CS has become
widely used in many areas despite the very shaky mathematical
background [3].

For the propagator in a mixed or coordinates representation,
the so-called Herman-Kluk (HK) formula and its generaliza-
tions [4–6], semiclassicaly derived in Refs. [7,8], are routinely
used nowadays and expresses the propagator as an integral over
the overcomplete basis of CS. While for the case of the propa-
gator in CS representation, a complete semiclassical derivation
was performed by Baranger et al. [9]; also in Ref. [10]
a Weyl ordering treatment has been performed. Although
mathematically correct, both constructions in Refs. [9,10]
involve an analytic continuation to complex trajectories, while
the classical system only involves real canonical variables. As
was recently pointed out, the CS path integral breaks down in
certain cases [11]. When the Hamiltonian involves terms that
are nonlinear in generators, neither the action suggested by
Weyl ordering nor the one constructed by normal ordering
gives correct results. In order to understand the quantum
classical limit it is imperative to have a correct semiclassical
expression of the quantum propagator in the most classical
states, that is, in CS.

In this work, we derive an accurate semiclassical expression
for the CS propagator that avoids complex trajectories; it
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only involves real ones. While the symplectically invariant
semiclassical Weyl propagator is obtained by performing a
stationary phase approximation (SPA) from the path integral
in the Weyl representation, for the transformation to CS
representation SPA is avoided; instead a quadratic expansion
of the complex exponent is used. This procedure also allows
us to express the semiclassical CS propagator uniquely in
terms of objects obtained directly by the classical evolution
of the flux through the initial point, without the need of any
further trajectory search that are typical procedures of van
Vleck–Gutzwiller (VVG) based propagators [12,13]. Also,
for the case of chaotic Hamiltonian systems, the explicit
time dependence of the CS propagator has been obtained
only in terms of the action of the orbit through the initial
point, the Lyapunov exponent, and the stable and unstable
directions. The comparison with a realistic chaotic system,
the cat map, reveals that the expression (37) here derived is
exact up to quadratic Hamiltonian systems. While, in the CS
representation, a common SPA does not give accurate results
with real trajectories.

This paper is organized as follows. In Sec. II we introduce
the Weyl-Wigner representation of the quantum propagator
and its close connection with the center generating function
of the canonical transformations of classical mechanics [14]
that will be used throughout this work. Then we study the
coherent states propagator obtained from a path integration in
the Weyl-Wigner representation by means of the SPA. We will
see in Sec. IV that the expressions obtained in this way failed
to give accurate results.

For Sec. III instead of a simple SPA we expand the center
action up to quadratic terms and thereafter we perform the
phase space integration from the Weyl propagator to the CS
propagator. In this way, we obtain a general semiclassical
expression of the matrix elements of the propagator in the
CS basis that only involves real trajectories. We show how the
quadratic expansion of the center generating function allows
us to express the semiclassical CS propagator uniquely in
terms of objects obtained directly by the classical evolution
of the flux through the initial point, without the need of any
further search of trajectories. In this section we also perform a
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comparison of the here derived expression with the well known
initial value representation (IVR) methods, which include the
HK propagator and Heller’s thawed Gaussian approximation
(TGA).

In Sec. IV, the study of continuous Hamiltonian systems
is projected to maps on Poincaré’s sections. The explicit time
dependence of the CS propagator is obtained only in terms of
the action of the orbit through the initial point, the Lyapunov
exponent, and the stable and unstable directions. Then we
study the particular case of the cat map where not only the
semiclassical theory is exact but also the linear approximation
is valid throughout the torus. After the semiclassical expres-
sions here deduced are adapted for a torus phase space, we
then see that the expression obtained in Sec. III gives results
that coincide exactly with the numerically computed matrix
elements for the cat maps. However the expressions deduced
in Sec. II from a common SPA do not give accurate results
with real trajectories. Finally, we conclude in Sec. V. The
Appendix is devoted to the Weyl-Wigner representation of
quantum mechanics in terms of reflections in phase space.

II. COHERENT STATES PROPAGATOR
AND STATIONARY PHASE

The coherent state |X〉, centered on the point X = (P,Q)
in phase space, is obtained by translating the ground state of
the harmonic oscillator, its position representation is

〈q|X〉 =
(

mω

πh̄

) 1
4

exp

[
− ω

2h̄
(q − Q)2 + i

P

h̄

(
q − Q

2

)]
.

(1)

Without loss of generality, unit frequency (ω = 1) and mass
(m = 1) are chosen for the harmonic oscillator. The overlap of
two CS is then

〈X|X′〉 = exp

[
− (X − X′)2

4h̄
− i

2h̄
X ∧ X′

]
, (2)

with the wedge product

X ∧ X′ = PQ′ − QP ′ = (JX) · X′.

Where · stands for the usual scalar product. The second
equation also defines the symplectic matrix J , that is

J =
[

0 −1

1 0

]
. (3)

In what follows, we will use the centers and chords formulation
developed by Ozorio de Almeida [14] for both classical and
quantum mechanics.

Let us write the quantum propagator Û t in terms of its
symplectically invariant center or Weyl-Wigner symbol Ut (x)
[14],

Û t = 1

(πh̄)l

∫
dxR̂xU

t (x) and Ut (x) = tr[R̂xÛ
t ], (4)

where
∫

dx is an integral over the whole phase space of l

degrees of freedom, while R̂x denotes the set of reflection
operators thought points x = (p,q) in phase space [14]
(see Appendix). Hence, the matrix elements of the unitary

propagator Û t that governs the quantum evolution of an l

degrees of freedom system, in the CS basis, are

〈X1|Û t |X2〉 =
(

1

πh̄

)l ∫
〈X1|Ut (x)R̂x |X2〉dx. (5)

The action of a reflection operator R̂x on a coherent state |X〉
is the x reflected coherent state (see Appendix)

R̂x |X〉 = e
i
h̄
X∧x |2x − X〉. (6)

Inserting (6) and (2) in expression (5) the propagator in the CS
representation is obtained from the Weyl propagator as

〈X1|Û t |X2〉 = e
iX1∧X2

2h̄

∫
dx

(πh̄)l
e[ i

h̄
x∧ξ0− (X−x)2

h̄
]Ut (x), (7)

with ξ0 ≡ (X1 − X2) the chord joining the points X1 and
X2, while X = 1/2 (X1 + X2) denotes their midpoint. The
CS representation is overcomplete. Indeed, just the diagonal
elements 〈X|Û t |X〉, known as the Husimi representation, are
enough for a complete representation of quantum mechanics.
As Eq. (7) shows, the Husimi representation is a Gaussian
smoothing of the Weyl-Wigner’s.

For a Hamiltonian system, the propagator is Û t =
exp[−i t

h̄
Ĥ ] with Ĥ the quantum Hamiltonian operator of the

system. As has been shown in Ref. [14], for sufficiently small
times, the Weyl symbol of the propagator is

Ut (x) =
∣∣∣∣ det

[
1 −

(
J t

2
H
)2]∣∣∣∣ 1

4

× exp

[
− it

h̄
H (x)

]
+ O((th̄)2), (8)

where H (x) = tr[R̂xĤ ] is the Weyl symbol of the Hamiltonian
operator Ĥ , while H is the corresponding Hessian matrix
evaluated at the point x. In analogy to the classical theory,
H (x) is, within O(h̄), the classical Hamiltonian Hc(x). Also,
if H (x) is quadratic (8) represents a unitary operator.

For longer times t , the composing of an even number k of
unitary operators for times ε = t/k is performed. In the Weyl
representation, such a composition results in Ref. [14]

Ut (x) =
∫

dxk
i

(πh̄)kl

k∏
j=1

U
t
k (xj )e

i
h̄
�k+1(x,x1,...,xk ), (9)

with dxk
i = dxk · · · dx1 and �k+1(x,x1, . . . ,xk) denotes the

symplectic area of the polygon with endpoints centered on x

and whose j th side is centered on xj . The formula (9) is exact,
while in the limit k → ∞, the expression (8) can be inserted
for U t

k
(x). In which limit, the amplitude vanishes, yielding to

the path integral

Ut (x) = lim
k→∞

∫
dxk

i

(πh̄)kl
e

i
h̄

[�k+1(x,x1,...,xk )− t
k

∑k
j=1 H (xj )]. (10)

Since (10) is an ordinary multiple integral, we need not worry
about the definition of the path space [14].

Analogously, for classical mechanics, the center generating
function of the canonical transformation resulting from com-
posing of an even number k of canonical transformations for
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time ε = t/k in the limit where k → ∞, is [14]

St (x) = lim
k→∞

− t

k

k∑
j=1

Hc(xj ) + �k+1(x,x1, . . . ,xk). (11)

The polygon �k+1 has one large side ξ passing through the
center x and k small chords tangents to the orbit as k → ∞
such that ∂St/∂xj = 0. Hence, the center variational principle
is obtained: The center action

St
γ (x) =

∮
x

pdq −
∫

γ

Hc(x)dt (12)

is stationary along the classical trajectory γ . The paths to be
compared always have their endpoints centered on the point
x. The second integral is evaluated along this path, whereas
the first integral is closed off by the chord centered on x. Then
St

γ (x) is the classical center generating function of the classical
trajectory γ , from which the chord ξ joining the initial and final
point of the trajectory is obtained

ξ = −J
∂St

γ (x)

∂x
. (13)

The semiclassical approximation consist in evaluating the
path integral in the SPA. The result is the leading term in a
series of increasing powers of h̄. For the Weyl propagator this
was obtained in Ref. [14] by performing a SPA in Eq. (10). The
phase of the integral in Eq. (10) coincides with the center action
St

γ (x) for the polygonal path γ . Hence, the center variational
principle ensures that the phase is stationary for the classical
trajectories centered on x, then yielding

Ut (x)SC =
∑

γ

2L exp
{
ih̄−1St

γ (x) + i π
2 αt

γ

}
| det(Mt + 1)| 1

2

. (14)

The summation is over all the classical orbits γ whose center
lies on the point x after having evolved a time t [14]. Then
St

γ (x) is the classical center generating function of the orbit,

while Mt = ∂2St
γ (x)

∂x2 stand for the monodromy matrix and αt
γ

its Morse index.
The metaplectic operators form a double covering of the

symplectic matrices, since this property gives contributions
to the Morse index [15]. If we follow the evolution of the
symplectic matrix as the trajectory evolves, each time Mt

crosses a manifold where det(Mt + 1) = 0 (caustic) the path
contribution undergoes a divergence changing the sign from
−∞ to ∞. This change of the sign lets the quantum phase
proceed by π

2 . The Morse index αt
γ therefore changes by ±1

when crossing caustics [12,16].
For sufficiently short times such that the variational problem

has a unique solution there will have a single chord. Although
for longer times, there will be bifurcations producing more
chords. In the case of a single orbit, the corresponding Morse
index αt

γ = 0.
As was shown in Ref. [14], in order to obtain the coordi-

nates representation of the semiclassical propagator from the
semiclassical propagator in the Weyl representation (14), a
Fourier transformation must be performed leading to the van
Vleck propagator. However, the Weyl propagator of Eq. (14)
suffers for caustic singularities whenever | det(Mt + 1)| = 0,
while the van Vleck propagator has caustic singularities for

other points in phase space, namely when
∂2St

γ (q,q ′)
∂q∂q ′ = 0, with

St
γ (q,q ′) the action of the orbit γ that is a type I generating

function for the associated canonical transformation.
In order to obtain a coherent state path integral, expression

(10) is inserted in the coherent state propagator (7) so that

〈X1|Û t |X2〉 = lim
k→∞

∫
dxk

i

(πh̄)kl
e

i
h̄
{ X1∧X2

2 − t
k

∑k
n=1 H (xn)}

×
∫

dx

(h̄π )l
e{ i

h̄
[x∧ξ0+�k+1(x,x1,...,xk )]− (X−x)2

h̄
}. (15)

Recalling the linear relation of �k+1 with x,

�k+1(x,x1, . . . ,xk) = C + ξ ∧ x, with ξ =
k∑

j=1

(−1)j xj ,

(16)

the x integral in Eq. (15) is quadratic and can be solved exactly,
yielding

〈X1|Û t |X2〉 = e− iX1∧X2
2h̄ lim

k→∞

∫
dxk

i

(πh̄)kl
e− 1

4h̄ (ξ̄−ξ0)2

×e
i
h̄
{�k+1(X,x1,...,xk )− t

k

∑k
n=1 H (xn)}. (17)

Here ξ̄ is the chord passing through the midpoint X. Note that,
according to (16) the chord ξ̄ only depends on the other centers
x1, . . . ,xk . The usual semiclassical limit of the CS propagator
is obtained, in the limit where h̄ → 0, with SPA in Eq. (17).
The phase in Eq. (17) is the center generating function (11).
According to the center variational principle the path integral
is stationary for classical orbits. Hence, analogously to (14), a
SPA in Eq. (17) yields

〈X1|Û t |X2〉SC1 =
∑

γ

2le{ i
h̄

[S̃t
γ (X)− 1

2 X1∧X2]− 1
4h̄ (ξ t

γ −ξ0)2}

| det(Mγ + 1)| 1
2

. (18)

The sum runs now over all the classical orbits γ whose center
lies on the point X, while ξ t

γ is the chord joining the initial and
final points of the orbit γ . For sufficiently short times, there
will have a single chord, while for longer times, bifurcations
will produce more chords. However, as a consequence of a
Gaussian cutoff on the length of the chords, the amplitude
will be severely damped if the classical chord ξ t

γ is long.
For the center generating function, St

γ (x), we have defined
S̃t

γ (x) = St
γ (x) + h̄ π

2 αt
γ in order to include the Morse index in

the action.
By means of an analytic continuation, dos Santos and de

Aguiar have obtained in Ref. [10] an expression similar to
(18) but involving complex trajectories. Although, with real
trajectories, expression (18) does not give accurate results
even for quadratic Hamiltonian systems, as is shown in Fig. 2.
The SPA used to go from (17) to (18) neglects the Gaussian
factor (ξ̄ − ξ0)2, leading to a real stationary trajectory. If the
factor is taken into account, the exponent becomes complex
and the approximation would involve complex trajectories.
This approximation is also exact for quadratic Hamiltonians,
but has the drawback of dealing with complex trajectories.

Alternatively, to obtain a semiclassical approximation for
the CS propagator we can take advantage of the semiclassical
approximation for the propagator in the Weyl representation
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(14). After which, the transformation to CS representation is
performed through (7) so that,

〈X1|Û t
SC|X2〉 =

(
2

πh̄

)l

e
i

2h̄ X1∧X2

×
∑

γ

∫
exp − 1

h̄
(X − x)2

| det(Mγ + 1)| 1
2

e
i
h̄

[S̃t
γ (x)+ξ0∧x]dx. (19)

This procedure is equivalent to perform in Eq. (15) a SPA for
the dxk

i variables before integrating in dx.
In order to perform the x integration in Eq. (19) by a usual

SPA, the stationary phase point, x0, must satisfies

ξ (x0) = − J
∂St

γ (x)

∂x

∣∣∣∣
x=x0

= ξ0.

That is, the chord ξ (x0) through x0 must be equal to ξ0 =
X1 − X2, the chord that joins the points X1 and X2. Hence,
the semiclassical approximation for the propagator in CS that
is obtained by a SPA in Eq. (19) is

〈X1|Û t |X2〉SC2 =
∑
γ0

2le
{ i

h̄
[S̃t

γ0
(ξ0)+ 1

2 X1∧X2]− 1
h̄

(x0−X)2}

| det(Mγ0 − 1)| 1
2

. (20)

The sum now runs over all the classical orbits γ0 whose
chord is ξ0. The chord action S̃t

γ0
(ξ0) = S̃t

γ0
(x0) − ξ0 ∧ x0 is

the Legendre transform of S̃t
γ0

(x0) [14]. The expression (20)
is complementary to Eq. (18), while expressed in terms of
chords instead of centers. Although, as is the case for the
chord action [14], the expression (20) diverges for very short
times where the monodromy matrix becomes the identity.
Also, for obtaining (20) it was assumed that the Gaussian term
in Eq. (19) is smooth close to the stationary point. However,
this is not the case in the semiclassical limit, if h̄ → 0 then the
width of the Gaussian tends to zero. For this reasons, it is not
surprising that expression (20) fails, as is shown in Fig. 2.

III. SEMICLASSICAL COHERENT STATES PROPAGATOR

The phase space integral in Eq. (19) must then be performed
avoiding the usual SPA. For this purpose, it must be noted that
classical orbits that starts near X2 and ends up near X1 will
have an important contribution in Eq. (19). These orbits have
their center points close to X. Hence, let us expand the center
action up to quadratic terms near the midpoint X, so that,

St
γ (x) = St

γ (X) + ξ t
γ ∧ x ′ + x ′Btx

′ + O(x ′3), (21)

with x ′ = X − x. Where St
γ (X) is the action of the orbit

through the point X for which the chord ξ t
γ is

ξ t
γ = −J

∂St
γ (x)

∂x

∣∣∣∣
x=X

,

while, the symmetric matrix Bt is the Cayley representation of
the symplectic matrix Mt

J Bt = 1 − Mt

1 + Mt
= 1

2

∂2St
γ (x)

∂x2
. (22)

After the quadratic expansion of the action (21) is inserted
in Eq. (19) we get

〈X1|Û t
SC|X2〉 =

(
2

πh̄

)L ∑
γ

I

|det (Mt + 1)| 1
2

× exp
i

h̄

[
S̃t

γ (X) − ξ0 ∧ X + 1

2
X1 ∧ X2

]
,

(23)

with

I =
∫

e
1
h̄
{−x†Cx+i[x†Bt x+(ξ t

γ −ξ0)∧x]}dx (24)

a quadratic integral. The matrix C is the quadratic form that
denotes the scalar product,

x2 = x · x=x†Cx,

where x† stands for the transposed vector. Note that in an
orthonormal basis the matrix C is the identity.

We now perform exactly the quadratic integral, using

I =
∫

exp

{
−1

h̄
x†Vt x + 1

h̄
Y · x

}
dx

= (πh̄)L√
(detVt )

exp

{
1

4h̄
Y †V−1

t Y

}
. (25)

From Eq. (23)

Vt = C − iBt (26)

and

Y = iJ
(
ξ t
γ − ξ0

) = 2iJ δt
γ , (27)

where ξ t
γ = xf − xi is the chord that joins xf and xi ,

respectively the final and initial point of the orbit γ of center
X. This last expression defines the point shift δt

γ , so that

δt
γ = 1

2

(
ξ t
γ − ξ0

) = xf − X1 = X2 − xi. (28)

Note that the point shift δt
γ is zero if there is a classical orbit

starting in the point X2 and ending in X1.
Inserting (25) in Eq. (23), we get for the propagator in

coherent states,

〈X1|Û t
SC|X2〉 = 2L

∑
γ

exp
[−1

h̄
δt†
γ Ṽδt

γ

]
[detVt |det (Mt + 1)|] 1

2

× exp
i

h̄

[
S̃t

γ (X) − 1

2
X1 ∧ X2

]
(29)

with the complex matrix Vt and the point shift δt
γ defined

respectively in Eqs. (26) and (28) while Ṽ = J †V−1
t J . In

order to separate amplitude and phase terms in Eq. (29), it is
useful to write

Ṽ = J †V−1
t J = J † 1

C − iBt

J = Ct − iBt , (30)

with the real matrices

C t = Re(Ṽ) and Bt = −Im(Ṽ).

Also,

detVt = | detVt |eiε, (31)

with | detVt | denoting the modulus and ε the argument.
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X

X2

X 2

2

0

ξγ

γ

d

ξγ

ξ

γ

γ

xi

xf

x2f

X1

δγ

2

FIG. 1. The points X2 and X1 have their midpoint in X and ξ0

denotes the chord that joins them. The orbit γ , has also its center
point in X while its chord ξ t

γ joins the points xi and xf . The orbit γ ,
starts in xi that is shifted from X2 by the point shift δt

γ . Meanwhile,
orbit γ2 starts in X2 and evolves after a time t up to x2f , the drift from
X1 is denoted by dt . For this last orbit γ2, the chord is denoted by
ξ t
γ2

, while the midpoint is Xγ2 . For simplicity, in the figure we have
dropped the time superscripts t .

Hence inserting (30) and (31) in the matrix elements of the
coherent state propagator (29) we obtain

〈X1|Û t |X2〉SC3

=
∑

γ

2l

|det [Vt (Mt + 1)]| 1
2

exp

[
−1

h̄
δt†
γ C t δ

t
γ

]

× exp
i

h̄

[
−1

2
X1 ∧ X2 + S̃t

γ (X) + δt†
γ Bt δ

t
γ + h̄

ε

2

]
.

(32)

The sum in Eq. (32) runs over all the classical orbits γ whose
center lies on the point X. The point shift δt

γ = 1/2(ξ t
γ − ξ0) is

half the difference between the chord ξ t
γ , that joins the initial

and final points of the orbit γ , and the chord ξ0 joining the
points X1 and X2 (see Fig. 1).

The expression (32) of the semiclassical matrix elements
of the quantum propagator between two CS, is the main
contribution of this work. It is entirely expressed in terms
of real classical objects, namely the action St

γ (X) of the
classical real orbit whose midpoint is X, the point shift δt

γ ,
the monodromy matrix Mt and its Cayley representation Bt .

Very importantly, let us see that,

Vt (Mt + 1) = (C − iBt )(Mt + 1)

= C(Mt + 1) + iJ (1 − Mt ),

hence, the only way for the pre-exponential factor in expression
(32) to vanish (i.e., det[Vt (Mt + 1)] = 0) is that the symplec-
tic matrix Mt has simultaneously eigenvalues +1 and −1.
This is never the case for a one degree of freedom system,
while for systems with two and more degrees of freedom it is
an accidental coincidence of crossing of two types of caustics.

It is also important to remark that, the Gaussian term in
Eq. (32) dampens the amplitude for large values of the point

shift δt
γ , that is for orbits that start far from the point X2 (or

end far from X1). So, the main contribution in the sum over
classical orbits in Eq. (32) will come from the single orbit
γ whose initial point lies the closest to X2. Then, only this
particular orbit will be taken into account. It must be mentioned
that the same expression (32) could have been obtained by
performing in Eq. (17) the complete quadratic integral instead
of the SPA that led to (18).

Also, note that, if t = 0, the quantum propagator is just
the identity operator in Hilbert space, the classical symplectic
matrix is the identity, the center action is null, and so are the
symmetric matrix (Bt=0 = 0) and the chord ξ t

γ = 2δt
γ − X2 +

X1 = 0. Hence we recover the result (2) for the overlap of
coherent states.

In expression (32) the orbit γ whose center is X remains to
be determined in order to obtain its action S̃t

γ (X) and the point
shift δt

γ . As we only need the contribution for the single orbit
γ whose initial point lies the closest to X2, we linearize the
flux in the the neighborhood of the orbit γ2 passing through
the point X2 (see Fig. 1). For that purpose, we use the center
generating function, so that

St
γ (x) = St

γ2
+ ξ t

γ2
∧ x2 + x

†
2Bt x2 + O(x ′3), (33)

with x2 = x − Xγ2 , where Xγ2 denotes the midpoint of this
orbit γ2 starting in X2 and ending up in x2f . The chord ξ t

γ2
=

−J ∂St
γ (x)
∂x

|X2 = x2f − X2 joins its end points, while St
γ2

stands
for the action of the orbit. Note that Xγ2 = X2 + 1/2ξ t

γ2
.

The chord ξ t
γ of the orbit γ centered in X is obtained by per-

forming the derivative of the center generating function (33),

ξ t
γ = −J

∂St
γ (x)

∂x

∣∣∣∣
X

= ξ t
γ2

− J Bt

(
ξ0 − ξ t

γ2

)
.

So that, recalling (22), we get for the point shift

δt
γ = 1

2

(
ξ t
γ − ξ0

) = 1

Mt + 1
dt , (34)

where,

dt = ξ t
γ2

− ξ0 = x2f − X1 (35)

is the drift of the trajectory γ2 that starting in X2 ends up in x2f

instead of X1 (see Fig. 1). In order to include the Morse index
αt

γ2
in the action let us define the action S̃t

γ2
= St

γ2
+ h̄ π

2 αt
γ2

.
Hence, for the center action of the orbit γ whose middle point
is X is we get

S̃t
γ (X) = S̃t

γ2
+ 1

2ξ t
γ2

∧ ξ0 + 1
4dt†Bt d

t . (36)

With expressions (36) and (34), respectively for the point
shifts δt

γ and the center action S̃t
γ (X), inserted in Eq. (32) we

obtain for the coherent states propagator,

〈X1|Û t |X2〉SC3

= 2l

|det [Vt (Mt + 1)]| 1
2

exp

[
−dt†Etd

t

h̄

]
× exp

i

h̄

[
S t

2 + (
ξ t
γ2

+ X
) ∧ ξ0

2
+ dt†

(
Bt

4
+ Dt

)
dt

]
.

(37)
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Now ε, the argument of det [Vt ] has been included in the action

S t
2 = S̃t

γ2
+ h̄

ε

2
= St

γ2
+ h̄

π

2
αt

γ2
+ h̄

ε

2

and the symmetric matrices Dt and Et are defined as

Dt =
(

1

Mt + 1

)†
Bt

(
1

Mt + 1

)
,

(38)

Et =
(

1

Mt + 1

)†
Ct

(
1

Mt + 1

)
.

Equation (37) is a general expression only in term of
classical objects, its difference from (32) is that we have made
use of the quadratic expansion of the action around the orbit
γ2 in order to express both the point shift δt

γ and the center
generating function S̃t

γ (X) of the orbit γ only in terms of
magnitudes given by the orbit γ2 passing through X2. This is
a crucial advantage, now the semiclassical approximation of
the CS matrix elements involves uniquely objects obtained
directly by the classical evolution of the flux through X2,
namely, the chord ξ t

γ2
[or the drift dt defined in Eq. (35)],

and the action S t
2 of the classical orbit γ2 passing thorough X2,

and the monodromy matrix Mt . From the former, Eq. (22)
gives its Cayley representation Bt , after which, with (26), we
get the complex matrix Vt while the real matrices Ct and Bt

defined in Eq. (30) allows to obtain Dt and Et through (38).
Hence, there is no need for any further root search, neither
integration over phase space conditions.

It is very useful to perform a comparison of the here derived
semiclassical CS propagator with other kinds of propagators
based on Gaussian wave packets, namely the initial value
representations (IVR) of the propagator. These propagators
are generally based on wave packets of the form

〈q|Xτ 〉 =
(

Reτ

π

) 1
4

exp

[
−τ

2
(q − Q)2 + i

P

h̄
(q − Q)

]
,

which resembles Eq. (1) if τ = mω
h̄

. Although, the different
phase factor ensures the symplectic invariance of the coherent
states used in Eq. (1). In order to maintain the symplectic form
we will then chose as in Ref. [17],

〈q|Xτ 〉 =
(

Reτ

π

) 1
4

× exp

[
−τ

2
(q − Q)2 + i

P

h̄

(
q − Q

2

)]
. (39)

With this choice, the overlap between two Gaussian wave
packets is

〈
X

τ1
1

∣∣Xτ2
2

〉 = exp

[
− (X1 − X2)2

4h̄
− i

2h̄
X1 ∧ X2

]
, (40)

the norm is defined as X2 = X†�X where the symplectic
squeezing matrix is

� =
(

(h̄
√

τ1τ2)−1 0

0 h̄
√

τ1τ2

)
.

The IVR of the propagator, in coordinates representation
takes the form [18]

Kt (q,q ′) = 〈q|Û t |q ′〉IVR

=
∫

dX0

(2πh̄)l
〈
q
∣∣Xτ1

t

〉
Rt (X0)e

i
h̄
St (X0)

〈
X

τ2
0

∣∣q ′〉, (41)

where 〈Xτ2
0 |q ′〉 is a Gaussian wave packet whose center lies in

the point X0 (initial point) in phase space. Meanwhile 〈q|Xτ1
t 〉

is a Gaussian wave packet centered in the point Xt , that is
the classically evolved initial point X0 up to a time t . For the
pre-exponential factor,

Rt (X0) =
[
A

(
τ1m11 + τ2m22 − ih̄τ1τ2m21 − 1

ih̄
m12

)] 1
2

,

(42)

where A = 1
2
√

Reτ1Reτ2
and the monodromy matrix elements

(
δQt

δPt

)
= M

(
δQ0

δP0

)
=

(
m11 m12

m21 m22

)(
δQ0

δP0

)
connect the initial and final deviations of the trajectories Xt .
While

St (X0) =
∫ t

0
[pt ′ q̇ t ′ − H ] dt ′

is the classical action of the orbit that starts in X0. The methods
based on (41) are called initial value representation (IVR)
and have shown to be very useful for many physical systems.
They present the advantage over van Vleck–Gutwiller (VVG)
[12,13] propagator that there is no need for any search of
trajectories satisfying special boundary conditions.

The Herman and Kluk (HK) formula is an IVR of the prop-
agator that is also known as frozen Gaussian approximation
(FGA) since in that case, the initial and final Gaussian have the
same parameters τ1 = τ2 = τ , a real positive constant. With
this choice for the Gaussian parameters, the prefactor (42) for
the HK propagator is

RHK
t (X0) =

∣∣∣∣1

2

(
m11 + m22 − ih̄τm21 − 1

ih̄τ
m12

)∣∣∣∣ 1
2

, (43)

that never vanishes. Hence the HK propagator is free of caustic
singularities.

An also well known case of IVR is Heller’s thawed Gaussian
approximation (TGA), where now the initial and final Gaussian
parameters differ. While τ2 = τ with again τ real positive,

τ1 = − i

h̄

m12 + ih̄τm11

m22 + ih̄τm21

is complex. The prefactor (42) for this choice of parameters
has now the form

RTGA
t (X0) =

(
τ

Reτ1

) 1
4

(m22 + ih̄τm21)−
1
2 . (44)
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The IVR propagator can also be expressed in a mixed
representation,

Kt (q,X2) = 〈q|Û t |X2〉IVR =
∫

dq ′Kt (q,q ′)〈q ′|X2〉

=
∫

dX0

(2πh̄)l
〈
q
∣∣Xτ1

t

〉
Rt (X0)e

i
h̄
St (X0)

〈
X

τ2
0

∣∣X2
〉
. (45)

Note that we omit the τ superscript for the special case
where τ = mω

h̄
. The overlap between the wave functions can

be performed analytically using (39) and (40), whereas the
integration over initial phase space is still left over in the
IVR propagator, but it is cut off by a bell-shaped weight
function (overlap between two Gaussians). One can perform
this integration using Monte Carlo methods [19] leading to a
powerful numerical semiclassical procedure.

The HK propagator is a uniform semiclassical approxima-
tion of the exact propagator as has been shown by Kay [7].
Indeed, it is the lowest-order term of an expansion of the
propagator in h̄. Also, the HK propagator maintains unitarity
for longer times than other IVR such as Heller’s TGA [20].

Although, as was stated by Grossmann and Herman in
Ref. [21], a true HK-like expression must consist of an
integration over initial phase space, which may not be treated
in any additional approximation. However, it has been shown
by Grossmann in Ref. [22] that by a quadratic expansion
of the exponent around the phase space center of the initial
wave packet, the TGA, originally derived by Heller in the
mixed representation, can be obtained from the HK propagator,
Eq. (45) with (43) and τ1 = τ2 = τ .

Also, Baranger et al. [9] have shown that the TGA in the
mixed representation is equivalent to their mixed propagator
obtained with complex trajectories, except for two (related)
differences. The presence of an extra phase that is associated
with the use of the Gaussian averaged Hamiltonian H in the
computation of the action, rather than the Weyl symbol H (x)
(essentially the classical Hamiltonian HC). In this respect, also
Grossmann and Xavier [23] have derived the HK propagator
from the CS propagator proposed by Baranger et al. restricting
themselves to real variables.

For the IVR of the propagator in the CS representation,

Kt (X1,X2) = 〈X1|Û t |X2〉IVR =
∫

dq〈X1|q〉Kt (q,X2)

=
∫

dX0

(2πh̄)l
〈
X1

∣∣Xτ1
t

〉
Rt (X0)e

i
h̄
St (X0)

〈
X

τ2
0

∣∣X2
〉

(46)

the overlap between the Gaussians can be performed ana-
lytically, whereas, the phase space integration must be done
numerically without any further approximation [21].

In this CS representation, Deshpande and Ezra [17] found
that expanding the exponent of the integrand in Eq. (46)
up to quadratic terms and integrating, the linearized matrix
element for the HK propagator conditions, they obtained
an expression that is identical with Littlejohn form of the
TGA matrix element [24]. Also, this expression resembles
the one obtained by Baranger et al. [9] except for the two
differences previously described, that are related with the use
of the Gaussian averaged Hamiltonian H , rather than the Weyl
symbol H (x).

A similar situation has been discussed by dos Santos and
Aguiar [10], in order to obtain a CS path integral in the Weyl
representation, who precisely argued the same difference with
the representation used by Barranger et al. in Ref. [9]. Indeed
the expression obtained from the linearized HK propagator by
Deshpande and Ezra in Ref. [17] coincides with the expression
given by dos Santos and Aguiar in Ref. [10]. However,
Deshpande and Ezra [17] used real variables in their derivation
not complex ones. This means that the linearized version of
the HK propagator obtained in Ref. [17] gives the expression
(18) with real trajectories that is shown in Sec. IV not to
give accurate results. Hence, as was stated by Grossmann and
Herman in Ref. [21], a true HK-like expression must consist
of an integration over initial phase space, which may not be
treated in any additional approximation.

On the other side, the expression (32) derived in this work is
a semiclassical approximation that has been obtained directly
from the semiclassical Weyl propagator. This last one, is the
lowest-order term of an expansion in h̄, obtained through
SPA but of the path integral expression of the propagator
expressed in the Weyl representation, that is symplectically
invariant. Only afterwards, the propagator is changed to the CS
representation. For this last procedure, we avoid SPA, instead,
we performed a quadratic expansion of the center action in the
neighborhood of the relevant trajectories.

Then, the obtained expression (32) has the advantage of
being a symplectically invariant expression only dealing with
real trajectories. Also, differently from VVG propagators, it
is free of caustic singularities. Although, it does not need any
phase space integration, as is the case for IVR methods, the
expression (32) has the drawback for the need of searching
trajectories whose center lies in X. However, the quadratic
expansion of the center action and its use as a generating
function allowed us to obtain expression (37) that only involves
objects relative to the orbit γ2 passing though the initial
point X2.

IV. MATRIX ELEMENTS FOR MAPS AND APPLICATION
TO THE CAT MAP

In what follows, we will obtain explicit expression for the
classical objects involved in Eq. (37) in analogy with classical
Poincaré surfaces of section. We will first perform the study on
a surface of section that is transversal to the flux and passing
through X. The flux restricted to this section is now a map on
the section; for this map the time is discrete.

The study of autonomous fluxes through a map on surface
of section is a standard procedure, in the case of billiards
this is done through the well known Birkhoff coordinates.
Also, quantum surface of section methods are shown to be
exact [25] for general Hamiltonian systems. From now on, the
2l dimensional autonomous flux is studied through the 2l − 2
map on the mentioned surface of section.

As we have already mentioned, we need to evaluate the
classical objects involved in Eq. (37). For that purpose, it will
be convenient to express them in the basis of eigenvectors of
the symplectic matrix. For the case of a map with one degree
of freedom (corresponding to a two degrees of freedom flux),
this is the stable and unstable vector basis ( 
ζu, 
ζs) where the
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eigenvalues of the symplectic matrix Mt are exp(−λt) and
exp(λt), (λ is the stability or Lyapunov exponent of the orbit).

Let us then define xs and xu as canonical coordinates along
the stable and unstable directions respectively such that x =
(xu,xs) = xu


ζu + xs

ζs with 
ζu ∧ 
ζs = 1. As the basis formed

by ( 
ζu, 
ζs) is nonorthonormal, the scalar product of two vectors
takes the form,

x · y = x†Cy = [
ζ 2
u xuyu + ζ 2

s xsys + 
ζu · 
ζs (xuys + xsyu)
]
.

That is, the scalar product matrix is

C =
[

ζ 2
u


ζu · 
ζs


ζu · 
ζs ζ 2
s

]
(47)

with ζ 2
u = 
ζu · 
ζu and ζ 2

s = 
ζs · 
ζs . Since the transformation
from the orthonormal basis (
i, 
j ) to the basis ( 
ζu, 
ζs) is
symplectic

det C = ζ 2
u ζ 2

s − ( 
ζu · 
ζs)
2 = 1.

Also, in the ( 
ζu, 
ζs) basis,

Mt + 1 = 2 cosh

(
λt

2

)[
etλ/2 0

0 e−tλ/2

]
, (48)

hence

| det(Mt + 1)| = 4 cosh2

(
λt

2

)
, (49)

is easily obtained only in terms of λ and t . Analogously,

Mt − 1 = 2 sinh

(
λt

2

)[
etλ/2 0

0 −e−tλ/2

]
,

while, Bt , the Cayley parametrization of Mt , is in this basis

Bt =
[

0 tanh(tλ/2)

tanh(tλ/2) 0

]
. (50)

Hence, using the expression of the symmetric matrix Bt (50)
and the scalar product (47) we get the complex matrix

Vt = C − iBt=
[

ζ 2
u


ζu · 
ζs − i tanh
(

tλ
2

)

ζu · 
ζs − i tanh

(
tλ
2

)
ζ 2
s

]
.

(51)

Also, the complex determinant

detVt = [1 + tanh2(tλ/2) + 2i 
ζu · 
ζs tanh(tλ/2)], (52)

with modulus

|detVt | =
√[

1 + tanh2

(
tλ

2

)]2

+
[

2 
ζu · 
ζs tanh

(
tλ

2

)]2

(53)

and argument

ε = arctan
2 
ζu · 
ζs tanh(tλ/2)

1 + tanh2(tλ/2)
(54)

can be explicitly written in terms of the time and the Lyapunov
exponent. Now, inverting the matrix Vt (51) we get

V−1
t = −1

detVt

[
−ζ 2

s

ζu · 
ζs − i tanh

(
tλ
2

)

ζu · 
ζs − i tanh

(
tλ
2

) −ζ 2
u

]

= 1

detVt

(C−1 + iBt ).

We must note that since the matrix Vt is symmetric, we get for
the matrix Ṽ defined in Eq. (30) that,

Ṽ = Vt

detVt

= (C − iBt )

|detVt |2
[Re(detV t ) − iIm(detV t )]

= Ct − iBt . (55)

Hence, in the stable and unstable vector basis ( 
ζu, 
ζs), the real
matrices Ct and Bt take the form

Ct = 1

|detVt |2
{

Cth2 − 2Bt

ζu · 
ζs tanh

(
tλ

2

)}
(56)

and

Bt = 1

|detVt |2
{

Bt th2 + 2C 
ζu · 
ζs tanh

(
tλ

2

)}
, (57)

where th2 = 1 + tanh2( tλ
2 ). The symmetric matrix Bt , the

scalar product matrix C, and the determinant detVt are
respectively given by the expressions (50), (47), and (53).
Inserting the expressions (48), (56), and (57) in the definition
of the symmetric matrices Dt and Et (38), we get

Dt = −2 tanh tλ
2

det1

[
−ζ 2

s ( 
ζu · 
ζs)e−tλ th2 + 2( 
ζu · ζs)2

th2 + 2( 
ζu · ζs)2 −ζ 2
u ( 
ζu · ζs)etλ

]
(58)

and

Et = − th2

det1

⎡⎣ −ζ 2
s e−tλ/2 
ζu·ζs

2 sinh2(tλ/2)+1

ζu·ζs

2 sinh2(tλ/2)+1
−ζ 2

u etλ/2

⎤⎦ , (59)

where we have defined

det
1

= 4 cosh2

(
tλ

2

)
|detVt |2 .

It is important to note that, (58), (59), (50), (52), and (49) are,
respectively, explicit expression of the symmetric matrices Dt ,
Et , and Bt and the determinants | detVt | and | det(Mt + 1)| for
any value of the time t . Inserting these expressions in Eq. (37),
we obtain a semiclassical expression for the matrix elements
of the propagator in the CS basis entirely in terms of classical
features such as, the chord ξ0 that joins the points X2 and X1,
the action of the orbit S̃X2 , the stable and unstable vectors 
ζu, 
ζs

and the Lyapunov exponent λ.
Now the present theory is applied to the cat map, i.e.,

the linear automorphism on the two-torus generated by the
2 × 2 symplectic matrix M, that takes a point x− to a point
x+ : x+ = Mx− mod(1). In other words, there exists an
integer two-dimensional vector m such that x+ = Mx− − m.
Equivalently, the map can also be studied in terms of the center
generating function [26]. This is defined in terms of center
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points

x ≡ x+ + x−
2

(60)

and chords

ξ ≡ x+ − x− = −J ∂S(x,m)

∂x
, (61)

where

S(x,m) = xBx + x (B − J ) m + 1
4 m(B + J̃ )m (62)

is the center generating function. Here B is a symmetric matrix
[the Cayley parametrization of M, as in Eq. (50)], while

J̃ =
[

0 1

1 0

]
. (63)

We will study here the cat map with the symplectic matrix

M =
[

2 3

1 2

]
, and symmetric matrix B =

[− 1
3 0

0 1

]
.

(64)

This map is known to be chaotic (ergodic and mixing), as
all its periodic orbits are hyperbolic. The map corresponds to
viewing stroboscopically the motion generated by a quadratic
Hamiltonian [27]. However, the torus boundary conditions
makes the dynamics as nonlinear as a dynamics can get [27].
The eigenvalues of M are e−λ and eλ with λ = ln(2 + √

3) ≈
1.317. This is then the stability exponent for the fixed points,
whereas the exponents must be doubled for orbits of period 2.
All the eigenvectors have directions 
ζs = (−

√
3

2 , 1
2 ) and 
ζu =

(1, 1√
3
) corresponding to the stable and unstable directions

respectively.
Quantum mechanics on the torus, implies a finite Hilbert

space of dimension N = 1
2πh̄

, and that positions and momenta
are defined to have discrete values in a lattice of separa-
tion 1

N
[28,29]. The cat map was originally quantized by

Hannay and Berry [28] in the coordinate representation the
propagator is

〈qk|ÛM|qj 〉 =
(

i

N

) 1
2

exp

[
i2π

N
(k2 − jk + j 2)

]
, (65)

where the states 〈q|qj 〉 are periodic combs of Dirac δ distri-
butions at positions q = j/N (1), with j integer in [0,N − 1].
In the Weyl representation [29], the quantum map has been
obtained in Ref. [26] as

UM(x) = 2

|det(M + 1)| 1
2

∑
m

ei2πN[S(x,m)], (66)

where the center points are represented by x = ( a
N

, b
N

) with
a and b integer numbers in [0,N − 1] for odd values of N

[29]. There exists an alternative definition of the torus Wigner
function, which also holds for even N .

The fact that the symplectic matrix M has equal diagonal
elements implies in the time reversal symmetry and then
the symmetric matrix B has no off-diagonal elements. This
property will be valid for all the powers of the map and, using
(66), we can see that it implies in the quantum symmetry

Ul
M(p,q) = [

Ul
M(−p,q)

]∗ = [
Ul

M(p, − q)
]∗

. (67)

for any integer value of l.

It has been shown [28] that the unitary propagator is
periodic (nilpotent) in the sense that, for any value of N there
is an integer k(N ) such that

Ûk(N)
M = eiφ.

Hence the eigenvalues of the map lie on the k(N ) possible sites{
exp

[
i(2mπ + φ)

k(N )

]}
, 1 � m � k(N ). (68)

For the cases where k(N )〈N〉 there are degeneracies and the
spectrum does not behave as expected for chaotic quantum
systems. In spite of the peculiarities in this map, a very weak
nonlinear perturbations of cat maps restores the universal
behavior of nondegenerate chaotic quantum systems spectra
[30]. Eckhardt [31] has argued that typically the eigenfunctions
of cat maps are random.

The coherent states propagator on the torus depends on the
definition of the periodic coherent state [32], with 〈p〉 = P

and 〈q〉 = Q. In accordance to (1)

〈X|qk〉 =
∞∑

j=−∞
e− 1

h̄
[iP (j+ Q

2 −k/N)+ 1
2 (j+Q−k/N)2]. (69)

In order to construct operators or functions on the torus we
have to periodize the construction. This is done merely using
the recipe [29] that for any operator its Weyl representation on
the torus A(x) is obtained from is analog in the plane A(x) by

A(x) =
∞∑

j=−∞

∞∑
k=−∞

(−1)2ja+2kb+jkNA

(
x + (k,j )

2

)
.

Indeed, the construction on the torus from the plane is obtain
in terms of averages over equivalent points, that are obtained
by translation with integer chords: T̂−→

k
where

−→
k = (kp,kq) is

a two-dimensional vector with integer components kp and kq .
Hence, the unit operator in the Hilbert space of the torus is [29]

̂1N =
N−1∑
k=0

|qk〉〈qk| = 〈
T̂−→

k
ei2π(χ∧−→

k + N
4

−→
k J̃−→

k )
〉

so that

|X〉 = ̂1N |X〉 = 〈
ei2π( N

4

−→
k J̃−→

k )T̂−→
k
|X〉〉

= 〈
eiπ N

2

−→
k J̃−→

k e− i
2h̄ X∧−→

k |X + −→
k 〉〉.

In this way the coherent states matrix elements for any operator
on the torus are obtained through

〈X1|Â|X2〉 = 〈
eiπ N

2

−→
k J̃−→

k e− i
2h̄ X∧−→

k 〈X1|Â|X2 + −→
k 〉〉. (70)

Figure 2 shows the relative error E on the ampli-
tude of the semiclassical approximations 〈X1|Û t |X2〉SC1 and
〈X1|Û t |X2〉SC2 obtained respectively in Eqs. (18) and (20)
[after taking in both cases the torus periodization (70)] with
respect to the exact expression obtained with the quantum
propagator (65) on the CS (69). As can be seen, neither (18)
nor (20) are good approximations of the exact CS matrix
elements, giving errors in the amplitude of more than 10%
or that highly grow with N respectively. Meanwhile, we have
verified that 〈X1|Û t |X2〉SC3, obtained with (37), is exact in this
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FIG. 2. Relative error of the amplitude of the semiclassical
expressions 〈X1|Û t |X2〉SC1 and 〈X1|Û t |X2〉SC2 as a function of N .
In full line the error of 〈X1|Û t |X2〉SC1 and in dotted line the error of
〈X1|Û t |X2〉SC2.

case, for both the amplitude and the phase, as expected in a
linear system.

V. CONCLUSION

To conclude, the expression (32) obtained in this work is an
accurate semiclassical expression for the CS propagator that
avoids complex trajectories, it only involves real ones. For its
obtainment we have used the symplectically invariant Weyl
representation. While the semiclassical Weyl propagator was
derived by performing a SPA for the path integral in the Weyl
representation, for the transformation to CS representation
SPA was avoided.

Also, the quadratic expansion of the center generating
function has allowed us to obtain a semiclassical expression of
the CS propagator (37) involving only objects relative to the
orbit γ2 passing though the initial point X2, without the need
of any further search of trajectories that are typical procedures
of van Vleck–Gutzwiller-based propagators [12,13], nor phase
space integration typical from IVR methods.

For the case of chaotic maps, the explicit time dependence
of the CS propagator has been derived only in terms of the
action of the orbit through the initial point X2, the Lyapunov
exponent and the stable and unstable vector basis directions.
The comparison with a system whose semiclassical limit is
exact has allowed us to correctly check the exactness of
expression (37) up to quadratic Hamiltonian systems.

It is important to mention that the present theory has
already been successfully applied for the semiclassical matrix
elements for chaotic propagators in the scar function basis [33].
This is a crucial element in the semiclassical theory of short
periodic orbits for the evaluation of the energy spectrum of
classically chaotic Hamiltonian systems [34–36].

Of course, the here-derived expression can be applied
to a vast variety of systems, in particular for continuous
Hamiltonian systems as was done with complex trajectories
in Ref. [37]. Indeed, the fact that only real trajectories are
involved guaranties a simpler procedure.
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APPENDIX: REFLECTION OPERATORS IN PHASE SPACE

Among the several representations of quantum mechanics,
the Weyl-Wigner representation is the one that performs a
decomposition of the operators that acts on the Hilbert space
on the basis formed by the set of unitary reflection operators.
In this appendix we review the definition and some properties
of this reflection operators.

First of all we construct the family of unitary operators,

T̂q = exp(−ih̄−1q · p̂), T̂p = exp(ih̄−1p · q̂), (A1)

and following Ref. [14], we define the operator corresponding
to a general translation in phase space by ξ = (p,q) as

T̂ξ ≡ exp

(
i

h̄
ξ ∧ x̂

)
≡ exp

[
i

h̄
(p · q̂ − q · p̂)

]
(A2a)

= T̂pT̂q exp

[
− i

2h̄
p · q

]
= T̂q T̂p exp

[
i

2h̄
p · q

]
, (A2b)

where naturally x̂ = (p̂,q̂). In other words, the order of T̂p

and T̂q affects only the overall phase of the product, allowing
us to define the translation as above. T̂ξ is also known as a
Heisenberg operator. Acting on the Hilbert space we have

T̂ξ |qa〉 = e
i
h̄
p(qa+ q

2 )|qa + q〉 (A3)

and

T̂ξ |pa〉 = e− i
h̄
q(pa+ p

2 )|pa + p〉. (A4)

We, hence, verify their interpretation as translation operators
in phase space. The group property is maintained within a
phase factor

T̂ξ2 T̂ξ1 = T̂ξ1+ξ2e
[ −i

2h̄ ξ1∧ξ2] = T̂ξ1+ξ2e
[ −i

h̄
D3(ξ1,ξ2)], (A5)

where D3 is the symplectic area of the triangle determined by
two of its sides. Evidently, the inverse of the unitary operator
T̂ −1

ξ = T̂
†
ξ = T̂−ξ .

The set of operators corresponding to phase space reflec-
tions R̂x about points x = (p,q) in phase space, is formally
defined in Ref. [14] as the Fourier transform of the translation
(or Heisenberg) operators

R̂x ≡ (4πh̄)−L

∫
dξ e

i
h̄
x∧ξ T̂ξ . (A6)

Their action on the coordinate and momentum bases are

R̂x |qa〉 = e2i(q−qa )p/h̄ |2q − qa〉 (A7)

R̂x |pa〉 = e2i(p−pa )q/h̄ |2p − pa〉 , (A8)

displaying the interpretation of these operators as reflections in
phase space. Also, using the coordinate representation of the
coherent state (1) and the action of reflection on the coordinate
basis (A7), we can see that the action of the reflection operator
R̂x on a coherent state |X〉 is the x reflected coherent state

R̂x |X〉 = exp

(
i

h̄
X ∧ x

)
|2x − X〉 . (A9)
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This family of operators has the property that they are a
decomposition of the unity (completeness relation)

1̂ = 1

2πh̄

∫
dx R̂x, (A10)

and also they are orthogonal in the sense that

Tr
[
R̂x1 R̂x2

] = 2πh̄ δ(x2 − x1). (A11)

Hence, an operator Â can be decomposed in terms of reflection
operators as follows:

Â = 1

2πh̄

∫
dx AW (x) R̂x. (A12)

With this decomposition, the operator Â is mapped on a
function AW (x) living in phase space, the so-called Weyl-
Wigner symbol of the operator. Using (A11) it is easy to show
that AW (x) can be obtained by performing the following trace
operation

AW (x) = Tr[R̂x Â].

Of course, as it is shown in Ref. [14], the Weyl symbol also
takes the usual expression in terms of matrix elements of Â in

coordinate representation

AW (x) =
∫ 〈

q − Q

2

∣∣∣∣ Â ∣∣∣∣q + Q

2

〉
exp

(
− i

h̄
pQ

)
dQ.

It was also shown in Ref. [14] that reflection and translation
operators have the following composition properties:

R̂xT̂ξ = R̂x−ξ/2e
− i

h̄
x∧ξ , (A13)

T̂ξ R̂x = R̂x+ξ/2e
− i

h̄
x∧ξ , (A14)

R̂x1R̂x2 = T̂2(x2−x1)e
i
h̄

2x1∧x2 (A15)

so that

R̂xR̂x = 1̂ . (A16)

Now using (A15) and (A14) we can compose three reflections
so that

R̂x2R̂xR̂x1 = e
i
h̄
�3(x2,x1,x)R̂x2−x+x1 , (A17)

where �3(x2,x1,x) = 2(x2 − x) ∧ (x1 − x) is the area of the
oriented triangle whose sides are centered on the points x2,x1,
and x respectively.
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