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Coarse graining can beat the rotating-wave approximation in quantum Markovian master equations
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We present a first-principles derivation of the Markovian semigroup master equation without invoking the
rotating-wave approximation (RWA). Instead we use a time coarse-graining approach that leaves us with a free
time-scale parameter, which we can optimize. Comparing this approach to the standard RWA-based Markovian
master equation, we find that significantly better agreement is possible using the coarse-graining approach, for a
three-level model coupled to a bath of oscillators, whose exact dynamics we can solve for at zero temperature. The
model has the important feature that the RWA has a nontrivial effect on the dynamics of the populations. We show
that the two different master equations can exhibit strong qualitative differences for the population of the energy
eigenstates even for such a simple model. The RWA-based master equation misses an important feature which
the coarse-graining-based scheme does not. By optimizing the coarse-graining time scale the latter scheme can
be made to approach the exact solution much more closely than the RWA-based master equation.

DOI: 10.1103/PhysRevA.88.012103 PACS number(s): 03.65.Yz, 02.50.Ga

I. INTRODUCTION

The reduced dynamics of a quantum system coupled to
another quantum system (the environment, or bath) can always
be described by a completely positive trace-preserving (CPTP)
map provided the initial state of the system and the bath
is factorized [1] or classically correlated [2,3]. The map
can always be formally written in the Kraus operator sum
representation:

ρ(t) =
∑

i

Ai(t)ρ(0)A†
i (t), (1)

but calculating the Kraus operators Ai explicitly is usually
too difficult, making this form of the map unusable for most
practical purposes. It is often more convenient to work with
a differential equation that describes the evolution. Many
such “master equations” have been derived, either from first
principles or phenomenologically, and have been hugely
successful in describing a wide range of phenomena [1,4–7].
However, master equations in general do not necessarily
generate CPTP dynamics and can even violate the positivity of
the density matrix for certain initial states. Lindblad showed
that a Markovian semigroup master equation (SME) that is
guaranteed to generate a CPTP map must be of the form

d

dt
ρ(t) = − i

h̄
[H,ρ(t)] + 1

2

∑
αβ

γαβ

× ([Lα,ρ(t)L†
β] + [Lαρ(t),L†

β]), (2)

where H is Hermitian and the coefficients γαβ form a positive
matrix. All first-principles derivations of the master equation
that attempt to end in this form require what is often called
the “rotating-wave approximation” (RWA), also referred to
as the “secular approximation.” This approximation requires
dropping terms which occur on time scales of order 1/(ω −
ω′) � τR , where ω and ω′ are system energy eigenstate
differences and τR ∼ 1/g is the typical relaxation time in

the interaction picture, where g is the system-bath interaction
strength. The RWA is notoriously hard to justify rigorously
and is well known to sometimes give wrong results, e.g.,
Refs. [8–16]. Nevertheless, it has been used extensively in
the literature, and so it is tempting to formulate a general
alternative approach to the first-principles derivation of the
Markovian master equation.

In Refs. [17,18], a (phenomenological) method was
proposed to derive a Markovian SME from any CP map
without requiring the RWA. The procedure involves averaging
the dynamics over a coarse-graining time scale. Therefore, we
can derive two SMEs, one using the first-principles derivation
with the RWA (which we refer to as the RWA-SME) and the
second using the phenomenological coarse-graining idea of
Refs. [17,18] (which we refer to as the CG-SME). In order
to properly compare the effect of the RWA, we require
a model to which an exact solution can be found, and in
which the RWA acts nontrivially. We construct a three-level
system coupled to an infinite harmonic oscillator bath, the
dynamics of which we can solve exactly at zero temperature.
Using this model, we compare the results of the two SMEs to
the exact solution. We find that even in this simple example, the
dynamics of the RWA-SME misses an important qualitative
feature of the populations of the exact solution, which
the CG-SME does not. Moreover, no attempt has been made
so far to optimize the coarse-graining timescale, and we show
that the CG-SME can be fine-tuned to better match the exact
solution via such an optimization.

The structure of this paper is as follows. In Sec. II we first
review the coarse-graining approach of Refs. [17,18], and then
derive a coarse-grained SME from first principles starting from
the cumulant expansion approach of Alicki [19]. In Sec. III
we describe an exactly solvable two-level model where the
RWA-SME and CG-SME do not make substantially different
predictions. Motivated by this observation, we construct and
solve a three-level model in Sec. IV, where the two master
equations do make substantially different predictions, and
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derive the parameters of the two master equations in the context
of the model in Sec. V. We then compare the predictions to the
exact solution in Sec. VI, where we show that by optimizing
the coarse-graining time scale we can get better agreement
with the exact solution by using the CG-SME. In Sec. VII
we briefly discuss the question of how to optimally choose
the coarse-graining time scale in a more general setting, and
conclude in Sec. VIII. Various technical details are presented
in the Appendixes.

II. SEMIGROUP MASTER EQUATIONS VIA
COARSE GRAINING

A. From CP maps to the SME

In this section we briefly review the derivation of the
SME [17,18], to motivate the idea of time coarse graining.
We consider the dynamics of a system S coupled to a bath B,
together forming a closed system. The closed system evolves
unitarily under the Hamiltonian

H = HS + HB + HI , (3)

where HS is the system Hamiltonain, HB is the bath Hamil-
tonian, and HI is the interaction Hamiltonian. Let us work
in the interaction picture (we will denote interaction picture
operators with a tilde), such that the total evolution operator is
given by

Ũ (t) = T+ exp

[
− i

h̄

∫ t

0
H̃I (s)ds

]
, (4)

where T+ denotes the time-ordering operator. The system
evolution is given by

ρ̃S(t) = TrB[Ũ (t)ρS(0) ⊗ ρB(0)Ũ †(t)], (5)

where we have assumed that at time t = 0 the closed-
system density matrix is factorized. By writing the spectral
decomposition in the basis {|μ〉} of the bath density matrix
eigenstates,

ρB(0) =
∑

μ

λμ|μ〉〈μ|, λμ � 0,
∑

μ

λμ = 1, (6)

we can write the evolution equation in the operator-sum
representation:

ρ̃S(t) =
∑

i

Ãi(t)ρS(0)Ã†
i (t), (7)

where the Kraus operators {Ãi} are given by

Ãi(t) =
√

λν〈μ|Ũ (t)|ν〉, i = (μ,ν). (8)

The Kraus operators have the property∑
i

Ã
†
i Ãi =

∑
μ,ν

λν〈ν|Ũ †|μ〉〈μ|Ũ |ν〉 =
∑

ν

λν = 1. (9)

It is useful to expand the Kraus operators in terms of a
fixed (time-independent) operator basis {Kα}Mα=0 with K0 = 1

and NB the dimension of the bath Hilbert space, where M =
N2

B − 1, such that

Ãi(t) =
M∑

α=0

biα(t)Kα, (10)

to give

ρ̃S(t) =
M∑

α,β=0

χαβ(t)KαρS(0)K†
β, (11)

with χαβ(t) = ∑N2
B

i=1 biα(t)b∗
iβ(t). In particular, χ∗

βα(t) =
χαβ(t) and χαα = ∑

i |biα|2, so χ is Hermitian with positive
diagonal elements. The property in Eq. (9) now gives

∑
i

Ã
†
i Ãi =

M∑
α,β=0

χαβK
†
βKα = 1. (12)

By multiplying this expression from the left and right by
ρ(0)/2 and adding the two expressions, we get the following
relation:

ρS(0) = χ00(t)ρS(0) + 1

2

M∑
α=1

χα0(t) {Kα,ρS(0)}

+ 1

2

M∑
β=1

χ0β(t){ρS(0),K†
β}

+ 1

2

M∑
α,β=1

χαβ(t){K†
βKα,ρS(0)}. (13)

Taking the time derivative of Eq. (11), we are able to write an
evolution equation:

d

dt
ρ̃S(t) = − i

h̄
[Ṡ(t),ρS(0)] + 1

2

M∑
α,β=1

χ̇αβ(t)

× ([Kα,ρS(0)K†
β] + [KαρS(0),K†

β]), (14)

where we have used the time derivative of Eq. (13) to replace
terms with χ̇00(t) and defined

S(t) = ih̄

2

M∑
α=1

[χα0(t)Kα − χ0α(t)K†
α]. (15)

Although this form of the evolution equation has a striking
resemblance to the SME in Eq. (2), it determines ρS(t) in
terms of ρS(0), i.e., at a special time t = 0 where the state is
factorized into a product state. To write an evolution equation
such that the equation depends on ρS(t), we must make some
approximations. Let us define three different time scales: (i)
a time τc corresponding to the inverse of the high-frequency
cutoff ωc in the bath spectral density, (ii) a system time scale τS

corresponding to the characteristic time for significant changes
in the system density matrix in the interaction picture, and (iii)
a coarse-graining time scale �t corresponding to the time scale
after which the bath has effectively “reset.” Let us assume that
the following relationship holds:

τc � �t � τS. (16)

Let us define ρn = ρ̃(n�t), such that discretizing Eq. (14) in
terms of �t gives

ρ1 − ρ0

�t
= − i

h̄
[〈Ṡ〉,ρ0] + 1

2

M∑
α,β=1

〈χ̇αβ〉

× ([Kα,ρ0K
†
β] + [Kαρ0,K

†
β]), (17)
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where

〈X〉 ≡ 1

�t

∫ �t

0
X(s)ds. (18)

In principle, Eq. (14) cannot be used to determine the next
discretization step relating ρ2 in terms of ρ1. However, if
we assume that the bath resets in the time �t such that the
bath interacts with the system in exactly the same manner
at each time step �t , then we can simply proceed with
our discretization. This amounts to performing a Markovian
approximation, and we are led to the form of the SME:

d

dt
ρ̃S(t) = − i

h̄
[〈Ṡ〉,ρ̃S(t)] + 1

2

M∑
α,β=1

〈χ̇αβ〉

× ([Kα,ρ̃S(t)K†
β] + [Kαρ̃S(t),K†

β]). (19)

It was shown in Ref. [18] that the coefficients 〈χ̇αβ〉 form a
positive matrix, which means that Eq. (19) is in Lindblad form
and hence generates completely positive dynamics. At no point
was the RWA made in this derivation.

Note further that the coarse-graining timescale �t enters
Eq. (19) in a fundamental manner via the coarse-grained
averages 〈Ṡ〉 and 〈χ̇αβ〉. Clearly, Eq. (16) leaves room for
optimization of �t , a point we shall return to in our discussion
below.

B. From the cumulant expansion to the SME

We now present a semigroup master equation that can be
derived from a first-principles theory, again without invoking
the RWA, using coarse graining instead. The derivation is
somewhat lengthy, so we present it in four parts. We follow
Alicki’s work [19] for the first two parts.

1. Cumulant expansion

We first review the cumulant expansion approach of
Ref. [19]. Let us consider a Hamiltonian

H = HS + HB + λHI (20)

with

HI = A ⊗ B, (21)

where A is a Hermitian system operator and B is a Hermitian
bath operator. We have restricted ourselves to a single term to
simplify the notation, but the more general case with multiple
terms follows in an analogous fashion. Let us assume that

〈B〉B = 0, ρ(0) = ρS(0) ⊗ ρB, (22)

where

〈X〉B ≡ Tr[ρBX], (23)

and where ρB is the Gibbs state for the bath:

ρB = e−βHB

ZB

, (24)

with ZB = Tr[exp(−βHB)] the partition function. Define

H0(t) ≡ HS(t) ⊗ IB + IS ⊗ HB, (25a)

U0(t,0) ≡ T exp

(
−i

∫ t

0
H0(s)ds

)
, (25b)

ρ̃(t) ≡ U
†
0 (t,0)ρU0(t,0), (25c)

where ρ̃(t) is the state in the H0-interaction picture. In the
interaction picture we have

d

dt
ρ̃(t) = −i[U †

0λHIU0,ρ̃] ≡ −i[λH̃I (t),ρ̃], (26)

with

H̃I (t) = U
†
S(t)AUS(t) ⊗ U

†
B(t)BUB(t), (27)

where US(t) is the unitary generated by HS . The formal
solution is given by

ρ̃(t) = ρ̃(0) − i

∫ t

0
ds[λH̃I (s),ρ̃(s)]

= ρ̃(0) − iλ

∫ t

0
ds[H̃I (s),ρ̃(0)]

− λ2
∫ t

0
ds

∫ s

0
ds ′[H̃I (s),[H̃I (s ′),ρ̃(0)]] + · · · . (28)

We are interested in the reduced density matrix:

ρ̃S(t) = TrB [ρ̃(t)] ≡ W̃t ρ̃S(0). (29)

The cumulant expansion is given by

W̃t = exp

( ∞∑
n=1

λnK (n)(t)

)

= I + λK (1)(t) + λ2

(
K (2)(t) + 1

2
[K (1)(t)]2

)
+ O(λ3),

(30)

and we solve for K (n) by matching powers of λ with Eq. (28).
We get

K (1)(t)ρ̃S(0) = −i

∫ t

0
ds TrB

{[
H̃

(1)
I (s),ρ̃(0)

]} = 0, (31)

where we have used 〈B〉B = 0 (which can always be done by
shifting the operator B without loss of generality), and have
used the shorthand

A(t) = U
†
SAUS, B(t) = U

†
BBUB, H̃

(1)
I (t) = A(t) ⊗ B(t).

(32)

The next order in λ gives

K (2)(t)ρ̃S(0) = −
∫ t

0
ds

∫ s

0
ds ′ TrB

× {[
H̃

(1)
I (s),[H̃ (1)

I (s ′),ρ̃(0)]
]}

. (33)

[Note that our expression differs by a factor of 1/2 in the
second term relative to Eq. (4.10) in Ref. [19]] We write

TrB
{[

H̃
(1)
I (s),[H̃ (1)

I (s ′),ρ̃(0)]
]}

= [A(s)A(s ′)ρ̃S(0) − A(s ′)ρ̃S(0)A(s)]

× TrB[B(s)B(s ′)ρB] + H.c. (34a)

= [A†(s)A(s ′)ρ̃S(0) − A(s ′)ρ̃S(0)A†(s)]

× TrB[B†(s)B(s ′)ρB] + H.c. (34b)

A simple norm estimate shows that ‖K (n)‖ = O[(gt)n], where
g = ‖HI‖. Therefore the terms of third order and above can
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be neglected provided λgt � 1. This amounts to making the
Born approximation.

2. The second-order cumulant

We restrict ourselves to the case of time-independent HS ,
which was also considered in Ref. [19]. Here we give a much
more detailed derivation. Let

A(t) = 6U
†
S(t)AUS(t) =

∑
a,b

e−i(εb−εa )t |εa〉〈εa|A|εb〉〈εb|

=
∑

ω

Aωe−iωt , (35)

such that

A(s ′) =
∑

ω

Aωe−iωs ′
, A†(s ′) =

∑
ω

A†
ωeiωs ′

. (36)

This then gives the following map from time 0 to t :

K (2)(t)ρ̃S(0) = −
[ ∑

ω,ω′
[A†

ω′Aωρ̃S(0) − Aωρ̃S(0)A†
ω′]

×Bωω′ (t) + H.c.

]
, (37)

where

Bωω′ (t) ≡
∫ t

0
ds

∫ s

0
ds ′ei(ω′s−ωs ′)B(s,s ′), (38a)

B(s,s ′) ≡ 〈B†(s)B(s ′)〉 = 〈B(s)B(s ′)〉 = B(s ′,s)∗. (38b)

We show in Appendix A how Eq. (37) can be rewritten as

K (2)(t)ρ̃S(0) = −i [S(t),ρ̃S(0)] +
∑
ω,ω′

bωω′(t)

×
[
Aωρ̃S(0)A†

ω′ − 1

2
{A†

ω′Aω,ρ̃S(0)}
]

, (39)

where

bωω′ (t) ≡
∫ t

0
ds

∫ t

0
ds ′ei(ω′s−ωs ′)B(s,s ′) = b∗

ω′ω(t). (40)

The “Lamb shift” is

S(t) =
∑
ω,ω′

Sωω′(t)A†
ω′Aω, (41)

where

Sωω′(t) = − i

2

∫ t

0
ds

∫ s

0
ds ′

× [ei(ω′s−ωs ′)B(s,s ′) − e−i(ωs−ω′s ′)B(s ′,s)]. (42)

Note that (Sωω′ )∗ = Sω′ω, so that S† = S, as required for the
interpretation of S as a Hamiltonian.

3. Complete positivity

Clearly, the dissipative (second) term on the right-hand side
(RHS) of Eq. (39) appears to be in Lindblad form, but we must
still prove the positivity of the matrix b(t) (this was not done
in Ref. [19]). To this end we again expand the bath density
matrix in its eigenbasis [Eq. (6)], and use this to write the
correlation function B(s,s ′) = 〈B†(s)B(s ′)〉B explicitly. Let �v

be some arbitrary vector; then positivity amounts to showing
that �vb(t)�v† > 0 for all �v. Indeed,

�vb(t)�v† =
∑
ωω′

vωbωω′ (t)v∗
ω′

=
∫ t

0
ds

∫ t

0
ds ′ ∑

ω

(vωe−iωs ′
)
∑
ω′

(vω′e−iω′s)∗

× Tr

[∑
μ

λμ |μ〉 〈μ| B†(s)B(s ′)

]
(43a)

=
∑

μ

λμ 〈μ| F †(t)F (t) |μ〉

=
∑

μ

λμ‖F (t) |μ〉 ‖2 > 0, (43b)

where F (t) ≡ ∫ t

0 dsB(s)
∑

ω vωe−iωs .
Note that we have arrived at Eq. (39) without making

the Markov approximation. Therefore, our (truncated) non-
Markovian CP map is given by

ρ̃S(t) = eλ2K (2)(t)ρS(0). (44)

The complete positivity of this expression follows from the
Lindblad theorem, as K (2)(t) is in Lindblad form for all t > 0.

4. SME from the cumulant expansion and coarse graining

Finally, we show how to obtain the SME from the results
above (this was not done in Ref. [19] either). Consider the CP
map Eq. (44) and write it in the form of an evolution equation.
Expanding the exponential to second order in λ and taking a
time derivative, we have

d

dt
ρ̃S(t) = [λ2Ṡ,ρ̃S(0)] +

∑
ω,ω′

λ2ḃω,ω′

×
[
Aωρ̃S(0)A†

ω′ − 1

2
{A†

ω′Aω,ρ̃S(0)}
]
. (45)

Written in this form, the equation looks identical in form to
Eq. (14), so we can make the identification

Ṡ → λ2Ṡ, χ̇αβ → λ2ḃωω′ , Kα → Aω, K
†
β → A

†
ω′ .

(46)

As discussed in Sec. II A, the path to a SME is simply to take
the time average of Ṡ and χ̇ over the coarse-graining time �t .
In particular, we have

λ2〈Ṡ〉 = λ2

�t
S(�t) ≡ H ′

LS, (47a)

λ2〈ḃω,ω′ 〉 = λ2

�t
bω,ω′ (�t) ≡ γωω′ . (47b)

The generator has the free parameter �t that has to be fixed
by some means.

It is useful at this point to compare the SME derived
above with that typically derived using the RWA in the
time-independent case. For the latter case, which we refer
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to as the RWA-SME, the SME takes the form [1]

d

dt
ρ̃S(t) = −i [HLS,ρ̃S(t)] +

∑
ω

γ (ω)

×
(

Aωρ̃S(t)A†
ω − 1

2
{A†

ωAω,ρ̃S(t)}
)

(48)

with

γ (ω) =
∫ ∞

−∞
dseiωsB(s,0), HLS =

∑
ω

S(ω)A†
ωAω,a

(49a)

S(ω) =
∫ ∞

−∞
dω′γ (ω′)P

(
1

ω − ω′

)
. (49b)

In the former case, which we refer to as the CG-SME, the
system operators Aω are the same:

d

dt
ρ̃S(t) = −i[H ′

LS,ρ̃S(t)] +
∑
ω,ω′

γωω′(�t)

×
(

Aωρ̃S(t)A†
ω′ − 1

2
{A†

ω′Aω,ρ̃S(t)}
)

, (50)

but the rate γ keeps a dependence on two different eigenfre-
quencies ω and ω′:

γωω′(�t) = λ2

�t
bωω′ (�t), H ′

LS(�t) =
∑
ω,ω′

Sωω′ (�t)A†
ω′Aω,

(51a)

Sωω′ (�t) = − i

2�t

∫ �t

0
ds

∫ s

0
ds ′(ei(ω′s−ωs ′)B(s,s ′)

− e−i(ωs−ω′s ′)B(s ′,s)). (51b)

We show in Appendix B that the RWA result is recovered
by taking the �t → ∞ limit of the above result. This is
not surprising, since the RWA (as it is performed in the
standard first-principles derivation of the Lindblad SME) is
equivalent to averaging the time-dependent ME operator over
several periods of the oscillating terms. In Ref. [18] it was
argued via a spin-boson example that ultimately the CG-SME
generator should not depend on the averaging time �t , and
this is true if �t is well beyond the bath correlation time τB .
This corresponds to the RWA limit as mentioned above (i.e.,
�t → ∞), at least for the SME generator that results from the
CP map derived from the cumulant expansion. As we desire to
derive a master equation that accounts for dynamics slightly
beyond the RWA regime, we do not take the RWA limit and
keep the dependence on the coarse-graining time scale.

Our main focus will be a comparison of the predictions
of Eqs. (48) (RWA-SME) and (50) (CG-SME), both to each
other, and to the exact solution of a model we describe next.

III. AN EXACTLY SOLVABLE MODEL WITH A TRIVIAL
ROTATING-WAVE APPROXIMATION

Let us consider the problem of a single two-level system
coupled to a bath of harmonic oscillators:

HS = ω0

2
σz, HB =

∑
k

ωkb
†
kbk, λHSB = λ

∑
k

σz(b
†
k + bk),

(52)

whose exact solution is known [1]. We wish to compare the
exact solution with the solutions found using the RWA-SME
and the CG-SME. In all three cases, the diagonal elements
of the density matrix are independent of time, and the off-
diagonal component takes the form

ρ12(t) = e−iω0t e�(t)ρ12(0). (53)

For the three cases, the dephasing rate is given by

�exact(t) = −4λ2
∫ ∞

0
dωJ (ω) coth

(
βω

2

)(
1 − cos(ωt)

ω2

)
,

(54)

�CG(t,�t) = −4λ2 t

�t

∫ ∞

0
dωJ (ω) coth

(
βω

2

)

×
(

1 − cos(ω�t)

ω2

)
, (55)

�RWA(t) = −4πλ2t lim
ω→0

(
J (ω)

1 − e−βω

)
, (56)

where �exact is the exact result, �CG is the CG-SME result,
and �RWA is the RWA-SME result (details of the derivation
are given in Appendix C). Formally, �CG(t,t) = �exact(t).
However, recall that �t is supposed to be a fixed time scale,
so setting �t = t is not in the spirit of the CG approximation.
Both the CG- and RWA-SMEs yield a linear time dependence
for the dephasing, which is to be expected because of the
Markovian approximation. Furthermore, the CG-SME reduces
to the RWA-SME in the limit of �t → ∞ (also shown in
Appendix C). Since the SMEs have the exact same behavior
for the populations of the two energy eigenstates as the exact
solution, we refer to this as a trivial case of the RWA.

IV. EXACTLY SOLVABLE MODEL WITH A NONTRIVIAL
ROTATING-WAVE APPROXIMATION

We have so far presented a derivation of a SME without the
RWA. In order to investigate the effect of taking or not taking
the RWA, we require an exactly solvable model that has more
than one bath-induced transition. To this end, we consider a
three-level system (with energy eigenstates denoted by |0〉, |1〉,
and |2〉, and with energies 0, ω1 and ω2 respectively)

HS = ω1|1〉〈1|S + ω2|2〉〈2|S. (57)

This system is also refered to as a V-type three-level system.
This system is coupled to a bath of noninteracting harmonic
oscillators at zero temperature:

HB =
∑

k

ωkb
†
kbk. (58)

We choose the system-bath interaction such that transitions
between the second and the third levels are forbidden:

HI = |1〉〈0|B1 + |2〉〈0|B2 + H.c., (59a)

Bi =
∑

k

gikbk. (59b)

This is a generalization of the one-excitation example in Ref.
[1], p. 461. The “number operator”

N = |1〉〈1| + |2〉〈2| +
∑

k

b
†
kbk (60)
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commutes with the closed-system Hamiltonian H = HS +
HB + HI and therefore is a conserved quantity. Let us define
H0 = HS + HB and transform to the interaction picture:

H̃I (t) = eiH0tHI e
−iH0t (61a)

= eiω1t |1〉〈0|B1(t) + eiω2t |2〉〈0|B2(t) + H.c., (61b)

where

Bi(t) =
∑

k

gikbke
−iωkt . (62)

As there are no excitations in the bath at zero temperature,
we can restrict ourselves to the subspace with eigenvalues
N = 0,1, which is spanned by |0〉SB = |0〉 ⊗ |0〉B , |1〉SB =
|1〉 ⊗ |0〉B , |2〉SB = |2〉 ⊗ |0〉B, and |k〉SB = |0〉 ⊗ |k〉B . Note
that |k〉B corresponds to having a single excitation of the kth
oscillator. Therefore, we can write the wave function at time t

as

|ψ(t)〉 = c0|0〉 + c1(t)|1〉 + c2(t)|2〉 +
∑

k

ck(t)|k〉, (63)

where c0 is time independent since HI (t)|0〉 = 0, ∀ t . For
later comparison with the master equation results we need
the reduced density matrix

ρ̃S = trB(|ψ〉〈ψ |) =
⎛
⎝1 − |c1|2 − |c2|2 c0c

∗
1 c0c

∗
2

c∗
0c1 |c1|2 c1c

∗
2

c∗
0c2 c∗

1c2 |c2|2

⎞
⎠,

(64)

where we omitted the time arguments for notational simplicity.
The interaction picture Schrödinger equation

i
d

dt
|ψ(t)〉 = H̃I (t)|ψ(t)〉 (65)

yields a set of coupled differential equations for the coefficients
(the time arguments are omitted):

ċi = −i
∑

k

gike
i(ωi−ωk)t ck, i = 1,2, (66a)

ċk = −i
(
g∗

1ke
−i(ω1−ωk)t c1 + g∗

2ke
−i(ω2−ωk )t c2

)
. (66b)

We can integrate Eq. (66b) and plug it into Eq. (66a) which
yields for c1

ċ1 = −
∑

k

[
|g1k|2

∫ t

0
dτei(ω1−ωk)(t−τ )c1(τ )

+ g1kg
∗
2ke

i(ω1−ω2)t
∫ t

0
dτei(ω2−ωk)(t−τ )c2(τ )

]
. (67)

Let us assume for simplicity that g1k = g2k ≡ gk . Note that
if ω1 = ω2, the state |−〉 = 1√

2
(|1〉 − |2〉) is a dark state, i.e.,

it is decoupled from the bath, as both transitions 0 → 1 and
0 → 2 are coupled to the same bath operator B now, and the
model reduces to the two-level model from [1].

For the bath of harmonic oscillators, we will assume a
continuum limit with spectral function J (ω) and a coupling
constant g: ∑

k

|gk|2 → g

∫ ∞

−∞
dωJ (ω), (68)

such that we can replace the sum over bath oscillators by an
integral over the spectral function

ċ1 = −f1 ∗ c1 − ei(ω1−ω2)t f2 ∗ c2, (69a)

ċ2 = −f2 ∗ c2 − ei(ω2−ω1)t f1 ∗ c1, (69b)

where ∗ denotes the convolution

(f ∗ g)(t) =
∫ t

0
dτf (t − τ )g(τ ), (70)

and

fj (t) = eiωj t

∫ ∞

−∞
dωJ (ω)e−iωt ≡ eiωj tf (t) (71)

is the frequency-shifted Fourier transform of the bath spectral
function. Equations (69a) and (69b) can be solved numerically
to give the exact solution for the time evolution of the system
density matrix. We use a fixed-step-size fourth-order Runge-
Kutta method and calculate the convolution integral using the
Riemann sum approximation with the step size of the Runge-
Kutta method as interval width.

V. PARAMETERS OF THE MASTER EQUATIONS

A. RWA-SME

We now wish to derive the SME parameters associated
with the model described in Sec. IV. First, we note that the
interaction Hamiltonian in Eq. (59a) is of the form

HI = A ⊗ B + A† ⊗ B†, (72)

where

A = |1〉〈0| + |2〉〈0|, B =
∑

k

gkbk. (73)

In the derivation of our SMEs it was assumed that A and B

were Hermitian, but here they clearly are not. This does not
change the overall form of Eqs. (48) and (50), but we must be
careful how we define the bath correlation function. Since we
assume T = 0, the bath state is ρB = |0〉〈0| and therefore we
have the correlation functions (dropping the B subscript for
simplicity)

〈B†(t)B(0)〉 = 〈B†(t)B†(0)〉 = 〈B(t)B(0)〉 = 〈B†(0)B(t)〉
= 〈B†(0)B†(t)〉 = 〈B(0)B(t)〉 = 0, (74a)

〈B(t)B†(0)〉 =
∑
k,k′

gkg
∗
k′ tr{bkb

†
k′ |0〉〈0|}e−iωkt =

∑
k

|gk|2e−iωkt

=
∫ ∞

0
dωJ (ω)e−iωt =: B(t,0), (74b)

〈B(0)B†(t)〉 =
∑
k,k′

gkg
∗
k′ tr{bkb

†
k′ |0〉〈0|}eiωkt =

∑
k

|gk|2eiωkt

=
∫ ∞

0
dωJ (ω)eiωt = B(t,0)∗, (74c)

where we assumed the spectrum of the bath to be lower
bounded by 0. The one-sided Fourier transform of one of the
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nonzero correlation functions is

�+(ω) =
∫ ∞

0
dtB(t,0)eiωt =

∫ ∞

0
dω′J (ω′)

∫ ∞

0
dte−it(ω′−ω)

=
∫ ∞

0
dω′J (ω′)

[
πδ(ω′ − ω) + iP

(
1

ω − ω′

)]
(75a)

= πJ (ω)�(ω) + i

∫ ∞

0
dω′J (ω′)P

(
1

ω − ω′

)
, (75b)

where we used the fact that∫ ∞

0
dteiωt = πδ(ω) + iP

(
1

ω

)
. (76)

P denotes the Cauchy principal value and and � denotes the
Heaviside step function. Similarly,

�−(ω) =
∫ ∞

0
dtB(t,0)∗eiωt = πJ (−ω)�(−ω)

+ i

∫ ∞

0
dω′J (ω′)P

(
1

−ω − ω′

)
= �+(−ω)∗. (77)

We assume that our bath is characterized by an Ohmic spectral
density

Jωc
(ω) = ηωe−ω/ωc , (78)

where η has the dimension of time squared. We can calculate
the integral in Eq. (75b) to give

η

∫ ∞

0
dω′ω′e−ω′/ωcP

(
1

ω − ω′

)

= −ηωce
−ω/ωc

∫ ∞

−ω/ωc

du e−u

[
1 + ω

ωc

P
(

1

u

)]
(79a)

= −ηωc + ηωe−ω/ωc Ei

(
ω

ωc

)
, (79b)

where we have used the exponential integral function

Ei(z) = −
∫ ∞

−z

dζ e−ζP
(

1

ζ

)
. (80)

The function has branch points at z = 0 and z = ∞ and the
branch cut is defined to go from z = −∞ to z = 0. Hence we
get for the one-sided Fourier transform of the bath correlation
function

�+(ω) = 1

2
γ (ω) + iS(ω)

= πJωc
(ω) + i

[
ηωc + Jωc

(ω)Ei

(
ω

ωc

)]
. (81)

Similarly,

�−(−ω) = 1
2γ (ω) − iS(ω). (82)

This allows us to write the generator from Eq. (48) as

Lρ̃S(t) = −i[HLS,ρ̃S(t)] +
∑
j=1,2

γ (ωj )

×
(

aj ρ̃S(t)a†
j − 1

2
{a†

j aj ,ρ̃S(t)}
)

, (83)

where

HLS =
∑
j=1,2

S(ωj )a†
j aj (84)

is the Lamb shift Hamiltonian and ai = |0〉〈i|. Transform-
ing back to the Schrödinger picture just adds the system
Hamiltonian to the unitary part.

B. CG-SME

Here we construct the parameters of the CG-SME, Eq. (50).
For the zero-temperature case with the correlation func-
tion (74b), Eq. (40) simplifies to (for detailed calculations
see Appendix D)

bωω′ (t) =
∫ ∞

0
dν

J (ν)

(ω − ν)(ω′ − ν)

× (ei(ω′−ω)t − ei(ω′−ν)t − e−i(ω−ν)t + 1). (85)

For ω �= ω′ this yields

bωω′ (t) = 1

ω′ − ω
[(1 + ei(ω′−ω)t )[I1(ω) − I1(ω′)]

+ eiω′t [I ∗
2 (ω′) − I ∗

2 (ω)] + e−iωt [I2(ω′) − I2(ω)]],

(86)

where for the Ohmic spectral density in Eq. (78)

I1(ω) = −gωc + gωe−ω/ωc Ei

(
ω

ωc

)
, (87a)

I2(ω) = − gωc

1 − iωct
+ gωe−ω(1/ωc−it)Ei

[
ω

(
1

ωc

− it

)]
.

(87b)

For ω = ω′, Eq. (85) reduces to

bωω(t) = 2
∫ ∞

−ω

dν
J (ν + ω)

ν2
[1 − cos(νt)]. (88)

For the Ohmic spectral density this yields

bωω(t) = ηe−ω/ωc

[(
1 − ω

ωc

− iωt

)
Ei

(
ω

ωc

+ iωt

)

+
(

1 − ω

ωc

+ iωt

)
Ei

(
ω

ωc

− iωt

)

+ 2

(
ω

ωc

− 1

)
Ei

(
ω

ωc

)]
+ 2η[1 − cos(ωt)]. (89)

Knowing the form of b we can now compute the rates γ in
Eq. (51a).

The Lamb shift term for the zero-temperature bath correla-
tion function in Eq. (74b) is

Sωω′(t) = − i

2

∫ ∞

0
dνJ (ν)

∫ t

0
ds

×
[

eis(ω′−ω) − eis(ω′−ν)

i(ν − ω)
+ eis(ω′−ω) − eis(ν−ω)

i(ν − ω′)

]
.

(90)
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FIG. 1. (Color online) Exact dynamics of the populations (a) and (b) and coherences (c) and (d) for g = 0.001ωc and ρS(0) = |1〉〈1|. In
(a) and (c) we chose ω1 = 0.095ωc and ω2 = 0.105ωc; in (b) and (d) ω1 = 0.099 75ωc and ω2 = 0.100 25ωc. In (a) and (b) the blackdotted
line is ρ00, the blue solid line is ρ11, and the red dashed line is ρ22. In (c) and (d) we display the coherence between levels 1 and 2, i.e., ρ12.

For ω �= ω′ we get

Sωω′(t) = − i

2(ω − ω′)
[(1 − eit(ω′−ω))[I1(ω) + I1(ω′)]

+ e−iωt [I2(ω′) − I2(ω)] + eiω′t [I ∗
2 (ω) − I ∗

2 (ω′)]],
(91)

where we have again used the integrals defined in Eq. (87).
For ω = ω′, Eq. (90) reads

Sωω(t) = −tI1(ω) + I3(ω), (92)

where I1 is defined in Eq. (87a) and I3 is

I3(ω) = η
e−ω/ωc

2i

[(
1 − 2

ω

ωc

+ 2iωt

)
Ei

(
ω

ωc

+ iωt

)

−
(

1 − 2
ω

ωc

− 2iωt

)
Ei

(
ω

ωc

− iωt

)]
+ η sin(ωt).

(93)

We now have everything we need to construct the CG-SME,
Eq. (50).

VI. COMPARISON BETWEEN THE MASTER EQUATIONS
AND THE EXACT DYNAMICS

We first discuss the exact dynamics of the model presented
in Sec. IV. For the calculations we set η = ω−2

c . Figure 1 shows
two examples of the dynamics for different system parameters.

Since [HS,HI ] �= 0 for |ω1 − ω2| �= 0,1 the dynamics is
dissipative, so the system will eventually relax into the T = 0
Gibbs state ρGibbs = |0〉〈0|. For |ω1 − ω2| � g, the system
relaxes into the T = 0 Gibbs state very rapidly [see Fig. 1(a)].
For |ω1 − ω2| � g, two time scales can be observed: the initial
population of |+〉 = 1√

2
(|1〉 + |2〉) decays rapidly, and after

that a strong oscillatory (with slow decay) behavior is observed
in the |1〉 and |2〉 populations [see Fig. 1(b)].

We are interested in the regime where the RWA is no
longer valid. Recall that the RWA is argued to hold when
the time scale associated with |ω1 − ω2|−1 is much smaller
than the relaxation time scale τR ∼ 1/g. Therefore, the RWA
should start to break down when |ω1 − ω2| � g. We investigate
the behavior of our two SMEs in this regime. We choose
the coarse-graining time scale �t such that it minimizes the
integrated trace-norm distance between the CG-SME density
matrix ρCG and the exact dynamics ρexact:

D[0,tmax](ρCG,ρexact) = 1

2tmax

∫ tmax

0
dt‖ρCG(t) − ρexact(t)‖1,

(94)

where ‖ · ‖1 is the Schatten 1-norm (‖A‖1 := Tr
√

A†A). In
Fig. 2, we show an example of the dynamics of the different
master equations compared to the exact dynamics. In this
example, we consider an initial state given by ρS(0) = |1〉〈1|.
The RWA-SME [Eq. (48)] shows no population in the state

1Recall that as already pointed out in Sec. IV, for ω1 = ω2 we have
a dark state that is decoupled from the bath.
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(a) (b)

(c)

FIG. 2. (Color online) Dynamics of the populations ρii calculated with the different approximate equations [(a) CG-SME, (b) RWA-SME,
and (c) exact] compared to the exact dynamics at g = 0.001ωc, ω1 = 0.095ωc, and ω2 = 0.105ωc. The dashed red line is ρ22(t), the solid blue
line is ρ11(t), and the black dotted line is ρ00(t). The optimal parameter for the averaged evolution generator is ωc�t = 63.7 for this set of
system parameters, in agreement with Eq. (16). As initial condition we set ρS(0) = |1〉〈1|.

|2〉 since the Lindblad operators allow for transitions only
between |1〉 → |0〉 and |2〉 → |0〉. This is in stark contrast to
the CG-SME [Eq. (50)] which properly shows the oscillatory
population in the state |2〉. We can compare the results quan-
titatively by computing the trace distances to the exact result,
shown in Fig. 3. The two SMEs show similar qualitative time
behavior in the trace distance, but the CG-SME outperforms
the RWA-SME. We calculate the optimal �t for the three-level
system for different sets of parameters (shown in Table I)

FIG. 3. (Color online) Trace-norm distance of the different
approximate solutions to the exact solution, for the same paramters as
in Fig. 2. The dashed red line corresponds to the RWA-SME solution
and the solid blue one to the CG-SME solution.

VII. HOW CAN WE FIND A GOOD �t FOR
REAL PROBLEMS?

If we want to make the CG-SME useful more generally,
we need to find a way of determining �t without comparing
it to an exactly calculated result. We calculate the integrated
trace-norm distance of the solutions of the CG-SME and the
exact solution for suboptimal values adjacent to the optimum,
shown in Fig. 4.

The numerical result suggests that for this particular three-
state model, the optimal averaging time �t strongly depends
on the time scale ω−1 of the transitions driven by the bath,
and does not depend strongly on the other parameters g and
δω. The latter are the ones that determine the validity of the
RWA. On the other hand we can see, that if the RWA fails, i.e.,
if the RWA-SME solution has significant trace-norm distance

TABLE I. Optimal �t for different parameters.

ω

ωc
:= ω1+ω2

2ωc

δω

ωc
:= ω2−ω1

ωc
g/ωc ωc�topt

0.05 0.01 0.001 124
0.1 0.01 0.001 63
0.1 0.01 0.002 61
0.1 0.01 0.003 59
0.15 0.01 0.001 39
0.2 0.02 0.002 28
0.3 0.03 0.003 18
0.4 0.04 0.004 13
0.4 0.01 0.001 13
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FIG. 4. (Color online) Integrated trace-norm distance of the solution of the CG-SME and the exact dynamics (green solid) for different
averaging times �t compared to the RWA-SME (black, dashed). The integration intervals are chosen according to the relaxation times that
result from the different system parameters. The parameters used for each plot are (a) ω = 0.1ωc, δω = 0.01ωc, g = 0.001ωc, (b) ω = 0.1ωc,
δω = 0.01ωc, g = 0.002ωc, (c) ω = 0.1ωc, δω = 0.01ωc, g = 0.003ωc, (d) ω = 0.4ωc, δω = 0.01ωc, g = 0.001ωc, and (e) ω = 0.3ωc,
δω = 0.03ωc, g = 0.003ωc.

FIG. 5. (Color online) Trace-norm distance of the different
approximate solutions to the exact solution, for the same paramters as
in Fig. 2. The dotted red line corresponds to the RWA-SME solution,
the solid blue one to the optimal �topt CG-SME solution, and the
dashed green and dash-dotted black lines are for �t = �topt/2 and
�t = 2�topt, respectively.

from the exact solution, there is a wide range of values
for the averaging time where the CG-SME does not yield
optimum results but still outperforms the RWA-SME. This
fact is further clarified in Fig. 5, where using half the optimal
value as well as its double still outperform the RWA-SME on
average.

It is instructive to look at the rates of the CG-SME for
different �t (Fig. 6). The optimal value of �t is located at a
similar point on (the similar-looking) graphs, independent of
the parameters of the model. This fact might make an analytical
determination of the optimal averaging time possible, but
we leave the investigation of such a possibility to future
research.

VIII. CONCLUSIONS

First-principles derivations of quantum Markovian master
equations have so far relied on the rotating-wave approxima-
tion. Here we have shown how the RWA can be avoided in a
first-principle derivation, and replaced by a coarse-graining
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FIG. 6. (Color online) The rate functions of the CG-SME. The dotted red line is bω1ω2/ωc, the solid blue line is bω1ω1/ωc, the dash-dotted
red line is Sω1ω2/ωc and the dashed blue line corresponds to Sω1ω1/ωc. The horizontal lines are the asymptotic values of the rate functions, i.e.,
the values they converge to for high ωc�t . The vertical lines are at ωc�topt. The parameters used for each plot are (a) ω = 0.1ωc, δω = 0.01ωc,
(b) ω = 0.4ωc, δω = 0.01ωc, and (c) ω = 0.2ωc, δω = 0.02ωc. Note the qualitatively similar location of the ωc�topt values relative to the
features of the rate functions. This may be a clue for future studies in terms of independent determination of �topt.

procedure. The coarse-graining time scale is a free, phe-
nomenological parameter which is a priori bounded between
the bath correlation time (the inverse of the high-frequency
cutoff in the bath spectral density) and the characteristic time
scale for significant changes in the system density matrix in the
interaction picture, and can be optimized. To test this coarse-
graining-based SME, we applied it to a simple three-state
model coupled to an infinite harmonic oscillator bath, whose
exact dynamics we can solve for. Comparing, we found that
the standard RWA-SME misses important qualitative features
of the solution, while the CG-SME captures these features
relatively well. By optimizing the coarse-graining time scale
we achieved significantly better agreement with the exact
solution by using the CG-SME rather than the RWA-SME.
To perform the optimization we required the exact solution;
however, we showed that there is a substantial range of
the coarse-graining time-scale parameter that still allows the
CG-SME to outperform the RWA-SME. Future work should
address how to extract reasonable and advantageous estimates
of the coarse-graining time scale without relying on exact
solutions.
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APPENIDX A: FROM EQ. (37) TO EQ. (39)

The unequal upper integration limits in Eq. (38a) are
inconvenient. To remove them we note the following relations
for the integral, where for notational simplicity we suppress
the t dependence for now:

Bωω′ ≡
∫ t

0
ds

∫ s

0
ds ′ei(ω′s−ωs ′)B(s,s ′)

=
[∫ t

0
ds

∫ t

0
ds ′ −

∫ t

0
ds

∫ t

s

ds ′
]

ei(ω′s−ωs ′)B(s,s ′)

(A1a)

=
[∫ t

0
ds

∫ t

0
ds ′ −

∫ t

0
ds ′

∫ s ′

0
ds

]
ei(ω′s−ωs ′)B(s,s ′)

(A1b)

=
∫ t

0
ds

∫ t

0
ds ′ei(ω′s−ωs ′)B(s,s ′)

−
∫ t

0
ds

∫ s

0
ds ′ei(ω′s ′−ωs)B(s ′,s) (A1c)

= bωω′ − (Bω′ω)∗ , (A1d)
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where bωω′ [Eq. (40)] has the desired equal upper integration
limits. It follows immediately that

(Bωω′ )∗ = bω′ω − Bω′ω. (A2)

and from Eq. (40) we also directly get

Bωω′ = 1
2bωω′ + 1

2 [Bωω′ − (Bω′ω)∗]. (A3)

Therefore, Eq. (37) yields terms such as:∑
ω,ω′

[Aωρ̃A
†
ω′Bωω′ + Aω′ ρ̃A†

ω (Bωω′)∗]

=
∑
ω,ω′

{Aωρ̃A
†
ω′bωω′ + Aω′ ρ̃A†

ωbω′ω

− [Aωρ̃A
†
ω′(Bω′ω)∗ + Aω′ ρ̃A†

ωBω′ω]} (A4a)

=
∑
ω,ω′

{Aωρ̃A
†
ω′bωω′ + Aω′ ρ̃A†

ωbω′ω

− [Aω′ ρ̃A†
ω(Bωω′)∗ + Aωρ̃A

†
ω′Bωω′]}, (A4b)

where in the second term on the RHS we have switched ω ↔
ω′. Furthermore, this second term is now exactly in the form
of the original term, so we have the result∑

ω,ω′
[Aωρ̃A

†
ω′Bωω′ + Aω′ ρ̃A†

ω (Bωω′)∗]

= 1

2

∑
ω,ω′

[Aωρ̃A
†
ω′bωω′ + Aω′ ρ̃A†

ωbω′ω]

=
∑
ω,ω′

Aωρ̃A
†
ω′bωω′ . (A5)

For the remaining terms, we write∑
ω,ω′

[A†
ω′Aωρ̃Bωω′ + ρ̃A†

ωAω′ (Bωω′)∗]

= 1

2

∑
ω,ω′

[A†
ω′Aωρ̃bωω′ + ρ̃A†

ωAω′bω′ω]

+ 1

2

∑
ω,ω′

{A†
ω′Aωρ̃[Bωω′ − (Bω′ω)∗]

+ ρ̃A†
ωAω′[Bω′ω − (Bωω′)∗]} (A6a)

= 1

2

∑
ω,ω′

(bωω′ + Bωω′ − (Bω′ω)∗)[A†
ω′Aωρ̃ + ρ̃A

†
ω′Aω].

(A6b)

Putting all this together we can now go from Eq. (37) to
Eq. (39).

APPENIDX B: RELATION BETWEEN THE
COARSE-GRAINED MASTER EQUATION AND THE

STANDARD LINDBLAD EQUATION

In order to study the relationship between the CG-SME and
the RWA-SME, we begin with the dissipative coefficients of
the CP map:

bωω′(t) =
∫ t

0
ds

∫ t

0
ds ′ei(ω′s−ωs ′)B(s,s ′). (B1)

We switch to new variables u = s − s ′ and v = s + s ′ using
the homogeneity of the bath correlation function:

bωω′ (t)

= 1

2

∫ t

0
dvei[(ω′−ω)/2]v

∫ v

−v

duei[(ω+ω′)/2]uB(u,0)

+ 1

2

∫ 2t

t

dvei[(ω′−ω)/2]v
∫ 2t−v

−(2t−v)
duei[(ω+ω′)/2]uB(u,0).

(B2)

We replace v by 2t − v in the latter integral:

bωω′ (t) = 1

2

∫ t

0
dvei[(ω′−ω)/2]v

∫ v

−v

duei[(ω+ω′)/2]uB(u,0)

+ 1

2
ei[(ω′−ω)/2]2t

∫ t

0
dve−i[(ω′−ω)/2]v

×
∫ v

−v

duei[(ω+ω′)/2]uB(u,0) (B3)

= ei[(ω′−ω)/2]t
∫ t

0
dv cos

(
ω′ − ω

2
(v − t)

)

×
∫ v

−v

duei[(ω+ω′)/2]uB(u,0). (B4)

For ω = ω′ this expression reads

bωω(t) =
∫ t

0
dv

∫ v

−v

dueiωuB(u,0), (B5)

and integration by parts yields

bωω(t) = −
∫ t

0
dvv[eiωvB(v,0) + e−iωvB(−v,0)]

+ t

∫ t

−t

dueiωuB(u,0) (B6a)

= t

∫ t

−t

du
(

1 − u

2t

)
eiωuB(u,0). (B6b)

For our SME, we are interested in bωω′ (�t)/�t . Setting �t →
∞, the part proportional to u

2t
B(u,0) is negligible, and we

recover the RWA result of Eq. (49):

lim
�t→∞

1

�t
bωω(�t) =

∫ ∞

−∞
dueiωuB(u,0) = γ (ω). (B7)

For ω �= ω′ we also perform an integration by parts, but this
time the boundary terms vanish:

bωω′(t) = −2ei[(ω′−ω)/2]t

(ω′ − ω)

∫ t

0
dv sin

(
(ω′ − ω)

2
(v − t)

)
× [ei[(ω+ω′)/2]vB(v,0) + e−i[(ω+ω′)/2]vB(−v,0)].

(B8)
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Changing from v to −v in the second term we get

bωω′ (t) = −2ei[(ω′−ω)/2]t

(ω′ − ω)

[ ∫ t

0
dv sin

(
(ω′ − ω)

2
(v − t)

)
ei[(ω+ω′)/2]vB(v,0)

+
∫ 0

−t

dv sin

(
(ω′ − ω)

2
(−v − t)

)
ei[(ω+ω′)/2]vB(v,0)

]
(B9a)

= ei[(ω′−ω)/2]t

(ω′ − ω)

∫ t

−t

dv

[
sin

(
ω′ − ω

2
t

)(
eiωv + eiω′v

)
+ sgn(v)

i
cos

(
ω′ − ω

2
t

)
(eiωv − eiω′v)

]
B(v,0), (B9b)

where we used the angle sum identity for the sine in the last equality. If we again look at the term bωω′ (�t)/�t and take the limit
of �t → ∞, we get

lim
�t→∞

bωω′(�t)

�t
= lim

�t→∞
ei ω′−ω

2 �t

(ω′ − ω)�t

[
sin

(
ω′ − ω

2
�t

)
[γ (ω) + γ (ω′)] + 2 cos

(
ω′ − ω

2
�t

)
[S(ω) − S(ω′)]

]
, (B10)

where we have used that for �(ω) = ∫ ∞
0 dseiωsB(s,0), we have

γ (ω) = �(ω) + �(ω)∗ and 2iS(ω) = �(ω) − �(ω)∗. Since
nothing cancels with the overall �t−1, we find that the ω �= ω′
term vanishes, which is what we would expect for the RWA
result. A similar calculation could be done for the Lamb shift
term (42). Therefore, the RWA results can be understood as
the �t → ∞ limit of the coarse-graining parameter.

APPENIDX C: CALCULATION FOR THE
TWO-LEVEL EXAMPLE

We consider the model in Sec, III. Let us denote the
eigenvalues of HS by ε± = ±ω0/2 and their respective
eigenvectors by

|ε+〉 → (1,0)T , |ε−〉 → (0,1)T , (C1)

and T denotes the transpose. Note that the Lindblad operators
in both the CG-SME and RWA-SME are given by

A−ω0 = |ε+〉〈ε+|σz|ε−〉〈ε−| = 0, (C2)

A0 = |ε+〉〈ε+|σz|ε+〉〈ε+| + |ε−〉〈ε−|σz|ε−〉〈ε−| = σz,

(C3)

Aω0 = |ε−〉〈ε−|σz|ε+〉〈ε+| = 0, (C4)

so in this two-state model, only the ω = 0 term contributes to
the sums over ω. This in turn gives that HLS ∝ 1 such that
[HLS,ρS(t)] = 0. In order to solve the SMEs, it is convenient
to vectorize the master equation. Let us define

�ρ ≡ vec(ρ) =

⎛
⎜⎜⎜⎜⎝

ρi1
...

ρi2
...

⎞
⎟⎟⎟⎟⎠ , (C5)

where vec(ρ) corresponds to stacking the columns of ρ (in
some basis). We now use the identity [20]

vec (ABC) = (CT ⊗ A)vec (B) , (C6)

where (A,B,C) are arbitrary matrices, such that we can write
both SMEs as

vec

(
d

dt
ρ̃S

)
= γ

{
A∗

0 ⊗ A0 − 1

2
[1T ⊗ A

†
0A0

+ (A†
0A0)T ⊗ 1]

}
�ρS ≡ L �ρS(t), (C7)

where it is to be understood that γ = γCG for the CG-SME
and γ = γRWA for the RWA-SME. These are defined as

γCG = 1

�t

∫ �t

0
ds

∫ s

0
ds ′[B(s,s ′) + B(s ′,s)],

(C8)

γRWA =
∫ ∞

−∞
dsB(s,0).

The solution written in terms of the superoperator L is simply

�ρS(t) = exp(Lt) �ρS(0). (C9)

Using that A0 = σz, L reduces to

L = γ (σz ⊗ σz − 1 ⊗ 1) . (C10)

Conveniently, L is diagonal with entries (0, − 2γ, − 2γ,0), so
we can immediately write

exp(L) =

⎛
⎜⎝

1
exp(−2γ t)

exp(−2γ t)
1

⎞
⎟⎠ . (C11)

Therefore, we find as a final result that

ρ̃S(t) =
(

ρ̃11(0) exp(−2γ t)ρ̃12(0)

exp(−2γ t)ρ̃21(0) ρ̃22(0)

)
. (C12)

Moving to the Schrödinger picture, the result is adjusted to

ρS(t)

=
(

ρ̃11(0) exp(−2γ t − iω0t)ρ̃12(0)

exp(−2γ t + iω0t)ρ̃21(0) ρ̃22(0)

)
.

(C13)

Finally, for the infinite harmonic oscillator bath-to-bath oper-
ator B = λ

∑
k(bk + b

†
k), we can explicitly calculate the form
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of the γ ’s by using the result for the two-point correlation:

〈B(s)B(s ′)〉 = 〈B(s − s ′)B(0)〉
= λ2

∫ ∞

0
dω

J (ω)

1 − e−βω
(e−iω(s−s ′) + eiω(s−s ′)−βω).

(C14)

This then gives

γCG = 2λ2 1

�t

∫ ∞

0
J (ω) coth

(
βω

2

)(
1 − cos(ω�t)

ω2

)

= λ2π

∫ ∞

0
J (ω) coth

(
βω

2

)
�t sinc2

(
ω�t

2

)
π

, (C15a)

γRWA = 2πλ2 lim
ω→0

(
J (ω)

1 − e−βω

)
. (C15b)

When γCG is written in the form of the second equality, it
becomes clear that taking the �t → ∞ limit corresponds to
the RWA result since we can use the identity

lim
�t→∞

�t
sinc2

(
ω�t

2

)
π

= δ(ω) (C16)

and γCG becomes γRWA.

APPENIDX D: CALCULATIONS FOR THE THREE-LEVEL
EXAMPLE FOR THE COARSE-GRAINING EVOLUTION

GENERATOR

Here we provide the detailed derivations of the expressions
for the coarse-graining evolution generator of the three-level
model in Sec. IV. Let us calculate Eq. (40) for the zero-
temperature case with the correlation function Eq. (74b):

bωω′ (t) =
∫ t

0
ds

∫ t

0
ds ′ei(ω′s−ωs ′)

∫ ∞

0
dνe−iν(s−s ′)J (ν) =

∫ ∞

0
dνJ (ν)

∫ t

0
dseis(ω′−ν)

∫ t

0
ds ′e−is ′(ω−ν)

=
∫ ∞

0
dν

J (ν)

(ω − ν)(ω′ − ν)
(ei(ω′−ν)t − 1)(e−i(ω−ν)t − 1) =

∫ ∞

0
dν

J (ν)

(ω − ν)(ω′ − ν)
(ei(ω′−ω)t − ei(ω′−ν)t − e−i(ω−ν)t + 1).

(D1)

For the second equality sign we used the fact that the Fourier transform of the spectral function converges absolutely for a
well-behaved bath: ∫ ∞

0
dν|e−iν(s−s ′)J (ν)| =

∫ ∞

0
dν|J (ν)| < ∞. (D2)

Let us look at the case ω �= ω′. With the help of

1

(ω − ν)(ω′ − ν)
= 1

ω′ − ω

(
1

ω − ν
− 1

ω′ − ν

)
, (D3)

we can split up the integral:

bωω′ (t) = 1

ω′ − ω

∫ ∞

0
dνJ (ν)

[
ei(ω′−ω)t

ω − ν
− ei(ω′−ω)t

ω′ − ν
− ei(ω′−ν)t

ω − ν
+ ei(ω′−ν)t

ω′ − ν
− e−i(ω−ν)t

ω − ν
+ e−i(ω−ν)t

ω′ − ν
+ 1

ω − ν
− 1

ω′ − ν

]

= 1

ω′ − ω
[(1 + ei(ω′−ω)t )[I1(ω) − I1(ω′)] + eiω′t [I ∗

2 (ω′) − I ∗
2 (ω)] + e−iωt [I2(ω′) − I2(ω)]], (D4)

where we have defined the integrals

I1(ω) =
∫ ∞

0
dν

J (ν)

ω − ν
, I2(ω) =

∫ ∞

0
dν

J (ν)eiνt

ω − ν
. (D5)

For the Ohmic spectral density (78) the integrals I1 and I2 are analytically solvable:

I1(ω) = η

∫ ∞

0
dν

νe−ν/ωc

ω − ν
= −η

∫ ∞

−ω

dν
(ν + ω)e−(ν+ω)/ωc

ν
= −ηωc + ηωe−ω/ωc Ei

(
ω

ωc

)
, (D6)

I2(ω) = η

∫ ∞

0
dν

νe−ν(1/ωc−it)

ω − ν
= −η

∫ ∞

−ω

dν
(ν + ω)e−(ν+ω)(1/ωc−it)

ν

= − ηωc

1 − iωct
+ ηωe−ω(1/ωc−it)Ei

[
ω

(
1

ωc

− it

)]
, (D7)

where we substituted ν by ν + ω in both calculations and used the definition (80). For the case ω = ω′ we get from (85), again
substituting ν by ν + ω,

bωω(t) = 2
∫ ∞

0
dν

J (ν)

(ω − ν)2
{1 − cos[(ω − ν)t]} = 2

∫ ∞

−ω

dν
J (ν + ω)

ν2
[1 − cos(νt)]. (D8)
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For the Ohmic spectral function this yields

bωω(t) = 2η

∫ ∞

−ω

dν
(ν + ω)e−(ν+ω)/ωc

ν2
[1 − cos(νt)]

= ηe−ω/ωc

[
Ei

(
ω

ωc

+ iωt

)
+ Ei

(
ω

ωc

− iωt

)
− 2Ei

(
ω

ωc

)]
+ 2ηωe−ω/ωc

∫ ∞

−ω

dν
e−ν/ωc

ν2
[1 − cos(νt)] . (D9)

Integration by parts simplifies the last integral to∫ ∞

−ω

dν
e−ν/ωc

ν2
[1 − cos(νt)]

=
∫ ∞

−ω

dν
e−ν/ωc

ν

(
t sin(νt) − 1

ωc

[1 − cos(νt)]

)
+ eω/ωc

ω
[1 − cos(ωt)]

= 1

ωc

Ei

(
ω

ωc

)
− 1

2

(
1

ωc

+ it

)
Ei

(
ω

ωc

+ iωt

)
− 1

2

(
1

ωc

− it

)
Ei

(
ω

ωc

− iωt

)
+ eω/ωc

ω
[1 − cos(ωt)], (D10)

so that we can write altogether

bωω(t) = ηe−ω/ωc

[(
1 − ω

ωc

− iωt

)
Ei

(
ω

ωc

+ iωt

)
+

(
1 − ω

ωc

+ iωt

)
Ei

(
ω

ωc

− iωt

)
+ 2

(
ω

ωc

− 1

)
Ei

(
ω

ωc

)]
+ 2η[1 − cos(ωt)]. (D11)

Let us now calculate the Lamb shift term for the zero-temperature bath correlation function Eq. (74b). Similarly to the case of
bωω′ we get

Sωω′ (t) = − i

2

∫ ∞

0
dνJ (ν)

∫ t

0
ds

∫ s

0
ds ′(ei(ω′s−ωs ′)e−iν(s−s ′) − e−i(ωs−ω′s ′)e−iν(s ′−s))

= − i

2

∫ ∞

0
dνJ (ν)

∫ t

0
ds

[
eis(ω′−ν)

∫ s

0
ds ′eis ′(ν−ω) − eis(ν−ω)

∫ s

0
ds ′eis ′(ω′−ν)

]

= − i

2

∫ ∞

0
dνJ (ν)

∫ t

0
ds

[
eis(ω′−ν) e

is(ν−ω) − 1

i(ν − ω)
+ eis(ν−ω) e

is(ω′−ν) − 1

i(ν − ω′)

]

= − i

2

∫ ∞

0
dνJ (ν)

∫ t

0
ds

[
eis(ω′−ω) − eis(ω′−ν)

i(ν − ω)
+ eis(ω′−ω) − eis(ν−ω)

i(ν − ω′)

]
. (D12)

Now we have to distinguish the two cases ω = ω′ and ω �= ω′. For ω �= ω′ we get

Sωω′ (t) = − i

2

∫ ∞

0
dνJ (ν)

[
eit(ω′−ω) − 1

(ω − ω′)(ν − ω)
− e−it(ν−ω′) − 1

(ν − ω)(ν − ω′)
+ eit(ω′−ω) − 1

(ω − ω′)(ν − ω′)
+ eit(ν−ω) − 1

(ν − ω)(ν − ω′)

]

= − i

2

∫ ∞

0
dνJ (ν)

[
eit(ω′−ω) − 1

(ω − ω′)(ν − ω)
+ eit(ω′−ω) − 1

(ω − ω′)(ν − ω′)
+ eit(ν−ω) − e−it(ν−ω′)

(ν − ω)(ν − ω′)

]
. (D13)

With the help of (D3) and (D5) this formula simplifies to

Sωω′ (t) = − i

2(ω − ω′)
[(1 − eit(ω′−ω))[I1(ω) + I1(ω′)] + e−iωt [I2(ω′) − I2(ω)] + eiω′t [I ∗

2 (ω) − I ∗
2 (ω′)]]. (D14)

For the case ω = ω′ Eq. (90) reads

Sωω(t) = − i

2

∫ ∞

0
dνJ (ν)

∫ t

0
ds

[
1 − eis(ω−ν)

i(ν − ω)
+ 1 − eis(ν−ω)

i(ν − ω)

]

= − i

2

∫ ∞

0
dνJ (ν)

[
2t

i(ω − ν)
+ ei(ν−ω)t − e−i(ν−ω)t

(ω − ν)2

]

=
∫ ∞

0
dνJ (ν)

[
t

ν − ω
+ sin((ν − ω)t)

(ν − ω)2

]

= −tI1(ω) + I3(ω), (D15)
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where I1 is defined in (D5) and I3 is defined as

I3(ω) =
∫ ∞

0
dνJ (ν)

sin[(ν − ω)t]

(ν − ω)2
. (D16)

For the Ohmic spectral density this yields

I3(ω) = η

∫ ∞

0
dννe−ν/ωc

sin[(ν − ω)t]

(ν − ω)2
= ηe−ω/ωc

∫ ∞

−ω

du(u + ω)e−u/ωc
sin(ut)

u2

= η

{
e−ω/ωc

2i

[
Ei

(
ω

ωc

+ iωt

)
− Ei

(
ω

ωc

− iωt

)]
+ ωe−ω/ωcI4(ω)

}
, (D17)

where we defined

I4(ω) =
∫ ∞

−ω

du
e−u/ωc sin(ut)

u2
. (D18)

Integration by parts yields

I4(ω) = −
∫ ∞

−ω

du
e−u/ωc

(
1
ωc

sin(ut) + t cos(ut)
)

u
+ eω/ωc sin(ωt)

ω

= −
∫ ∞

−ω

du
e−u/ωc

[
eitu

(
1

iωc
+ t

) + e−itu
(− 1

iωc
+ t

)]
2u

+ eω/ωc sin(ωt)

ω

=
(

t + 1

iωc

)
Ei

(
ω

ωc

− iωt

)
+

(
t − 1

iωc

)
Ei

(
ω

ωc

+ iωt

)
+ eω/ωc sin(ωt)

ω
. (D19)

Using this result, we get the final result for I3:

I3(ω) = η
e−ω/ωc

2i

[(
1 − 2

ω

ωc

+ 2iωt

)
Ei

(
ω

ωc

+ iωt

)
−

(
1 − 2

ω

ωc

− 2iωt

)
Ei

(
ω

ωc

− iωt

)]
+ η sin(ωt). (D20)
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