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We present a number of observables-based proofs of the Kochen-Specker (KS) theorem based on the N-qubit
Pauli group for N > 4, thus adding to the proofs that have been presented earlier for the 2- and 3-qubit groups.
These proofs have the attractive feature that they can be presented in the form of diagrams from which they are
obvious by inspection. They are also irreducible in the sense that they cannot be reduced to smaller proofs by
ignoring some subset of qubits and/or observables in them. A simple algorithm is given for transforming any
observables-based KS proof into a large number of projectors-based KS proofs; if the observables-based proof
has O observables, with each observable occurring in exactly two commuting sets and any two commuting sets
having at most one observable in common, the number of associated projectors-based parity proofs is 2°. We
introduce symbols for the observables- and projectors-based KS proofs that capture their important features and
also convey a feeling for the enormous variety of both these types of proofs within the N-qubit Pauli group. We
discuss an infinite family of observables-based proofs, whose members include all numbers of qubits from 2 up,
and show how it can be used to generate projectors-based KS proofs involving only 9 bases (or experimental

contexts) in any dimension of the form 2" for N > 2. Some implications of our results are discussed.
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I. INTRODUCTION

In a recent paper [1] we pointed out that the N-qubit
Pauli group (for N > 2) is a rich source of both observables-
based and projectors-based “parity proofs” of the Kochen-
Specker (KS) theorem [2]. We refer to the proofs as parity
proofs because, in either the observables-based version or the
projectors-based version, they exploit the concept of parity
to achieve their ends. The purpose of this paper is to give
examples of both types of proofs for 4- and higher qubit
systems and to point out several of their properties that we did
not discuss earlier in our work on 2- and 3-qubit systems [3,4].
More precisely, the goals of this paper are the following:

(1) We explain what we mean by an observables-based KS
proof and show how it can be depicted in the form of a diagram
from which it is obvious by inspection. The two best-known
examples of such proofs are a 2-qubit proof due to Peres [5]
and Mermin [6] and a 3-qubit proof due to Mermin [6] based
on earlier work by Greenberger, Horne, and Zeilinger [7].
In Ref. [4] we presented several examples of 2- and 3-qubit
proofs of this kind and in Ref. [1] we indicated that we had
found a large number of 4- and higher qubit proofs but gave few
details. Here we give examples of 4-, 5-, and 6-qubit proofs that
convey a feeling for the wide variety of possibilities that open
up as one goes to a larger number of qubits. We should stress
that we consider only critical proofs, i.e., ones that cannot be
reduced to smaller proofs by omitting some subset of qubits
and/or observables in them, but that despite this restriction the
number of possibilities still grows very rapidly as one goes to
a larger number of qubits.

(2) We show how any observables-based KS proof can
be used to construct a system of projectors and bases from
which a large number of projectors-based parity proofs of the
KS theorem can be obtained. The simplest example of this
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procedure is provided by the 2-qubit Peres-Mermin square,
whose 9 observables give rise to a system of projectors and
bases that yield a total of 2° = 512 projectors-based parity
proofs [8—11]. In recent years a number of other examples of
projectors-based parity proofs have been found in four [3,12]
and eight [4,13] dimensions. A major point of this paper is
that every observables-based parity proof, based on a subset
of observables of the Pauli group, gives rise to a system of
projectors-based parity proofs, and we give a simple algorithm
for making this transition. We illustrate this algorithm in the
particular case of a 4-qubit observables-based proof and show
how the 22 associated projectors-based proofs can be obtained
with practically no effort (once the system of projectors and
bases within which they are embedded has been set up).
In addition to the fact that they are easy to generate, the
projectors-based proofs are also easy to check, since only
simple counting is called for. Like the observables-based
proofs from which they are derived, the projectors-based
proofs are critical in the sense that they cannot be whittled
down to smaller proofs by omitting some subset of their bases.
Because each observables-based proof gives rise to a large
number of projectors-based proofs, the variety and quantity of
the latter are vastly greater than those of the former.

(3) Itis interesting to ask if there are any infinite classes of
observables-based proofs that apply to all numbers of qubits
from 2 up. We have discovered several such classes that we
call the star class, the wheel class, the whorl class, and the kite
class (with the names reflecting the shapes of the associated
diagrams). The most complex of these families is the kite class,
and we give a detailed discussion of it in this paper. All the
members of this family can be represented by diagrams having
the form of a kite, with the body consisting of 9 observables
arranged on a 3 x 3 grid and the tail consisting of a string of
observables of arbitrary length. For any number of qubits, a
suitable choice of observables (and often more than one) can
be placed on the framework of a diagram of the kite class to
yield a KS proof. The 2-qubit Peres-Mermin square can be
regarded as a kite diagram without a tail, and the higher qubit
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proofs of this family involve tails of increasing lengths. An
interesting feature of this family is that all its members give
rise to projectors-based KS proofs involving just 9 bases (or
experimental contexts)and so are the most compact proofs of
this type known in 2" dimensions for all N > 2.

The next three sections are devoted to a discussion of the
above three points. We then comment on the significance of
our results and their relation to other work. Although this
paper builds upon our earlier work [1,3,4], it is written to be
self-contained and requires no familiarity with that work.

II. OBSERVABLES-BASED KS PROOFS

An observables-based proof of the KS theorem for a system
of N qubits consists of a subset of observables of the N-qubit
Pauli group that forms a number of commuting sets of a special
kind. The proof is conveniently displayed in the form of a
diagram in which the observables are represented as points (or
actually as letters within circles centered at points) and the spe-
cial commuting sets as lines (which could be straight or curved)
joining the points. An observable is represented by a sequence
of letters, each of which can be one of X, Y, Z, or I (these
being the Pauli and identity operators of a qubit). For example,
XYI1ZZ represents a 5-qubit observable that is the tensor
product of the observables X, Y, I, Z, and Z of the individual
qubits. Every special commuting set in any of our proofs has
the property that the product of all the observables in it is either
+Ior —I, where I is the identity operator in the space of all the
qubits. Sets with product +I are shown by thin lines and sets
with product —I by thick lines in our diagrams. Any diagram
representing an observables-based KS proof has the following

FIG. 1. Four-qubit star diagram, 12,-154413 (a), and 4-qubit
windmill diagram, 13,-5423 (b).
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FIG. 2. Four-qubit clock diagram, 13,-2463 (a), and 4-qubit whorl
diagram, 20,-1412; (b).

two properties: (A) each observable lies at the intersection of
an even number of lines, and (B) the total number of thick lines
is odd. These properties guarantee that the diagrams provide
proofs of the KS theorem. To see why, note that the eigenvalues
of any N-qubit observable are £1 and that a noncontextual
hidden variables theory is required to assign the value +1 or
—1 to each of the observables in such a way that the product
of the values assigned to the observables on a thin (or a thick)
line equals +1 (or —1). However properties (A) and (B) rule
out such a value assignment' and so prove the KS theorem.
A number of N-qubit proof-diagrams are shown in
Figs. 1-4 for N =4, 5, and 6. The names we have given to
the diagrams are whimsical and merely try to capture their
shapes. We have also attached a symbol to each diagram

I'This can be seen as follows. Let v, be the product of the values
assigned to the observables in the commuting set indexed by « and
consider the product P = [] v, taken over all the commuting sets.
Property (B) requires that P = —1 but property (A) requires that
P = 41, so there is a contradiction.
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FIG. 3. Five-qubit star diagram, 12,-154413 (a), and 5-qubit wheel
diagram, 15,-355; (b).

that should help the reader pick out the commuting sets in
it (particularly in the case of the more complicated diagrams).
The left half of each symbol lists the number of observables of
each multiplicity (with the multiplicities as subscripts) and the
right half lists the number of commuting sets of each size (with
the sizes as subscripts). For example, the symbol 12;-154413
for the 4-qubit star diagram of Fig. 1 indicates that it contains
12 observables of multiplicity 2 (i.e., that each occur twice
among its commuting sets) and that there are four commuting
sets of 4 observables and one each of 5 and 3 observables.
The sum of the products of each number with its subscript
in the left half of the symbol must equal the similar sum of
products on the right, and this can be used as a quick check
on the consistency of the symbol. For a symbol to represent a
valid KS proof, all the subscripts in its left half must be even
(it is also necessary that the number of commuting sets with
product —I be odd, but this fact is not made evident in the
symbol and can only be checked by looking at the diagram.)

The proof diagrams we have shown here are just a small
fraction of the ones we have discovered. We hope to make a
more extensive collection available at a website we plan to
set up.

PHYSICAL REVIEW A 88, 012102 (2013)
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FIG. 4. Six-qubit arch diagram, 11,-152433 (a), and 6-qubit arrow
diagram, 13,-254, (b).

III. PROJECTORS-BASED KS PROOFS

Each of the observables-based proofs of the previous
section can be used to generate a large number of projectors-
based proofs of the KS theorem. We illustrate how this can be
done by considering one particular case in detail, namely, the
4-qubit star diagram of Fig. 1. The procedure for obtaining the
projectors-based proofs is as follows.

(1) First enumerate the projectors that are the simultaneous
eigenstates of the various sets of commuting observables in
the proof. Each commuting set defines a number of mutually
orthogonal projectors that sum to the identity and that we
term a “pure” basis. The 4-qubit star diagram consists of six
commuting sets and so gives rise to 6 pure bases. However
these bases are of different sizes, with four consisting of 8
rank-2 projectors, one of 16 rank-1 projectors, and one of
4 rank-4 projectors. We now establish a numbering scheme
for the projectors. To do this we label the projectors of
each commuting set by their eigenvalues with respect to the
observables of that set and then convert the eigenvalue strings
into binary strings by the replacement +1 — 0, —1 — 1 and
finally arrange the binary strings in ascending order after
ignoring the digit at the extreme right. With the projectors
within each commuting set ordered in this fashion, we then
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number the projectors sequentially from 1 up,beginning with
the first commuting set and proceeding to the others. This
procedure is illustrated in Table I for the 4-qubit star diagram,
whose commuting sets are shown in the first column. As an
example of the numbering procedure, the projectors corres-
ponding to the observables in the last row are represented by
the binary strings 000, 011, 101, and 110 (which are arranged in
ascending order according to their first two digits) and assigned
the numbers 49 to 52, respectively (since the numbers 1 to 48
have already been taken by the earlier projectors).

(2) In addition to the pure bases, the projectors form a
number of “hybrid” bases that consist of mixtures of projectors
from different pure bases (the hybrid bases, like the pure bases,
consist of sets of mutually orthogonal projectors that sum to the
identity). In order to construct the hybrids, it is necessary to be
able to pick out orthogonalities between projectors belonging
to different pure bases. This can be done by using the following
rule: two projectors from different pure bases are orthogonal
if and only if they are eigenstates of one or more common
observables with differing eigenvalues for at least one of those
observables. As an example, projector 3 of the first row of
Table I (which is represented by the binary string 00101)
is orthogonal to projector 21 of the second row (which is
represented by the string 1001) because they have opposite
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TABLE 1. The projectors of the 4-qubit star diagram. The pro-
jectors are the simultaneous eigenstates of the mutually commuting
observables in each of the rows and are numbered as explained in the
text. The product of the eigenvalue signatures of the projectors in the
first row is —1, while it is 41 for the projectors in each of the last five
rows. The ranks of the projectors associated with each commuting
set are shown in the last column.

Observables Projectors Rank
ZZ7ZZ,ZZXX,XXII,XIZX,IXXZ 1-16 1
Z72727Z,72Z11,11Z1,1117Z 17-24 2
ZZXX,ZZII, IIXI, 111X 25-32 2
XIZX,I11ZI,XIII, 111X 3340 2
IXXZ, 111Z,1XI11,11X]1 41-48 2
XXII,XII1,IXII 49-52 4

eigenvalues for the observable ZZZZ. Using this rule it is
easy to pick out all the hybrid bases formed by the projectors
in Table I and these are listed, along with the 6 pure bases, in
Table II. Note that each hybrid basis is made up of the halves of
two pure bases, whose other halves make up a second hybrid
complementary to the first one. Complementary hybrids are
listed next to each other in Table II and bear the same number,
but are distinguished by the letters a and b.

TABLE II. The 30 bases formed by the 52 projectors of the 4-qubit star diagram. They consist of 6 pure bases (shown above the line) and
24 hybrid bases (shown below the line), with the bases numbered as shown at the left. The hybrid bases come in complementary pairs, with the
members of a pair bearing the same number and being distinguished by the letters a and b.

Index Projectors in basis

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 17 18 19 20 21 22 23 24

3 25 26 27 28 29 30 31 32

4 33 34 35 36 37 38 39 40

5 41 42 43 44 45 46 47 48

6 49 50 51 52

Ta 1 2 3 4 5 6 7 8 21 22 23 24
7b 9 10 11 12 13 14 15 16 17 18 19 20
8a 1 2 3 4 9 10 11 12 29 30 31 32
8b 5 6 7 8 13 14 15 16 25 26 27 28
9a 1 3 5 7 9 11 13 15 37 38 39 40
9b 2 4 6 8 10 12 14 16 33 34 35 36
10a 1 4 6 7 10 11 13 16 41 42 43 44
10b 2 3 5 8 9 12 14 15 45 46 47 48
11a 1 2 5 6 9 10 13 14 51 52

11b 3 4 7 8 11 12 15 16 49 50

12a 17 18 21 22 27 28 31 32

12b 19 20 23 24 25 26 29 30

13a 17 19 21 23 35 36 39 40

13b 18 20 22 24 33 34 37 38

14a 17 20 22 23 43 44 47 48

14b 18 19 21 24 41 42 45 46

15a 25 28 30 31 34 35 37 40

15b 26 27 29 32 33 36 38 39

16a 25 27 29 31 42 43 45 48

16b 26 28 30 32 41 44 46 47

17a 33 35 37 39 50 52

17b 34 36 38 40 49 51

18a 41 43 45 47 50 51

18b 42 44 46 48 49 52
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TABLE III. The 10 different types of projectors-based KS proofs
contained in the 4-qubit star diagram of Fig. 1. The second and third
columns give the number of projectors and bases in each proof, while
the fourth column gives the detailed symbol of the proof (see text
for explanation). The fifth column lists the number of distinct proofs
of each type, with the sum of all the numbers in this column being
4096 = 212,

Index Projectors Bases Symbol Count

1 47 13 51101112424234-1 6415110542, 128
2 47 13 101512227233-41,1,06426 512
3 47 13 10151242423314-4,, 10521, 128
4 49 15 51101112021023%-1 415110752 768
5 49 15 5110011222723314-1 415110652615 512
6 49 15 10151 18213233-4,,1,0852¢ 512
7 49 15 101512021023414-41,1,0752615 768
8 51 17 501041016216233- 116415110952, 128
9 51 17 51101101821323414-1,04151,0852614 512
10 51 17 101501621623414-41,1,0952615 128

(3) The system of projectors and bases yielded by any
observables-based KS proof contains a large number of
projectors-based parity proofs. Any projectors-based parity
proof consists of an odd number of bases with the property that
each of the projectors that occurs in them occurs in an even
number of them. This condition guarantees that it is impossible
to assign noncontextual 0/1 values to the projectors in such a
way that each basis has exactly 1 projector assigned the value
1 in it, which proves the KS theorem.

It is useful to have a symbol for the system of projectors
and bases that results from any observables-based KS proof.
We use a symbol consisting of two halves, with the left half
listing the properties of the projectors and the right half the
properties of the bases. Each number in the left half represents
the number of projectors of a particular rank and multiplicity
(with the rank indicated as a superscript and the multiplicity as
a subscript), and each number in the right half represents the
number of bases of a particular size (with the size indicated
as a subscript). As an example, the symbol for the system in
Table I1 is 1632244-11681221014s46 14 and it indicates, among
other things, that there are 32 rank-2 projectors of multiplicity
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5 and 14 bases of 8 projectors in this system. We use a similar
symbol to denote any projectors-based parity proof.>

We are now in a position to explain how all the projectors-
based proofs listed in Table III can be picked out from the
bases in Table II. All one has to do is to pick one member from
each pair of complementary hybrids (which can be done in
2!2 ways) and supplement them with the needed pure bases to
complete the proof. As an example, suppose one picks the 12
hybrids shown in the first row of Table IV. One finds that all the
projectors that occur in these bases occur an even number of
times among them, with the exception of projectors 1 through
16, which each occur either once or thrice; it is then clear that
one should pick pure basis 1 to ensure that all the projectors
occur an even number of times among the bases (and also that
the total number of bases is odd). This yields the proof shown
in the first row of Table IV, whose symbol is indicated in the
first row of Table III. There are 128 different proofs of this
kind, as noted in the last column of Table III. By picking all
possible combinations of hybrid bases, it is possible to generate
all the proofs listed in Table III. It is interesting to note that
while there are several proofs involving the same total number
of projectors and bases, their detailed structure (as revealed by
their symbols) is quite different.

This completes our description of the procedure for
generating projectors-based proofs from observables-based
ones. The generation of the basis table associated with an
observables-based proof (the equivalent of Table II) takes a
bit of effort, but once it is in hand the rest of the process is
quite painless. A particularly simple type of observables-based
proof is one in which each observable occurs in exactly two
commuting sets and any two commuting sets have at most one
observable in common (the proofs in Figs. 1-4 are all of this
type). If O is the number of observables in such a proof, it is
not difficult to show that the number of hybrid basis pairs is
also O and the number of projectors-based proofs associated
with this system is 2¢. Table V illustrates this remark by listing
the number of projectors-based proofs associated with each of
the observables-based proofs of Figs. 1-4. The reader should

2Note that we use bold font for the symbols of the observables-based
proofs listed and ordinary font for the symbols of the projectors-based
proofs in order to avoid any confusion between them.

TABLE IV. One example of each of the 10 different types of projectors-based proofs listed in Table III. The bases in each proof are labeled

using the notation of Table II.

Index Bases in example proof

1 Ta 8a 9a 10a 11a 12a 13a 14b 15a 16a 17b 18b 1

2 Ta 8a 9a 10a 11b 12a 13a 14a 15a 16a 17b 18a 2

3 Ta 8a 9a 10a 11b 12a 13a 14b 15a 16a 17b 18b 6

4 Ta 8a 9a 10a 11a 12a 13a 14a 15a 16a 17a 18a 1 2 4

5 Ta 8a 9a 10a 11a 12a 13a 14a 15a 16a 17b 18a 1 2 6

6 Ta 8a 9a 10a 11b 12a 13a 14a 15a 16a 17a 18b 2 4 5

7 Ta 8a 9a 10a 11b 12a 13a 14a 15a 16a 17a 18a 2 4 6

8 Ta 8a 9a 10a 11a 12a 13a 14a 15a 16b 17a 18a 1 2 3 4 5
9 Ta 8a 9a 10a 11a 12a 13a 14a 15a 16a 17a 18b 1 2 4 5 6
10 Ta 8a 9a 10a 11b 12a 13a 14a 15a 16b 17a 18a 2 3 4 5 6
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TABLE V. For each of the observables-based proofs of Figs. 1-4, the fourth column shows the number of pure and hybrid bases formed by
the projectors and the fifth column shows the total number of projectors-based parity proofs in that system.

Proof Diagram Symbol Pure/hybrid bases Parity proofs
4-qubit star diagram Fig. 1 12,-154415 6/24 212 = 4096
4-qubit windmill diagram Fig. 1 13,-5423 7/26 213 = 8192
4-qubit clock diagram Fig. 2 13,-2465 8/26 213 = 8192
4-qubit whorl diagram Fig. 2 20,-1412; 13/40 220 — 1048576
5-qubit star diagram Fig. 3 12,-154413 6/24 212 = 4096
5-qubit wheel diagram Fig. 3 15,-355; 8/30 215 = 32768
6-qubit arch diagram Fig. 4 11,-15243; 6/22 211 = 2048
6-qubit arrow diagram Fig. 4 13,-2544 6/26 283 = 8192

be able to generate all the projectors-based proofs in these
systems using the methods described in this section.

IV. KS PROOFS BASED ON KITE DIAGRAMS

Figure 5 shows an observables-based KS proof based on a
general diagram of the kite class. There are 9 observables in
the body of such a diagram and one of them also serves as the
starting point of its tail, which can be of arbitrary length. It is
easy to see that the diagrams of this class provide a KS proof
because each observable occurs in two commuting sets and just
one of the commuting sets has a product of —I. By making
suitable choices for the observables A, B,..., H, I;,..., L,,
it is possible to construct KS proofs for any number of qubits
from 2 up. Before presenting specific examples of such proofs,
we draw attention to a simple class of projectors-based proofs
implied by Fig. 5 no matter what choices are made for the
observables in it.

To do this, we first enumerate the projectors defined by the
sets of commuting observables in Fig. 5 and then set up the
basis table formed by them. These tasks are accomplished in
the same manner as in Sec. II. Once the basis table is available,
we point out a set of projectors-based proofs contained
in it.

Table VI shows the sets of commuting observables in the
general kite diagram of Fig. 5 and the projectors defined by
them. The first four commuting sets define 4 projectors each,
which are numbered from 1 to 16 and have their eigenvalue
signatures indicated at the tops of the columns. The last two

FIG. 5. The general diagram of the kite class. The four sets of
three commuting observables, (A, C, F), (B, D, E), (A, B, G), and (C,
D, H), have product +I and are shown by thin lines. The other two
commuting sets have n + 2 observables each; the set (F, E, I;,...,1,)
has product +I and is shown by a thin line while the set (G, H,
Ii,..., I,) has product —I and is shown by a thick line. Suitable
choices of the observables A, B, ..., I, give rise to all the proofs of
the kite family.

sets define projectors labeled by n + 2 eigenvalue signatures
each, but rather than number the projectors individually we
adopt the shortcut of using a single number to label all
projectors having the same eigenvalues for the 3 observables
in the body of the kite and differing only in their eigenvalues
for the observables in the tail. Thus, for example, the number
17 denotes all projectors having eigenvalues +1, +1, +1 for
F, E, I; but all possible combinations of eigenvalues for the
observables I, ..., I, in the tail. The numbers from 18 to 32
are to be interpreted similarly.

The projectors in Table VI form 6 pure bases, represented by
the rows of the table. Using the orthogonality rule for projec-
tors from different pure bases (mentioned in Sec. II), it can be
verified that they form the 9 pairs of complementary hybrids
shown in Table VII. Table VIII shows 16 projectors-based
proofs extracted from the bases of Table VII (they can be ob-
tained by picking one member from each of the first four hybrid
pairs, which can be done in 2* ways, and supplementing them
with the required members of the remaining five hybrids). It is
remarkable that any diagram of the kite class, irrespective of
the length of its tail or the number of qubits it involves, always
admits this set of 16 projectors-based proofs involving 9 bases
each.> We believe that 9 is the minimum number of bases for
a projectors-based proof in any dimension, but we do not have
proof of this fact.

We finally give examples of N-qubit observables that can
play the role of the labels A, B, C, ..., I, in Fig. 5. It turns out
to be sufficient to specify the members of the commuting set
G,H,1,...,1,, since they determine all the other observables
in the manner we explain. Table IX lists the members of this set
for 3 and 5 qubits before indicating its pattern for an arbitrary
odd number of qubits, and Table X does the same for 4 qubits, 6
qubits, and an arbitrary even number of qubits. In each case the
commuting observables are displayed horizontally, with their
corresponding qubits vertically aligned. The observables G
and H are always the ones whose first qubits are in bold, while
the others are Iy, ..., I, (it is immaterial how the associations
are made within these two groups). Once these observables

3 Any kite-shaped class diagram actually gives rise to many more
projectors-based proofs than just the 16 exhibited here. However the
total number of proofs is not given by the 29 rule because two of the
commuting sets (namely, the ones that overlap along the tail) have
more than one observable in common.
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TABLE VI. Projectors defined by the kite class of diagrams of Fig. 5. The four commuting sets of observables in the upper table define the
projectors 1 through 16, while the two sets in the lower table define the groups of projectors numbered 17 through 32. The eigenvalue signatures
of the projectors for the defining observables are shown at the tops of the columns. The numbers 1 through 16 represent single projectors but the
numbers 17 through 32 each represent an ensemble of mutually orthogonal projectors, as explained in the text. The product of the eigenvalue
signatures of each of the projectors 1 through 16 is +, and the same is true of each of the members of the ensembles 17 through 24. However

the product of the signatures is — for each of the members of the ensembles 25 through 32.

Observables + + + + - - -+ - - —+

A,CF 1 2 3 4

B,D,E 5 7

A,B,G 9 0 11 2

C,D,H 13 4 15 6
Observables 4+ 4+ + 4+ - 4+ -4 4+ - = —++ -4 — —— ... —— —
EEL,... 17 18 19 20 21 22 23 24
GHI,... 25 26 27 28 29 30 31 32

have been placed at their locations in the general kite diagram
of Fig. 5, F and E are chosen as the observables obtained from
G and H by swapping their first qubits (which are always X
and Z). The observables A, B, C, and D are then uniquely
determined by the requirement that they have the necessary
commutation and product properties. Figure 6 (left) shows the
kite diagram that results on applying this procedure to the
3-qubit observables of Table IX. The 4-qubit observables of
Table X yield a kite diagram with a tail of length two, but
rather than exhibiting this proof we show, in Fig. 6 (right), a
more economical proof with a tail of length one.

The economy we pointed out for the 4-qubit proof extends
to higher qubit proofs as well: we have found N-qubit
proofs, for all N > 3, whose longest commuting sets involve
considerably less than the N + 1 observables involved in the
proofs of Tables IX and X. Some examples of such proofs are
shown in Table XI. The 16-qubit proof has a commuting set
of just 7 observables, which is much less than the 17 involved
in the proof of Table X. This sort of compression allows for
the design of much more economical KS tests as one goes to
a large number of qubits.

V. DISCUSSION

This paper has established the following results:
(1) The hierarchy of N-qubit Pauli groups (for N > 2)
contains many subsets of observables that provide parity proofs

of the KS theorem. We restrict our attention to proofs that are
irreducible (i.e., that cannot be reduced to simpler proofs by
omitting some subset of observables and/or qubits in them)
and unitarily inequivalent. With these caveats, the 2-qubit
group gives rise to only two distinct types of proofs (the
Peres-Mermin square and a more complicated structure we call
the whorl, which are shown as Figs. 1 and 2 of Ref. [4]), but
the 3-qubit group leads to many more [4] and the possibilities
increase rapidly as one goes upwards in the number of qubits.
It would be an interesting problem to make a more systematic
inventory of the proofs at a given value of N and to get a
feeling for how this number grows with N. There are two
devices we have introduced in this paper that could assist with
this task: the first is a diagrammatic representation of each
proof (from which it can be verified by inspection), and the
second is a symbol that captures the important features of the
observables and special commuting sets in the proof. However
we should caution that neither of these devices suffices to
pin down a proof uniquely since there are distinct proofs that
can be accommodated on the same diagrammatic skeleton,
as well as inequivalent proofs that share the same symbol
(see Fig. 7 of Ref. [4] for an example). Even in the absence
of a detailed knowledge of the terrain, one can state quite
confidently that the Pauli group (particularly as one goes to a
larger number of qubits) abounds in a great variety of structures
that can be used to give transparent demonstrations of quantum
contextuality.

TABLE VII. Nine of the hybrid basis pairs formed by the projectors of Table VI. Complementary hybrids are shown on the same line and

distinguished by the letters a and b.

Index Projectors in basis Index Projectors in basis

la 1 2 11 12 1b 3 4 9 10

2a 1 3 15 16 2b 2 4 13 14

3a 5 6 10 12 3b 7 8 9 11

4a 5 7 14 16 4b 6 8 13 15

Sa 1 4 21 22 23 24 5b 2 3 17 18 19 20

6a 5 8 19 20 23 24 6b 6 7 17 18 21 22

7a 9 12 29 30 31 32 7b 10 11 25 26 27 28

8a 13 16 27 28 31 32 8b 14 15 25 26 29 30

9a 17 18 23 24 25 26 31 32 9b 19 20 21 22 27 28 29 30
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TABLE VIII. The 16 projectors-based KS proofs formed by the
bases of Table VII (with the bases labeled as in that table).

Index Bases in proof

1 la 2a 3a 4a 5b 6b 7b 8b 9b
2 la 2a 3a 4b 5b 6a 7b 8a 9a
3 la 2a 3b 4a 5b 6a 7a 8b 9a
4 la 2a 3b 4b 5b 6b Ta 8a 9b
5 la 2b 3a 4a Sa 6b 7b 8a 9a
6 la 2b 3a 4b S5a 6a 7b 8b 9
7 la 2b 3b 4a S5a 6a 7a 8a 9b
8 la 2b 3b 4b Sa 6b 7a 8b 9a
9 1b 2a 3a 4a S5a 6b 7a 8b 9a
10 1b 2a 3a 4b S5a 6a 7a 8a 9b
11 1b 2a 3b 4a Sa 6a 7b 8b 9b
12 1b 2a 3b 4b S5a 6b 7b 8a 9a
13 1b 2b 3a 4a 5b 6b Ta 8a 9
14 1b 2b 3a 4b 5b 6a 7a 8b 9a
15 1b 2b 3b 4a 5b 6a 7b 8a 9a
16 1b 2b 3b 4b 5b 6b 7b 8b 9

(2) The second major point of this paper is that every
observables-based KS proof can be used to generate a system
of projectors and bases from which a a large number of
projectors-based KS proofs can be obtained. The algorithm for
generating these proofs is simple, and the proofs themselves
are easy to validate because only a simple parity check is called
for. We have introduced a detailed symbol for a projectors-
based proof that describes the projectors and bases in it, both
as a way of summarizing the key aspects of the proof and to
draw attention to the wide variety of proofs that can coexist
within the same framework of pure and hybrid bases provided
by an observables-based proof. Since the observables-based
proofs are themselves very numerous, and each spawns a large
number of projectors-based proofs (typically thousands), the
quantity and variety of the latter proofs vastly outstrip those of
the former. We should add that the symbols we have introduced
for the projectors-based proofs, though useful and informative,
do not serve to pin them down uniquely since we have found
many examples of inequivalent proofs that are described by
the same symbol. Among all the observables-based and related
projectors-based proofs, there is a simple class that is worth
singling out for special mention: it is the one in which each
observable occurs in exactly two commuting sets and any two
commuting sets have at most one observable in common. One
knows in this case, even before one has set up the basis table,
that one will find exactly 2© projectors-based proofs.

TABLE IX. Observables for a kite class proof based on 3 qubits
(left), 5 qubits (middle), and an arbitrary odd number of qubits (right).

zZ I I I Z z I - I Z
7z I Z Iz I I Z Iz s
I Z Z I I zZ I Z s I Z
X X X I I I Z Z I I z z
Y Y X X X X X X X X X X

Y Y Y Y X Y Y Y X

PHYSICAL REVIEW A 88, 012102 (2013)

TABLE X. Observables for a kite class proof based on 4 qubits
(top left), 6 qubits (top right), and an arbitrary even number of qubits
(bottom).

V4 V4 z Zz V4 z
V/ V4 z z Y Y z V4 V4 V4
Y Y V4 z X 1 X 1 1 1
X 1 X 1 1 X 1 X 1 1
1 X 1 X 1 1 X 1 X 1
1 1 X X 1 1 1 X 1 X
1 1 1 1 X X
VA VA VA VA VA
Y Y V4 z z
X 1 X 1 1
1 X I X
" J
1 1 X 1 X
1 1 1 X X

(3) We have discovered several infinite families of
observables-based proofs (that we term the star class, the wheel
class, the whorl class, and the kite class) whose members
yield KS proofs for all numbers of qubits from 2 up. The
kite class is the most complex of these families, and we have
given a detailed discussion of it in this paper. This family
has two remarkable features. The first is that for a system
of N qubits it is always possible to find commuting sets of
considerably less than N observables that can be used to
construct a KS proof, thus leading to greater economy in the
design of experimental tests based on this class of proofs.
And the second is that any kite-shaped proof always yields a
projectors-based proof involving only 9 bases (or experimental
contexts). These proofs are generalizations of the classic 18-9
proof of Cabello et al. [9] in four dimensions and hold in all
dimensions of the form 2V, for N > 2. It is an open question
whether there are any proofs involving less than 9 bases in
these dimensions (we believe the answer is no). An even more
basic question is whether there are any projectors-based parity
proofs* at all in any even dimension not of the form 2. Again
we suspect that the answer is no, but we do not have a proof of

“Nonparity proofs based on rays are known in all dimensions >3
[14,15].

FIG. 6. Three-qubit kite diagram (left) based on the observables
of Table IX and a four-qubit kite diagram (right) based on the same
skeleton as at the left.
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TABLE XI. Kite proofs for 7 qubits based on 5 commuting observables (top), for 11 qubits based on 6
commuting observables (middle), and for 16 qubits based on 7 commuting observables (bottom). The full proofs
can be constructed by placing these observables on the skeleton of the kite in the manner explained in the text.

Z V4 V4 z
X X z X
Y 1 X z
1 Y 1 X
1 1 X 1
1 1 V4 z V4
V/ 1 V4 Z z
1 z X X 1
X 1 X 1 X
1 X 1 X 1
Y Y 1 1 X
V/ z Z Z Z zZ V4 V4
X X X X 1 1 1 I
Y 1 1 1 X X X 1
1 Y I 1 Y 1 1 1
1 1 1 1 1 Y 1 X
1 1 Y 1 1 1 1 Y
1 I I Y 1 1 Y 1

~~ N XN

z 1 1
X Zz V4
Z X X
1 Zz X
X X V4
V4 z Zz z z
X 1 X X 1
Z z 1 I I
1 X z X X
X 1 I V4 V4
1 X X I X
1 1 1 Il I I I I
V4 V4 V4 V4 1 1 1 1
X 1 1 1 V4 z 1 1
1 X X X X I VA I
Y Y 1 1 1 1 X VA
1 1 Y 1 Y X 1 X
1 1 1 Y I Y Y Y

this conjecture (and would find it fascinating if someone came
up with a counterexample).

There is currently a great interest in contextuality and
nonlocality and their experimental tests. In one interesting
development, it has been shown that any projectors-based
KS proof can be converted into an inequality for testing
quantum contextuality [16] and a number of experimental
tests of such inequalities have actually been carried out [17].
A number of works have shed light on contextuality in a
manner that bypasses the KS theorem [18]. On the formal
side, a connection between KS proofs and “logical Bell
inequalities” has been made in Ref. [19] and the question

of state-independent contextuality for identical particles has
been explored in Ref. [20]. Although the present work
concentrates entirely on qubits, it should be pointed out
that KS proofs for qudits (i.e., d-state systems) have been
explored in Ref. [21]. Among the practical applications of
contextuality that are receiving attention are quantum key
distribution [22], quantum error correction [23,24], random
number generation [25], parity oblivious transfer [26], and the
design of relational databases [27]. This is not a complete
survey, of course, but should convey a feeling for the
broader context in which the results reported here may be of
interest.
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