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Optimization of resonant effects in nanostructures via Weierstrass factorization
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Extensive numerical computations are often required to optimize the optical properties of nanostructures. Here,
we use the Weierstrass factorization theorem to express the scattering matrix in terms of spectral singularities.
We show that the location of poles and zeros of the scattering matrix fully determines all scattering properties,
and that the scattering spectra of nanostructures can be decomposed into Lorentzian resonances over an arbitrary
range of frequencies. This technique is applied to design nanoshell particles with enhanced absorption.
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Resonant optical scatterers play a crucial role in nanoscale
optics for concentrating and manipulating light far beyond
the diffraction limit. To describe the scattering of light by
nanoparticles, the Mie theory and its generalizations are often
used as a theoretical framework [1]. However, the optimization
of resonant properties requires extensive numerical compu-
tations which only provide a limited understanding of the
underlying physics. A number of simplified models were in-
troduced to bring more physical insight and to explain various
resonant effects in nanostructures. Coupled oscillators and,
more generally, coupled-mode theories [2,3] can be applied to
describe Fano resonances [4–6], electromagnetically induced
transparency and absorption [7–12], superscattering [13,14],
as well as nonlinear effects [15–17]. Nevertheless, the coupled
oscillator models are mostly used as a phenomenological tool
which requires many fitting parameters and coupling factors
[18–20].

Here, we propose an alternative approach based on the
Weierstrass factorization theorem. We show that the singulari-
ties of the scattering matrix create a natural basis to decompose
the scattering spectra of nanostructures. This approach deter-
mines all parameters of the coupled oscillators in a unique
way and simplifies the optimization of resonant properties.
As a typical example, we consider spherical nanoparticles
and provide a detailed analysis of their spectra, including the
optimization of absorption.

The scattering properties of any structure are fully charac-
terized by the scattering matrix Sl(ω) = aout/ain, which relates
the amplitudes of outgoing aout and ingoing ain waves. It
is assumed here that the S-matrix is diagonalized, which is
always true for particles of spherical symmetry in the basis
associated with electric and magnetic multipoles of a certain
order l. Therefore, it is sufficient to consider the scattering
process for each diagonal component, or scattering channel,
separately.

The S-matrix is analytical anywhere in the complex fre-
quency plane except for a discrete set of singular points. These
singularities can be of two different types: poles and zeros. The
frequencies ω−

m at which the outgoing wave aout �= 0 can exist
in the absence of external excitation ain = 0 correspond to
poles Sl(ω−

m) → ∞. For passive structures without gain, the
amplitude of such modes aout(t) = aout(0) exp(−iω−

mt) should
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decay as t increases due to the leakage of energy out of
the structure. As a result, poles are always located in the
lower part of the complex frequency plane Im(ω−

m) < 0. The
frequencies ω+

m at which the ingoing wave ain �= 0 is fully
absorbed aout = 0 correspond to zeros Sl(ω+

m) → 0. Usually,
zeros are located in the upper part of the complex frequency
plane Im(ω+

m) > 0.
The poles ω−

m and zeros ω+
m of the S-matrix are related to

perfectly emitting and absorbing modes of the system, because
they satisfy the outgoing and ingoing boundary conditions,
respectively. They can be considered as classical analogs of
the creation and annihilation operators that are widely used in
quantum mechanics. This formalism helps to build a consistent
theory which describes the excitation of multiple resonances
and the interplay among them [21].

In general, the knowledge of poles and zeros of some
function is sufficient to restore it anywhere in the complex
plane. This follows from the Weierstrass factorization theorem
[22], which is often used in nuclear physics [23], but received
surprisingly much less attention in electrodynamics and
nanophotonics. Here, we apply it to decompose the S-matrix
of spherical nanoparticles. The Weierstrass factorization for
each diagonal component, or multipole l, takes the following
form [24]:

Sl(ω) = A exp(iBω)
∏
m

ω − ω+
m

ω − ω−
m

, (1)

where A and B are constants defined as

A = Sl(0)
∏
m

ω−
m

ω+
m

, (2)

iB = S ′
l (0)

Sl(0)
+

∑
m

(
1

ω+
m

− 1

ω−
m

)
. (3)

This factorization reexpresses the full S-matrix and all measur-
able quantities such as extinction or scattering cross sections in
terms of singular points. From the physical point of view, the
constants A and B are necessary to ensure a correct asymptotic
behavior for infinitely long and short wavelengths. It is possible
to prove that Sl(0) = 1 and S ′

l (0) = 0 for structures of finite
size [1], which further simplifies Eqs. (2) and (3).

The resonant frequencies ω±
m can be found in a variety of

different ways. If the function Sl(ω) can be computed for any
complex frequency as in the Mie theory, then it is possible to
extract the positions of zeros and poles by using root finding
routines such as the Newton method [3]. A more general
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approach which is suitable for the finite-element or boundary-
element methods is to formulate an eigenvalue problem for
the system and to solve it first with the outgoing boundary
conditions and then with the ingoing ones. The two sets of the
eigenvalues will correspond directly to the poles and zeros.
Finally, it is possible to extract the resonant frequencies from
experimental data by using a harmonic inversion technique
either in time or in frequency domain [25,26].

Although the Weierstrass factorization is based on an
infinite product, it can be readily converted to an infinite sum.
The decomposition of Eq. (1) into partial fractions leads to the
following formula [24]:

Sl(ω) = A exp(iBω)

[
1 +

∑
m

σm

ω − ω−
m

]
, (4)

where σm are the residues which can be found as

σm = (ω−
m − ω+

m)
∏
n�=m

ω−
m − ω+

n

ω−
m − ω−

n

. (5)

According to Eq. (4), each pole creates a peak of Lorentzian
shape in the scattered spectra. The knowledge of the singu-
larities ω±

m fully determines not only the position Re(ω−
m) and

half width Im(ω−
m) of these peaks, but also their strength σm so

that there is no need to apply any fitting routine. A remarkable
feature of Eq. (4) is that it predicts the presence of the term
exp(iBω) which has been ignored in the models of coupled
oscillators so far. This term accounts for retardation effects and
becomes significant for structures whose size is comparable to
the wavelength of light.

As an example, we apply our approach to a nanoshell
structure [27]. The structure consists of a silica core with
the radius 120 nm which is coated by a spherical gold layer
with a thickness of 30 nm. The ambient medium is air with
the refractive index n(ω) = 1. To simplify the analysis, we
take the refractive index of silica to be constant n(ω) = 1.45.
The permittivity of gold is described by the Drude formula
ε(ω) = 1 − ω2

p/(ω2 + i�ω), where ωp = 7.28ω0 and � =
0.0215ω0 [28]. All frequencies are specified in normalized
units so that ω0 = 2πc/λ0 corresponds to the wavelength
λ0 = 1 μm and the energy of photons h̄ω0 = 1.24 eV. It is
possible to use more accurate models for gold which take
into account interband transitions [29–31] and to apply the
empirical Sellmeier equation for the refractive index of silica
[32]. However, the aim of this study is to demonstrate how
the Weierstrass factorization helps to analyze the resonant
properties of nanostructures. More sophisticated dispersion
relations would simply lead to a larger number of poles and
zeros in a given spectral range.

In the following, we consider the scattering channel of the
S-matrix which corresponds to electric dipoles. All electric
and magnetic multipoles of higher orders can be treated in a
similar way. Figure 1 shows the map of the S1 component in
the complex frequency plane. The function S1(ω) for this map
was computed with the Mie theory [1]. Several singular points
(poles ω−

m and zeros ω+
m) are clearly visible. The phase around

them rotates by 2π in clockwise (poles) and counterclockwise
(zeros) direction, which further confirms that these
singularities are of the first order, or simple. Moreover,
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FIG. 1. (Color online) Map of the S1 component (electric dipole)
in the complex frequency plane for a spherical nanoparticle. The
nanoparticle consists of a silica core (radius 120 nm) covered by
a layer of gold (thickness 30 nm). The contours of blue and green
shades show the absolute value of S1 in a logarithmic scale. The
positions of poles ω−

m and zeros ω+
m are labeled on the plot. The

regions of the plot which are inside dashed rectangles are magnified
in the insets on the top. The white contour lines show the phase of
S1 in the steps of π for thick lines and π/10 for thin lines. The black
arrows indicate the direction in which the phase grows from 0 to π .

since the components of the S-matrix are single-value
functions, there is no need to introduce any branch cuts.
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FIG. 2. (Color online) (a) The Mie coefficient M1 (electric dipole)
as a function of frequency for the nanoparticle with the same
parameters as in Fig. 1. The spectrum can be computed with the Mie
theory (blue line) or as a sum of Lorentzian resonances according
to Eq. (4). The difference between these representations (red and
green lines) vanishes if a sufficiently large number of resonances is
taken into account. The positions of these resonances are indicated by
vertical dashed lines. (b) The contribution of various terms to the Mie
coefficient: Lorentzian resonances (gray contours) and a retardation
term (blue line).
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FIG. 3. (Color online) The movement of the poles ω−
m in the

complex frequency plane as the radius of the layers in the nanoshell
structure is adjusted. (a) The radius of the core is fixed to 120 nm,
while the thickness of the shell is varied from 0 to 120 nm. Notice
that the path of the poles is different before and after the plasma
frequency (vertical gray line). (b) The radius of the core is varied
from 60 to 120 nm, while the thickness of the shell is set to 30 nm.
The numbering of the poles is consistent with Fig. 2.

The positions of poles and zeros satisfy some symmetry
relations which can be derived from the general properties of
the S-matrix. Since the response to an excitation described by a
real function must be a real function [23], the following relation
holds: [Sl(ω)]∗ = Sl(−ω∗). As a result, the singularities always
exist in pairs {ω±

m, − (ω±
m)∗} which are mirror symmetric with

respect to the imaginary axis. If the structure is lossless, the
S-matrix is unitary |Sl(ω)|2 = 1 for all real frequencies [23],
because the out- and ingoing waves carry the same amount
of energy. As a consequence, the poles and zeros are not
independent and can be related to each other, ω+

m = (ω−
m)∗.

This property remains approximately valid for lossy structures
which contain metals as shown in Fig. 1.

Many other spectra such as Mie coefficients or effective
polarizabilities can be expressed in terms of the S-matrix.
For example, the Mie coefficients Ml can be computed as
Ml = (Sl − 1)/2, and Fig. 2 shows the spectrum of the M1

coefficient (electric dipole) together with its decomposition
into Lorentzian peaks. The B term creates a nonzero back-
ground |[A exp(iBω) − 1]/2|2 for the peaks, and it can be
written approximately as [1 − cos(Bω)]/2 if A ≈ 1. The
superpositions of Lorentzian peaks with each other and with
the background term produce asymmetric Fano shapes [33].
They are particulary pronounced around the frequencies 1.9ω0

and 4.7ω0 in Fig. 2(a).
The Lorentzian decomposition is based on the formulas

(4) and (5) which are valid for an arbitrary number of
resonances. In general, it can be problematic to find all of
them because even the simplest optical structures such as

dielectric multilayers have an infinite number of resonances
[34]. However, the optical structures are usually studied in a
limited range of frequencies, and it is sufficient to take into
account only those resonances which can be excited by the
sources in the infrared or visible range. Figure 2(a) is very
illustrative in this regard, since it shows that three pairs of poles
and zeros provide a remarkably good accuracy over a broad
range of frequencies. The width of the range is only limited
by the presence of other resonances at higher frequencies.
By including more and more resonances into the Weierstrass
factorization, the range of validity can be made arbitrarily
wide.

It is worth noting that Ml(ω) and Sl(ω) have a common
set of poles, but their zeros are different. The zeros of
Ml(ω) appear at those points where |Sl| = 1 and arg(Sl) = 0
(cf. Fig. 1). The same conclusions can be applied for the
effective polarizability α(ω) of the nanoparticle, because it is
proportional to the Mie coefficient, α = (3M1)/(2ik3), where k

is the wave number in the ambient medium [35]. The effective
polarizabilities in the quasistatic limit can be computed very
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FIG. 4. (Color online) Optimization of absorption in the
nanoshell structure. The real (a) and imaginary (b) parts of the zeros
ω+

m are shown as a function of rc/rs, where rc is the core radius,
and rs is the total size of the structure which is fixed to 150 nm.
A schematic picture in the middle shows how the geometry of the
structure changes during the optimization. Total absorption occurs
if for some mode Im(ω+

m) = 0. This condition can be satisfied at
rc/rs = 0.578, as indicated in the plot. (c) The absorption spectrum
of the optimized nanoshell structure.
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efficiently with the Weierstrass factorization. By noticing that
α(0) = S ′′′

1 (0)c3/(8i) and substituting the third derivative of
Eq. (1), one obtains the following formula,

α(0) = c3

4i

∑
m

[
1

(ω−
m)3

− 1

(ω+
m)3

]
, (6)

which converges very rapidly due to the third power of
the resonant frequencies. The effective polarizabilities of the
nanoshell structures can be further used to compute the effec-
tive permittivity and permeability of composite media [36].

It is possible to control the positions of poles and zeros by
varying the parameters of the structure. If the thickness of the
metal shell is increased, the tunneling of waves through it is
reduced, and the poles shift towards the real axis [Fig. 3(a)].
This is especially true for poles which are below plasma
frequency ωp. If the radius of the core is increased, the poles
move to lower frequencies [Fig. 3(b)], because standing waves
with the same number of peaks can fit into a larger structure
at smaller frequencies.

The pole tracking diagrams are useful to explain the origin
of the poles. When the thickness of the shell is infinitely small
[Fig. 3(a)], it can still create a sufficiently strong reflection
when either ε(ω) = ∞ or ε(ω) = 0. According to the Drude
formula, this happens at the frequencies ω ≈ 0 and ω ≈ ωp.
Therefore, the poles ω−

1 and ω−
4 can be identified with the

singularities of the Drude model. All other poles tend to an
equidistant distribution, which resembles the standing-wave
modes of the Fabry-Pérot resonator.

Since zeros account for the absorption processes, following
their trajectories in the complex plane allows us to optimize
the absorption in nanoshell structures. While the trajectories of
poles are restricted to the lower part of the complex frequency
plane, zeros do not have such a limitation and can cross the

real axis Im(ω+
m) = 0. This means that a total absorption can

be observed at real frequencies. It often occurs in metallic
gratings for plane waves incident at a certain angle [37,38],
and it is interesting to see whether a similar effect happens for
nanoshell structures.

Figure 4 shows the real and imaginary parts of the zeros
when a scan over the parameters of the nanostructure is
performed. One of the zeros (ω+

2 ) crosses the real frequency
axis when the ratio of core and shell radii is equal to 0.578.
We selected this zero because it can be observed at the
lowest frequency Re(ω+

m). The absorption spectrum for the
optimized geometry is shown in Fig. 4(c), which confirms that
a total absorption can be achieved in the scattering channel of
electric dipoles. Such coherent absorbers can be considered as
time-reversed lasers [39] and are promising for applications in
nano-optics [40].

In conclusion, a semianalytical approach was developed to
describe the resonant properties of nanostructures. It does not
require any fitting parameters and relies on the Weierstrass
factorization theorem to express all spectra in terms of
singularities. This approach simplifies the design of resonant
properties for applications, and as an example, it was shown
how to optimize absorption in nanoshell structures. We believe
that this formalism is not limited to single scatterers and can
be readily extended to periodic structures such as diffraction
gratings or metamaterials.
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