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Non-positive-partial-transpose subspaces can be as large as any entangled subspace
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It is known that, in an (m ⊗ n)-dimensional quantum system, the maximum dimension of a subspace that
contains only entangled states is (m − 1)(n − 1). We show that the exact same bound is tight if we require the
stronger condition that every state with range in the subspace has non-positive partial transpose. As an immediate
corollary of our result, we solve an open question that asks for the maximum number of negative eigenvalues of
the partial transpose of a quantum state. In particular, we give an explicit method of construction of a bipartite
state whose partial transpose has (m − 1)(n − 1) negative eigenvalues, which is necessarily maximal, despite
recent numerical evidence that suggested such states may not exist for large m and n.
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In quantum-information theory, a pure state |v〉 ∈ Cm ⊗ Cn

is called a product state if it can be written in the form |v〉 =
|v1〉 ⊗ |v2〉 for some |v1〉 ∈ Cm and |v2〉 ∈ Cn; otherwise it
is called entangled. Similarly, a mixed state ρ ∈ Mm ⊗ Mn

is called separable if it can be written in the form ρ =∑
i pi |vi〉〈vi | for some real constants pi > 0 with

∑
i pi = 1

and product states |vi〉; otherwise it is called entangled.
The problem of determining whether or not a given

mixed state is entangled is one of the central questions in
quantum-information theory, and it is expected that no efficient
procedure for answering this question in full generality exists
[1,2]. However, there are many known one-sided tests that can
be used to prove that a given state is entangled. The most
well-known such test is the positive partial transpose (PPT)
criterion [3], which says that if ρ is separable then ρ� is positive
semidefinite, where � refers to the linear partial transposition
map that sends |i〉〈j | ⊗ |k〉〈�| to |i〉〈j | ⊗ |�〉〈k| (i.e., it is
the map idm ⊗ T : Mm ⊗ Mn → Mm ⊗ Mn, where idm is the
identity map and T is the usual transpose map with respect
to the standard basis {|i〉}). If ρ� is positive semidefinite, it is
said that ρ is positive partial transpose (PPT); otherwise, it is
called non-positive partial transpose (NPT).

It is known that (m − 1)(n − 1) is the maximum dimension
of a subspace S ⊆ Cm ⊗ Cn such that every |v〉 ∈ S is
entangled [4,5]. In the present paper, we consider the related
problem of finding the maximum dimension of a subspace
S such that every ρ ∈ Mm ⊗ Mn with its range contained
in S is NPT. Since all NPT states are entangled, it follows
immediately that no such subspace of dimension greater than
(m − 1)(n − 1) exists. Our main result shows that this bound
is tight for all m and n. That is, there exists a subspace
of dimension (m − 1)(n − 1) that not only is entangled but
also is NPT. This result is perhaps surprising, since most
results concerning the relationship between the PPT criterion
and separability show that these two properties become more
distant from each other as m and n increase. For example, the
converse of the PPT criterion (that is, the statement that if ρ is
entangled then it is NPT) only holds when mn � 6 [6], the set
of PPT states is much larger than the set of separable states in
general [7,8], and PPT states can be very far from the set of
separable states when m and n are large [9].

As an important consequence of our result, we resolve
completely the question of how many negative eigenvalues
the partial transpose of a bipartite mixed state can have. This

question is motivated by the facts that some measures of
entanglement are defined in terms of the negative eigenvalues
of ρ� [10,11] and that bounds on the number of negative
eigenvalues of ρ� have recently been used to show that squared
negativity is not a lower bound of geometric discord [12]. It is
known [13] that the partial transpose of a state cannot have
more than (m − 1)(n − 1) negative eigenvalues. However,
tightness has only been shown when min{m,n} � 2 [14]
or m = n = 3, and recent numerical evidence [13,15] has
suggested that this bound may not be tight for larger values of
m and n. We show, via explicit construction, that the contrary
is true; for all m and n there exists ρ ∈ Mm ⊗ Mn such that ρ�

has (m − 1)(n − 1) negative eigenvalues.
We now present our main result, which shows that, for any

entangled subspace, there exists an NPT subspace of the same
dimension. Our proof is by explicit construction and builds
upon the ideas presented in the proof of [16, Proposition 10].

Theorem 1. There exists a subspace S ⊆ Cm ⊗ Cn of
dimension (m − 1)(n − 1) such that every density matrix with
its range contained in S is NPT.

Proof. We begin by defining the subspace that we will prove
has the desired property:

S := span
{|j 〉|k + 1〉 − |j + 1〉|k〉 : 0 � j � m − 2,

0 � k � n − 2
}
.

It is clear that S has dimension (m − 1)(n − 1), so we now
focus on the NPT condition. To this end, we first let � : Cm ⊗
Cn → Mn,m be the linear isomorphism that sends |i〉 ⊗ |j 〉 to
the n × m matrix |j 〉〈i|. Then �(S) is easily seen to equal
the set of n × m matrices with the property that each of their
n + m − 1 antidiagonals sum to 0.

Now let ρ ∈ Mm ⊗ Mn be such that its range is contained
in S. Then we can write

ρ =
∑

i

pi |vi〉〈vi |

for some constants pi > 0 with
∑

i p1 = 1 and some pure
states |vi〉 ∈ S. Let j0 < j1,k0 < k1 be such that, for all i, the
2 × 2 submatrix of �(|vi〉) corresponding to rows |j0〉 and |j1〉
and columns |k0〉 and |k1〉 is of the form[

0 bi

ai ci

]
,
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where the constants {ai} and {bi} satisfy
∑

i piaibi �= 0 (the
existence of such a 2 × 2 submatrix is not obvious—we defer
the proof of its existence to the end of the proof of this theorem,
since it is slightly technical).

A direct calculation now reveals that the 2 × 2 principle
submatrix of (|vi〉〈vi |)� corresponding to rows and columns
|j0〉|k0〉 and |j1〉|k1〉 is[

0 aibi

aibi |ci |2
]
,

so the same principle submatrix of ρ� is

∑
i

pi

[
0 aibi

aibi |ci |2
]
.

Since the determinant of this principle submatrix is

−
∣∣∣∣ ∑

i

piaibi

∣∣∣∣
2

< 0,

it follows that it has a negative eigenvalue, so ρ� has a negative
eigenvalue as well, as desired.

All that remains is to prove that there exist j0 < j1,k0 < k1

such that the 2 × 2 submatrix of �(|vi〉) corresponding to rows
|j0〉,|j1〉 and columns |k0〉,|k1〉 equals[

0 bi

ai ci

]

and
∑

i piaibi �= 0. It follows from the construction of S that
no antidiagonal of �(|vi〉) has exactly one nonzero entry (they
all have either zero or two or more nonzero entries). It is then
clear that a 2 × 2 submatrix can be found with the top-left entry
equal to 0 for all i—simply choose the leftmost antidiagonal
that is nonzero in at least one of the �(|vi〉)’s and choose
any 2 × 2 submatrix containing two nonzero entries on that
antidiagonal.

This submatrix will, by construction, have aibi �= 0 for
at least one choice of i. However, it could still happen that∑

i piaibi = 0 by terms negating each other in the summation.
To see that this problem can always be avoided, write

�(|vi〉) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 · · · 0 di,L ∗ · · · ∗
0 · · · 0 0 · · · di,L−1 ∗ ∗ · · · ∗
... . .

. ...
... . .

. ...
...

... . .
. ...

0 · · · 0 di,2 · · · ∗ ∗ ∗ · · · ∗
0 · · · di,1 ∗ · · · ∗ ∗ ∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where at least one value of di,j is nonzero and ∗ indicates
an entry whose value is irrelevant to us. That is, we define L

to be the length of the leftmost antidiagonal that is nonzero
in at least one �(|vi〉), and we define di,1,di,2, . . . ,di,L to be
the entries of this antidiagonal. Let j0 be the smallest integer
for which di,j0 �= 0 for some i and define ai := di,j0 for all
i (i.e., the bottom-left corner of the 2 × 2 submatrix that we
are choosing is the lowest-left entry in this antidiagonal that is
nonzero for some i).

By using the fact that each antidiagonal of �(|vi〉) sums to
0, we have

di,L = −
L−1∑
j=j0

di,j ∀ i.

Now suppose for a contradiction that
∑

i piaidi,j = 0 for all
j > j0. By using this assumption twice, we see that

0 =
∑

i

piaidi,L =
∑

i

piai

⎛
⎝−

L−1∑
j=j0

di,j

⎞
⎠

= −
L−1∑
j=j0

(∑
i

piaidi,j

)

= −
∑

i

pi |ai |2 −
L−1∑

j=j0+1

(∑
i

piaidi,j

)

= −
∑

i

pi |ai |2 < 0,

which is the desired contradiction. It follows that there exists
j1 > j0 such that

∑
i piaidi,j1 �= 0, so we define bi := di,j1 for

all i (i.e., we choose the top-right corner of the 2 × 2 submatrix
to be the j1th entry of the antidiagonal we are working with).
Since we have found a 2 × 2 submatrix for which

∑
i piaibi �=

0, the proof is complete. �
We now turn our attention to the number of negative

eigenvalues of the partial transpose of a state. It has been
shown that for all ρ ∈ Mm ⊗ Mn, ρ� cannot have more
than (m − 1)(n − 1) negative eigenvalues [13] (also see [17,
Corollary 5.4] for an earlier, but less direct, proof). However,
tightness of this bound has not been known—for example,
when m = 3 and n = 4, numerical evidence was presented
in [13] that suggested that the maximum number of negative
eigenvalues of ρ� might be 5, not (m − 1)(n − 1) = 6.

We now use Theorem to show that the bound (m − 1)(n −
1) is in fact tight for all m and n. For the most part, the proof
is elementary, but it does require some familiarity with dual
cones. Given a set of Hermitian matrices C ⊆ Mm ⊗ Mn, the
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dual cone of C is

C◦ := {Y = Y † ∈ Mm ⊗ Mn : Tr(XY ) � 0 ∀X ∈ C}.
In particular, the set of positive semidefinite matrices is its own
dual cone. More generally, dual cones can be defined on any
real Hilbert space, but the definition given here suffices for
our purposes. For basic properties of dual cones, the reader is
directed to [18].

Theorem 2. For all m and n, there exists ρ ∈ Mm ⊗ Mn such
that ρ� has (m − 1)(n − 1) negative eigenvalues.

Proof. To prove the statement, we explicitly construct ρ ∈
Mm ⊗ Mn with the desired property. Let P ∈ Mm ⊗ Mn be the
orthogonal projection onto the (m − 1)(n − 1)-dimensional
NPT subspace described by Theorem. Since there is no PPT
state σ with PσP = σ , we have Tr(Pσ ) < 1 for all PPT σ .
Furthermore, since the set of PPT states is compact, there exists
a real constant 0 < c < 1 such that Tr(Pσ ) � c for all PPT
σ . If we define the operator X := I − 1

c
P , then it is easily

verified that X has (m − 1)(n − 1) negative eigenvalues and
Tr(Xσ ) � 0 for all PPT σ . The latter fact is equivalent to the
statement that X is in the dual cone of the set of PPT states.
This dual cone is easily seen to equal{

Y1 + Y�
2 : Y1,Y2 ∈ Mm ⊗ Mn are positive semidefinite

}
(an explicit proof of this fact is given by [19, Corollary 3.7]).
Thus there exist positive semidefinite X1 and X2 such that
X = X1 + X�

2 . Finally, we define ρ := X2/ Tr(X2), which is
a valid density matrix by definition. Furthermore, since X has
(m − 1)(n − 1) negative eigenvalues, and (up to scaling) ρ� =
X − X1, it follows that ρ� has at least (m − 1)(n − 1) nega-
tive eigenvalues as well [and hence exactly (m − 1)(n − 1)
negative eigenvalues], which completes the proof. �

We note that the procedure to construct ρ described in the
proof of Theorem is in fact completely constructive and can be
carried out efficiently. Indeed, the quantity c and operators X1

and X2 can be found via semidefinite programming, and there
are known efficient methods for solving semidefinite programs
[20]. For an introduction to semidefinite programming from
the perspective of quantum-information theory, the reader is
directed to [21]. A semidefinite program that finds ρ ∈ Mm ⊗
Mn such that ρ� has (m − 1)(n − 1) negative eigenvalues is
as follows, where P is the orthogonal projection onto the NPT
subspace described by Theorem, and we optimize over d ∈ R
and density matrices ρ ∈ Mm ⊗ Mn:

maximize : d

subject to : ρ� � I − dP,

Tr(ρ) = 1,

ρ � 0.

It is straightforward to see that any feasible point ρ correspond-
ing to a value of d > 1 is such that ρ� has (m − 1)(n − 1)
negative eigenvalues, as desired—the proof of Theorem
demonstrates that such a value of d exists, since we can choose
d = 1/c. As an explicit example that arises from making use of
this semidefinite program, we now present in the standard basis
a density matrix ρ ∈ M3 ⊗ M4 such that ρ� has six negative
eigenvalues, beating the best-known lower bound of 5 (we

use · to indicate 0 entries):

ρ := 1

34

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 · · · · 3 · · · · 1 ·
· 3 · · · · 2 · · · · 1

· · 1 · · · · 1 · · · ·
· · · · · · · · · · · ·
· · · · 2 · · · · 1 · ·
3 · · · · 2 · · · · 2 ·
· 2 · · · · 2 · · · · 3

· · 1 · · · · 2 · · · ·
· · · · · · · · · · · ·
· · · · 1 · · · · 1 · ·
1 · · · · 2 · · · · 3 ·
· 1 · · · · 3 · · · · 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is straightforward to verify that ρ is positive semidefinite, yet
ρ� has negative eigenvalues equal to approximately −0.0204,
−0.0159, and −0.0105, each with multiplicity 2. More gener-
ally, a MATLAB script that uses the CVX package [22] to solve
this semidefinite program, and thus constructs ρ ∈ Mm ⊗ Mn

such that ρ� has (m − 1)(n − 1) negative eigenvalues, can be
downloaded from [23]. To give a rough idea of the speed of this
script, the above density matrix in M3 ⊗ M4 was computed
in about 0.6 sec on a standard desktop computer, while a
density matrix ρ ∈ M13 ⊗ M13 whose partial transpose has
144 negative eigenvalues takes about 30 min to compute.

In this Brief Report, we answered the question of how
large a subspace S ⊆ Cm ⊗ Cn can be such that every density
matrix ρ ∈ Mm ⊗ Mn with its range contained in S is NPT.
More specifically, we have shown that such subspaces can
have dimension (m − 1)(n − 1), which is just as large as the
largest subspace consisting entirely of entangled states. We
then used this result to resolve a longstanding question that
asks for the maximum number of negative eigenvalues that
the partial transpose of a state ρ ∈ Mm ⊗ Mn can have—the
answer to this question is also (m − 1)(n − 1).

As a possible extension to this work, it may be worth
investigating the number of negative eigenvalues of (idm ⊗
�)(ρ), where � : Mn → Mn is a given positive but not
completely positive map. It follows from [17, Corollary 5.4]
that (idm ⊗ �)(ρ) cannot have more than (m − 1)(n − 1)
negative eigenvalues [and more generally, if � is k-positive
then (idm ⊗ �)(ρ) cannot have more than (m − k)(n − k)
negative eigenvalues], but for which maps is this bound tight?
We have shown that the transpose map is one such example,
but are there others of interest?

In another direction, it would be interesting to extend our
results to the multipartite setting. It is known that the maximum
dimension of a subspace consisting entirely of entangled states
in

⊗p

i=1 C
di is d1d2 · · · dp − (d1 + d2 + · · · + dp) + p − 1

[5,24], and it is now natural to ask whether or not there is
an NPT subspace of the same dimension. Note, however, that
in the multipartite setting the partial transpose can be taken on
many different subsystems, and it is possible that some of a
state’s partial transposes are positive semidefinite while others
are not. Thus the proper question to ask is for the maximum
dimension of a subspace with the property that any state with
its range in the subspace has at least one partial transpose that
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is non-positive. However, we are not aware of an answer to this
question (one reason for this is that our proof of Theorem relies
largely on matrix-theoretic techniques, yet quantum states are
isomorphic to matrices only in the bipartite case).

The author would like to thank Jianxin Chen and John
Watrous for helpful conversations. This work was supported
by the Natural Sciences and Engineering Research Council of
Canada.
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