
PHYSICAL REVIEW A 87, 064301 (2013)

Central symmetry in two-dimensional lattices and quantum information transmission
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We present a method to numerically calculate the dynamics driven by arbitrary Hamiltonians, in particular
those with symmetry. The method enables us to study quantum state and entanglement transmission through
a uniformly coupled two-dimensional square lattice with XY-type interaction. Significantly, we find that the
central symmetry between sending and receiving nodes plays a crucial role in attaining maximal fidelity and
entanglement transmission. In other words, the quality of a two-dimensional transmission is determined by the
geometry of the nodes involved.
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I. INTRODUCTION

Transmission of quantum states from one location to
another is often required in quantum information processing.
One of the natural mediators for such a task is a spin chain
[1–10]. The motivation for using an unmodulated Heisenberg
spin chain dates back to Bose’s work [1]. Later literature
shows that a quantum state can be transferred perfectly
by properly preengineering the couplings between nearest-
neighbor sites [2].

Antiferromagnetic XY models for quantum state transmis-
sion (QST) have been paid special attention (see, e.g., [3,9])
because of their simplicity and symmetry. High-fidelity QST
can be obtained by encoding multiple-spin quantum states [5]
in these models. A physical explanation for obtaining such high
fidelity is given in recent literature [10–12]. These publications
also present a method for the numerical determination of good
initial states which result in high-fidelity state transmission or
even perfect state transfer [2].

However, most previous QST literature concerns one-
dimensional spin chains, although QSTs on two- and three-
dimensional lattices have also received attention sporadically
[13–16]. In Ref. [13] analytic models that can perfectly transfer
arbitrary quantum states in two- and three-dimensional inter-
acting bosonic and fermionic networks are found by properly
engineering the couplings. In Ref. [14] QSTs through a
two-dimensional regular spin lattice with nonuniform coupling
are analyzed and high fidelity QST is obtained. QSTs in a two-
dimensional hexagonal lattice and a three-dimensional lattice
are investigated in Ref. [15]. Quantum state and entanglement
transmission through a two-dimensional spin network with
periodic boundary conditions may have an analytical solution
and has been investigated recently [16]. Entanglement proper-
ties in a two-dimensional triangular lattice with impurities are
investigated in Refs. [17] and [18], where Ising and XY-type
interactions are considered, respectively. Experimentally it is
hard to realize the required nonuniform couplings between
sites, whereas uniform couplings between spin sites are much
more feasible with state-of-the-art technologies.
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Most spin models do not have analytical solutions, in
particular higher-dimensional ones, for instance, the two-
dimensional nearest-neighbor XY model with uniform cou-
plings. Unlike analytical approaches, this paper presents a
method to exactly and numerically calculate single-excitation
dynamics of a two-dimensional nearest-neighbor XY model
with uniform couplings. The method allows us to study
quantum state and entanglement transmission driven by this
model.

This paper is organized as follows. In Sec. II we present
the two-dimensional XY model Hamiltonian and introduce a
numerical method to calculate the system dynamics. In Sec. III
we show our results and analyze them. We conclude in Sec. IV.

II. THE MODEL AND THE CALCULATION
OF THE FIDELITY

Consider the spin dynamics in a two-dimensional square
lattice driven by the nearest-neighbor Heisenberg XY model,

H = −J

(
N−1∑
i=1

N∑
j=1

Xi,jXi+1,j + Yi,jYi+1,j

+
N∑

i=1

N−1∑
j=1

Xi,jXi,j+1 + Yi,jYi,j+1

)
, (1)

where J is the coupling constant. The indices (i,j ) label the
locations of sites, where i,j ∈ 1,2, . . . ,N .

Figure 1 shows schematically the coupling patterns of the
model Hamiltonian. We consider a natural configuration of
the lattices with open boundary. Xi,j , Yi,j , and Zi,j denote the
Pauli operators acting on the spin at site (i,j ). The z component
of the total spin or the excitation number is conserved,⎡

⎣H,

N∑
i,j=1

Zi,j

⎤
⎦ = 0. (2)

A quantum state will time evolve within a given excitation
subspace. In particular, the quantum state in the zero-excitation
subspace, where all spins are down, does not time evolve.
Therefore, an arbitrary state α |0〉 + β |1〉 will be transferred
perfectly, as long as the state |1〉 can completely pass through
the lattice. We can restrict ourselves to the one-excitation

064301-11050-2947/2013/87(6)/064301(4) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.064301


BRIEF REPORTS PHYSICAL REVIEW A 87, 064301 (2013)

FIG. 1. (Color online) Two-dimensional square lattice with sites
labeled by (i,j ), where i,j ∈ (1, . . . ,N ).

subspace spanned by N2 states |i,j 〉, which denotes that the
spin at site (i,j ) is up (|1〉) while the other spins are down (|0〉).

In the one-excitation subspace, we can diagonalize the
Hamiltonian H with the matrix W such that Hd = W †HW .
The evolution operators can therefore be expressed by

U (t) = W exp[−itHd ]W †. (3)

With time evolution, the excitation at site (i,j ) begins to
spread outward, and at a later time there is typically a nonzero
probability of finding any of the spins in an excitation state.
We denote the reduced density matrix at site (k,l) as ρ(t)
and the fidelity, measuring the probability of this excitation, is
therefore F = √〈φ(0)| ρ(t) |φ(0)〉. When F = 1, state transfer
from site (i,j ) to (k,l) is perfect. We now calculate the fidelity,
in particular its dependence on the locations of the sender and
receiver.

III. RESULTS AND DISCUSSION

We consider that the single excitation |1〉 is initially at
site (i,j ). The excitation then time evolves and is distributed
to other sites due to the interaction among spins. For a
one-dimensional chain, the excitation propagates only along
the chain, whereas for the two-dimensional lattice, it is allowed
to travel through different routes on the two-dimensional
network. We will explore numerically, for the given geometry
in Fig. 1, the sending and corresponding receiving locations
that are in favor of high-fidelity state transmission.

Figure 2 plots the maximum fidelity Fmax versus the site
coordinates (i,j ) when N = 13 in a time interval [0,4000].
The figure shows that for a given sending node, the receiving
nodes with highest-fidelity Fmax are located correspondingly.
In Fig. 2(a), the sending nod is at a corner (1,1). Good fidelity
can be obtained for nodes along the diagonal. The maximum
fidelity Fmax occurs at the other corner of the diagonal (13,13),
which is symmetric with respect to the center of the lattice.
In general, it is interesting to find that, given a sending node
(i,j ), Fmax always occurs at (N + 1 − i,N + 1 − j ), center-
symmetric to the node (i,j ). Figure 2 illustrates this interesting
observation. For instance, when the excitation is initially at
site (1,7), Fmax is at the symmetric site (13,7). If we put the
excitation at the center (7,7) as shown in Fig. 2(d), it will
spread in all directions and Fmax = 0.41 occurs at the four
corners, and is much lower than in the other three cases. This

FIG. 2. (Color online) The maximum fidelity at sites (i,j ). Initial
excitation at (a) corner site (1,1), (b) middle site (1,7), (c) site (4,1),
and (d) site (7,7). N = 13. Fmax is obtained in a time interval [0,4000],
which is used throughout the paper.

shows that central symmetry plays a very important role in
getting high-fidelity two-dimensional state transmission.

Physically, the initial wave packet |1〉 at the sending node
propagates on the lattice plane and spreads in all directions.
It will be reflected at boundaries, bounce back and forth, and
travel on the lattice plane. Because it is dispersing during the
propagation, the wave packet will interfere with itself [19]. The
complex dynamical process results in constructive interfer-
ences at certain time moments when the fidelity peaks. A wave
packet bounces back and forth many times among the four
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FIG. 3. (Color online) Comparison of the maximum fidelity Fmax

as a function of the number of sites N for one-dimensional chains and
the edge length N of two-dimensional lattices. The circular (red) dots
correspond to Fmax versus N for the pair pattern (1,1) and (N,N )
and the square (black) dots to that for the one-dimensional chain.
The triangular (green) dots are Fmax of the transmission from site
(1,N/2) to (N,N/2 + 1) when N is even, and from (1,(N + 1)/2) to
(N,(N + 1)/2) when N is odd.

boundaries, and the highest fidelity emerges at the sites that
the wave packet passes through with highest probability. The
pair pattern (i, j ) and (N + 1 − i, N + 1 − j ), in particular
(1, 1) and (N,N ), exemplifies the observation.

So far, we have presented the analysis for the case when
length N = 13. We now analyze the length dependence of
the fidelity. Figure 3 plots the maximum fidelity Fmax as a
function of N , where N is either the number of sites of an
XY chain or the edge length of our two-dimensional lattice
network. The square (black) dots are for the one-dimensional
chain and the circular (red) dots correspond to the pair pattern
(1,1) and (N,N ). The triangular (green) dots show Fmax of
the transmission from site (1,N/2) to (N,N/2 + 1) when N

is even, and from (1,(N + 1)/2) to (N,(N + 1)/2) when N

is odd. Interestingly, the former Fmax is higher than the latter,
except for N = 17,29. There are other noticeable features in
this figure. For smaller N (= 3,4,5,6), state transmissions are
almost perfect for all three cases. The maximal fidelity Fmax

decreases with N . For a given N , Fmax in two-dimensional
lattices is lower than that in the one-dimensional chain, and
the difference becomes larger with N . This is as expected
because a two-dimensional state transmission, in particular
the pair pattern (1,1) and (N,N ), propagates through N2 sites
whereas a one-dimensional state transmission propagates only
through N sites. The more sites are involved, the harder it is
for the constructive interference to occur. This seems to imply
that a two-dimensional state transmission from (1,1) to (N,N )
should be equivalent to one-dimensional state transmission
with N2 sites. However, in practice they do not behave
similarly because the two-dimensional transmission has less
resistance due to the involvement of many more routes. We
also notice that there is an even-odd oscillation of Fmax and
odd numbers of sites are favorable. This is a typical finite-size
effect [20].

Entanglement is at the center of quantum information
processing, and is a resource that allows quantum processes

to outperform their classical counterparts for communica-
tion and computation cryptography. Fortunately, our method
also permits us to study the entanglement transfer in our
two-dimensional network. Consider the initial entanglement
α |01〉 + β |10〉 created between sites (i,j ) and (k,l). The
corresponding initial state of the whole system is

|�(0)〉 = α |i,j 〉 + β |k,l〉 . (4)

Now with time evolution the entanglement spreads to sites
(i ′,j ′) and (k′,l′). The state of the whole system at time t is
therefore

|�(t)〉 =
N∑

p,q=1

gp,q(t) |p,q〉 , (5)

where (p,q) represents an arbitrary location of sites and
gp,q(t) = αU(p,q),(i,j )(t) + βU(p,q),(k,l)(t). The reduced density
matrix of the pairs (i ′,j ′) and (k′,l′) is obtained by tracing over
the rest of the sites. We use concurrence as an entanglement
measure for quantifying the amount of entanglement shared
between the spin pairs, which simply reads

C(i ′,j ′),(k′,l′) = 2|gi ′,j ′ ||gk′,l′ | (6)

for our specific case.
Initially we prepare the maximal entangled state α =

β = 1/
√

2 between sites (1,1) and (1,N ), and calculate
the time evolution of the concurrence C(N,1),(N,N). As a
comparison, we also prepare the initial entanglement between
sites (1,N/2) and (1,N/2 + 1) when N is even, and between
(1,(N − 1)/2) and (1,(N + 1)/2) when N is odd. We then
calculate C(N,N/2),(N,N/2+1) and C(N,(N−1)/2),(N,(N+1)/2) for even
and odd N , respectively. Notice that we retain the central
symmetry between the sending sites and receiving sites in the
process.

Figure 4 plots the maximum concurrence Cmax as a function
of the edge length N for both cases. The circular (square) dots
stand for the maxima Cmax of C(N,1),(N,N) ( C(N,N/2),(N,N/2+1) or
C(N,(N−1)/2)),(N,(N+1)/2)) versus N . Cmax remains the same for
N = 3,4,5,6, and then drops and shows similar oscillations
as Fmax in Fig. 3. For small systems, the entanglement
can be perfectly transferred. When N > 7, Cmax decreases

FIG. 4. (Color online) The maximum concurrence Cmax as a func-
tion of edge length N . The circular (square) dots are the maxima Cmax

of C(N,1),(N,N) (C(N,N/2),(N,N/2+1) or C(N,(N−1)/2),(N,(N+1)/2)) versus N .
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with N . C(N,1),(N,N) is higher because the transmission along
the diagonal is stronger than in other directions, as shown
in Fig. 3.

IV. CONCLUSIONS

In conclusion, we have presented a method to numerically
and exactly calculate the dynamics of spin networks, in particu-
lar those without analytical solutions. We illustrate the method
by simulating quantum state or entanglement transmission
through a uniformly coupled two-dimensional square spin
lattice in a one-excitation subspace. The numerically exact
simulation demonstrates that the central symmetry plays a
decisive role in obtaining high-fidelity state transmission.

In comparison with the very few analytically solvable spin
lattice models, the presented numerically exact simulation of
quantum state dynamics, in particular in the single-excitation
subspace, can help in the study of significant but nonanalytical
spin lattice models, in particular in higher dimensions.
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