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Geometric quantum discord through the Schatten 1-norm
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It has recently been pointed out that the geometric quantum discord, as defined by the Hilbert-Schmidt norm
(2-norm), is not a good measure of quantum correlations, since it may increase under local reversible operations
on the unmeasured subsystem. Here, we revisit the geometric discord by considering general Schatten p-norms,
explicitly showing that the 1-norm is the only p-norm able to define a consistent quantum correlation measure.
In addition, by restricting the optimization to the tetrahedron of two-qubit Bell-diagonal states, we provide an
analytical expression for the 1-norm geometric discord, which turns out to be equivalent to the negativity of
quantumness. We illustrate the measure by analyzing its monotonicity properties.
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Quantum discord is an information-theoretic measure
of nonclassical correlations, initially proposed by Ollivier
and Zurek [1], which goes beyond entanglement (i.e.,
separable states can have nonzero discord) and whose
characterization has attracted much attention during the
last decade (see Ref. [2] for a review and Ref. [3] for an
operational interpretation). From an analytical point of view,
the evaluation of quantum discord is a difficult task, even for
(general) two-qubit states, since an optimization procedure is
required for the conditional entropy over all local generalized
measurements. In this scenario, closed expressions are known
only for classes of states [4,5].

The difficulty of extracting analytical solutions for quantum
discord led Dakić, Vedral, and Brukner to propose a geometric
measure of quantum discord [6], which quantifies the amount
of quantum correlations of a state in terms of its minimal
Hilbert-Schmidt distance from the set of classical states. The
calculation of this alternative measure requires a simpler
minimization process, which is realizable analytically for
general two-qubit states [6] as well as for arbitrary bipartite
states [7–9]. Moreover, it has been shown to exhibit operational
significance in specific quantum protocols (see, e.g., Ref. [10]).
Despite those remarkable features, geometric discord is known
to be sensitive to the choice of distance measures (see, e.g.,
Ref. [11]). In turn, as recently pointed out [12–14], the
geometric discord as proposed in Ref. [6] cannot be regarded
as a good measure for the quantumness of correlations, since
it may increase under local operations on the unmeasured
subsystem. In particular, it has explicitly been shown by Piani
[14] that the simple introduction of a factorized local ancillary
state on the unmeasured party changes the geometric discord
by a factor given by the lack of purity of the ancilla. This is
in contrast with the entropic quantum discord, which does not
suffer this problem. From a technical point of view, the root of
this drawback is the lack of contractivity of geometric discord
under trace-preserving quantum channels. Remarkably, this is
strongly connected with the norm adopted to define distance
in the state space.

Most recently, Tufarelli et al. [15] have introduced a
modified version of geometric discord that is immune to the
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particular ancilla considered in Ref. [14]. However, since
this measure is also based on Hilbert-Schmidt distance, it
inherits the noncontractivity problem (see, e.g., examples in
Ref. [12]). A way to circumvent this issue is to employ the trace
distance in place of the Hilbert-Schmidt norm [12,16,17]. In
this direction, we consider the generalization of the geometric
discord in terms of Schatten p-norms. More specifically, we
show that the geometric discord as defined by the 1-norm
is the only p-norm geometric discord invariant under the
class of channels considered in Ref. [14]. Furthermore, by
restricting the minimization to states in the Bell-diagonal form,
we analytically evaluate the 1-norm geometric discord for
arbitrary Bell-diagonal two-qubit states. As an illustration,
we compare our result with the entropic quantum discord
and the 2-norm geometric discord, analyzing its monotonicity
properties as a function of the correlation functions.

Entropic and geometric measures of quantum discord.
Quantum discord has been introduced as an entropic measure
of quantum correlation in a quantum state. For a bipartite
system described by the density matrix ρ, it is defined by the
difference Q(ρ) = I(ρ) − J (ρ) [1], where I(ρ) is the quan-
tum mutual information, which represents the total correlation
in ρ [18], and J (ρ) is the measurement-based mutual infor-
mation, which can be interpreted as the classical correlation in
ρ [19]. These quantities are given by I(ρ) = S(ρa) + S(ρb) −
S(ρ) and J (ρ) = S(ρb) − min{Ek}[

∑
k pkS(ρb|k)]. In these

expressions, S(ρ) = −tr[ρ log2 ρ] denotes the von Neumann
entropy, ρa(b) is the reduced density matrix of the subsystem
a(b), and the minimum is taken over all possible positive
operator-valued measures (POVMs) {Ek} on subsystem a,
where ρb|k = tra[Ekρ]/pk is the post-measurement state of
b after the outcome k on a is obtained with probability
pk = tr[Ekρ].

The analytical minimization over POVMs involved in
J (ρ) constitutes a hard task, even for two-qubit systems in a
general state. This motivated the introduction of an alternative
measure [6], which was named geometric quantum discord.
Such a geometric measure is based on the distance between
the given quantum state ρ and the closest classical-quantum
state ρc, reading

DG(ρ) = min
�0

‖ρ − ρc‖2
2 , (1)
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where ‖X‖2 =
√

tr[X†X] is the Hilbert-Schmidt norm
(2-norm) and �0 is the set of classical-quantum states, whose
general form is given by

ρc =
∑

k

pk�
a
k ⊗ ρb

k , (2)

with 0 � pk � 1 (
∑

k pk = 1), {�a
k} denoting a set of

orthogonal projectors for subsystem a, and ρb
k being a general

reduced density operator for subsystem b. Note that extrem-
ization here is over a distance measure rather than POVMs,
as in J (ρ). In terms of the entropic quantum discord Q(ρ)
and of the negativity (of entanglement) N (ρ) = ‖ρta‖1 − 1,
where ρta denotes partial transposition of ρ with respect to
subsystem a and ‖X‖1 = tr[

√
X†X] is the trace norm, the

geometric discord presents the following bound for two-qubit
states [20]:

2DG(ρ) � Q2(ρ),N 2(ρ). (3)

The inequality 2DG � N 2 is not universal, with counterex-
amples in spaces of dimension higher than 2 × 2 [21].

We will focus here in the particular case of two-qubit Bell
diagonal states, whose density operator presents the form

ρ = 1
4 [I ⊗ I + �c · (�σ ⊗ �σ )], (4)

where I is the identity matrix, �c = (c1,c2,c3) is a three-
dimensional vector, and �σ = (σ1,σ2,σ3) is a vector formed
by Pauli matrices. In this case, the entropic quantum discord
and the geometric discord are given by [4,22]

Q = log2
4λ

λ00
00 λ

λ01
01 λ

λ10
10 λ

λ11
11

(1 − c+)
1−c+

2 (1 + c+)
1+c+

2

(5)

and

DG = 1
4

(
c2
− + c2

0

)
, (6)

where λij = [1 + (−1)ic1 − (−1)i+j c2 + (−1)j c3]/4 are
the eigenvalues of the density operator ρ, whereas
c+ = max[|c1|,|c2|,|c3|], c0 = int[|c1|,|c2|,|c3|], and c− =
min[|c1|,|c2|,|c3|] represent the maximum, intermediate,
and minimum among the absolute values of the correlation
functions c1, c2, and c3, respectively. If ρ describes a physical
state, then 0 � λij � 1 and

∑
i,j λij = 1. In this condition, the

vector �c must be restricted to the tetrahedron whose vertices
situated on the points (1,1,−1), (−1,−1,−1), (1,−1,1), and
(−1,1,1) represent the Bell states (see Fig. 1). Quantum
discord is a maximum (Q = 1 and DG = 1/2) in these
vertices and minimum (Q = DG = 0) over the perpendicular
axes c1, c2, and c3 (dashed lines).

Geometric quantum discord and Schatten p-norms. De-
spite being easier to compute and exhibiting an interesting
geometric interpretation, the measure DG fails as a rigorous
quantifier of quantum correlation, since it may increase under
local reversible operations on the unmeasured subsystem.
Explicitly, by assuming the map �σ : X → X ⊗ σ , i.e., a
channel that introduces a noisy ancillary state, Piani has
recently shown that [14] DG(�σ

b [ρ]) = DG(ρ)tr[σ 2]. This
means that the geometric discord may increase under local
operations on the unmeasured subsystem b, because tr[σ 2] � 1
in general. Indeed, by considering the coupling of b with
an arbitrary auxiliary system in a mixed state σ , we obtain

FIG. 1. (Color online) Tetrahedron corresponding to the two-
qubit Bell-diagonal states, with its vertices representing the four Bell
states. Quantum discord is a maximum (Q = 1 and DG = 1/2) in
these vertices and vanishing (Q = DG = 0) over the perpendicular
axes c1, c2, and c3 (dashed lines).

that DG increases by the simple reversible removal of σ . The
origin of this problem is the Hilbert-Schmidt norm, which is
not an appropriate choice for geometrically quantifying the
quantumness of correlations (for a similar analysis in the case
of entanglement, see Ref. [23]).

Let us then consider the geometric discord based on a more
general norm, defined by [24]

Dp(ρ) = min
�0

‖ρ − ρc‖p
p , (7)

where ‖X‖p = tr[(X†X)
p

2 ]
1
p is the Schatten p-norm, with

p denoting a positive integer number. In this notation, the
geometric discord is simply obtained by taking p = 2, namely,
DG = D2. Since the p-norm is multiplicative under tensor
products [25], it is then easy to see that ‖X‖p → ‖�σ

b [X]‖p =
‖X‖p‖σ‖p. Thus,

Dp

(
�σ

b [ρ]
) = Dp(ρ) ‖σ‖p

p . (8)

Note that ‖σ‖p = 1 if and only if p = 1, since ‖σ‖1 = tr[σ ] =
1 for a general state σ . Therefore, the geometric discord based
on the 1-norm is the only possible Schatten p-norm able to
consistently quantify nonclassical correlations. Indeed, one
can show that D1(ρ) is nonincreasing under general local
operations on b (see also Ref. [12]). Due to the properties of
the trace distance, the 1-norm geometric discord is contractive
under trace-preserving quantum channels [12,16], i.e., ‖ρ −
ρc‖1 � ‖ε(ρ) − ε(ρc)‖1, where ε is a general trace-preserving
quantum operation. Then, let us consider a quantum operation
εb, which acts only over subsystem b. By denoting as ρc the
closest classical state to a given quantum state ρ, we can write
D1(ρ) = ‖ρ − ρc‖1 � ‖εb(ρ) − εb(ρc)‖1. Note that εb(ρc) is
still a classical state, but it is not necessarily the closest
classical state to εb(ρ). Then, ‖εb(ρ) − εb(ρc)‖1 � D1(εb(ρ)).
Hence it follows that D1(ρ) � D1(εb(ρ)) [12], which
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implies that D1(ρ) cannot increase under operations over
subsystem b.

1-norm geometric quantum discord for Bell-diagonal
states. In order to obtain the 1-norm geometric discord for
two-qubit systems described by Bell-diagonal states given by
Eq. (4), let us start from the expression

D1(ρ) = min
�0

‖ρ − ρc‖1 , (9)

where ‖X‖1 = tr[
√

X†X] is the 1-norm, ρ is given by Eq. (4),
and ρc is an arbitrary classical-quantum state given by Eq. (2).
The minimization over the whole set of classical states was
obtained for the 2-norm [7] and the relative entropy [26], where
it can be proved that the minimal state is the measured original
state. We will make a similar hypothesis and assume that the
minimal state preserves the Bell-diagonal form of the original
state. This has been numerically checked for a number of
Bell-diagonal states, as will be discussed below. Therefore,
we assume that the minimization in Eq. (9) is achieved by a
Bell-diagonal classical state ρ(BD)

c , which is denoted by

ρ(BD)
c = 1

4 [I ⊗ I + �l · (�σ ⊗ �σ )], (10)

with �l representing a vector over the perpendicular classical
axes in the tetrahedron of Bell-diagonal states (dashed lines
in Fig. 1). Then, �l has the form �l1 = (l1,0,0), �l2 = (0,l2,0), or
�l3 = (0,0,l3), with li ∈ � and −1 � li � 1. From Eqs. (9) and
(10), we can then write

D1 = min
[

min
l1

f1(l1), min
l2

f2(l2), min
l3

f3(l3)
]
, (11)

where

fi(li) =
∥∥∥∥

1

4
(�c − �li) · (�σ ⊗ �σ )

∥∥∥∥
1

=
1∑

p=0

1∑
q=0

|τpq,i | (12)

with τpq,i = [(−1)p(ci − li) − (−1)p+qcj + (−1)qck]/4 (i 	=
j 	= k) denoting the eigenvalues of the operator (�c − �li) ·
(�σ ⊗ �σ )/4. Now, by defining di = li − ci and d± = ck ± cj ,
we find fi(di) = (|di + d+| + |di − d+| + |di + d−| + |di −
d−|)/4. Because f (di) reaches its minimum value when
di = 0, then minli fi(li) = mindi

fi(di) = max[|cj |,|ck|]. By
using this result in Eq. (11), we then obtain

D1 = c0 = int[|c1|,|c2|,|c3|]. (13)

The same result encapsulated by Eq. (13) was obtained in
the context of the study of the negativity of quantumness,
which is a measure of nonclassicality recently introduced in
Refs. [27,28] and experimentally discussed in Ref. [29]. In
such a case, the 1-norm distance is computed with respect to
the decohered (measured) state ρ ′ = ∑

k �a
kρ�a

k .
For a finite subset of classical states �′

0, the equivalence
between Eqs. (9) and (13) is numerically supported by the
condition

δ = min
�′

0

‖ρ − ρc‖1 − c0 � 0, (14)

with the equality expected after minimization over all classical
states ρc, i.e., �′

0 = �0. In Fig. 2, we present a numerical
analysis of Eq. (14) through a histogram of δ. This has
been obtained for N = 103 Bell-diagonal states ρ randomly
generated inside of the tetrahedron (Fig. 1). For each ρ, we
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FIG. 2. (Color online) Histogram of δ for N = 103 Bell-diagonal
states and Nc = 106 classical states. In the inset, we show the
decreasing behavior of log10 δ̄ × log10 Nc for Nc = 10, 102, 103, 104,

105, and 106.

have performed the minimization in Eq. (14) with Nc = 106

classical states ρc randomly chosen from Eq. (2). Note that
δ � 0, with an average value δ̄ = 0.06. In the inset, we have
investigated the behavior of δ̄ as we increase the number
of classical states Nc in �′

0. For each value of log10 Nc

(data point), we compute log10 δ̄ by randomly selecting 103

independent states ρ. By a linear fit (solid line) we obtain that
δ̄ decreases to zero for Nc → ∞, according to the power law
δ̄ = 0.56 × N−0.16

c [30].
Monotonicity with other quantum discord measures. Let us

now apply Eq. (13) to investigate the monotonicity of D1(ρ)
with the quantum correlation measuresQ(ρ) and D2(ρ), which
are given by Eqs. (5) and (6). First of all, we readily conclude
that D1 = 0 over the orthogonal axes c1, c2, and c3 and is
maximal (D1 = 1) for the four Bell states, as it occurs for Q
and DG. Moreover, since 0 � c0 � 1 and c− � c0, it follows
that c2

0 � (c2
− + c2

0)/2 =⇒ D2
1 � 2DG. From this inequality

and from Eq. (3), we can find the following hierarchy for
two-qubit Bell-diagonal states:

D2
1 � 2DG � Q2,N 2. (15)

The inequality D1 � N that emerges from Eq. (15) has also
been proposed for arbitrary bipartite states in Ref. [24], but
counterexamples have subsequently pointed out in Ref. [17].
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FIG. 3. (Color online) Plots of Q (solid line), 2DG (dashed line),
and D1 (dotted line) for SU(2)-symmetric states (c1 = c2 = c3).
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FIG. 4. (Color online) Triangle representing U(1)-symmetric
states (c1 = c2 	= c3). Shaded regions and dashed lines indicate the
points for which Q is monotonically related along the c3 direction
with DG and D1, respectively.

Concerning monotonicity relationships, the symmetry ex-
hibited by the quantum state plays a fundamental role. For
instance, in the case of SU(2) symmetry, i.e., c1 = c2 = c3,
the three measures of discord maintain the ordering of states

throughout the physical region (0 � c1 � 1/3), as we can
observe in Fig. 3. However, this does not occur for more
general classes of states. For instance, the triangle shown
in Fig. 4 represents the set of physical states corresponding
to the class of U(1)-symmetric states, i.e., c1 = c2 	= c3. Inside
the triangle, the shaded region and the dashed lines indicate the
points where Q is monotonically related along the c3 direction
with DG and D1, respectively. In this situation, note that the
ordering of states between Q and the geometric measures D1

and DG is strongly violated. As the shaded region and the
dashed lines do not cover the same space (a situation that
occurs only when c3 = −c2

1 and c1 = 0), we also concluded
that DG and D1 are not monotonic between themselves in
general.

In conclusion, the 1-norm geometric discord has by itself
a conceptual importance since it is the only p-norm able to
yield a well-defined quantum correlation measure. Moreover,
it exhibits remarkable properties under decoherence for simple
Bell diagonal states as, for instance, freezing and double
sudden change [32]. As a future challenge, it would be useful to
investigate its relevance for the advantage quantum protocols.
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