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The formation of solitary waves (SW) in media with periodically alternating sign of nonlinearity is investigated
under a geometrical phase space approach. It is shown that a remarkably rich set of all types of SW, including
bright, dark, antidark, and kink solitons is supported by this type of structure. The existence conditions of all SW
are systematically defined in the parameter space of the system and their propagation dynamics are investigated
through numerical simulations.
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I. INTRODUCTION

Spatial self-localization of waves in nonlinear periodic
structures is a ubiquitous phenomenon resulting from the
interplay between the medium inhomogeneity and nonlinearity
that has no analog in homogeneous media. Its effect gives rise
to the existence of a rich set of solitary waves (SW) in a large
variety of physical systems. Among them, the formation and
propagation of light SW in photonic structures such as optical
lattices and waveguide arrays are widely studied in the context
of nonlinear optics [1–4], whereas matter SW are studied in
the context of Bose-Einstein condensates (BEC) [5–8], with
theoretical studies on both fields progressing in parallel due to
common underlying models of wave propagation.

In general, SW have the form of a spatially localized transi-
tion between two asymptotic states. Different types of SW can
be characterized on the basis of their asymptotic states, with
bright solitons having zero asymptotic states, dark (antidark)
solitons having nonzero asymptotic states of opposite (same)
sign, and kink solitons having asymptotic states with different
values in general. The existence of such SW is closely related
to complex dynamics of the system describing the spatial wave
profile formation with the respective asymptotic states having
the form of hyperbolic plane-wave solutions of the system.
From a geometrical point of view, in the phase space of the
system, SW can be found as intersections of the invariant
stable and unstable manifolds of the hyperbolic solutions
corresponding to their asymptotic states [9].

Among the different types of SW, bright solitons have
been most extensively theoretically studied and experimentally
demonstrated in several configurations with varying degree of
spatial complexity ranging from monochromatic modulation
of the linear refractive index to superlattices and nonperiodic
structures. Due to the presence of the inhomogeneity, bright
solitons can be formed in either focusing or defocusing media,
in contrast to the homogeneous case [10]. Theoretical studies
have been based either on continuous models consisting of the
nonlinear Schrödinger (NLS) equation with spatially varying
coefficients [11–13] or simplified discrete models under the
tight-binding approximation describing deeply trapped narrow
SW [4]. Dark solitons have been theoretically studied in both
discrete [14] and continuous models [15] and their existence
has been shown in various configurations.

Antidark as well as kink solitons have been less intensively
studied than dark and bright solitons. Antidark solitons have

been theoretically studied in continuous vector two-component
models describing either weakly trapped SW in band gap
photonic structures with the utilization of coupled mode
theory [16,17] or in binary Bose-Einstein condensates [18,19].
Discrete binary models describing waveguide arrays with
alternating positive-negative couplings have also been shown
to support antidark soliton solutions [20,21]. Kink solitons
(also referred to as shocks or domain walls) in periodic
structures have been considered mostly in discrete models
[21–23] as well as in coupled wave equations describing vector
SW [24,25]. The formation of surface SW having the form of
kink solitons has also been studied in nonperiodic structures
consisting either of interfaces between lattices [26–28] or
localized modulations of the medium [29,30]. In the latter
case the SW profile asymmetry is directly enforced by the
nonperiodic spatial modulation of the medium in contrast to
the former case of periodic modulations where the profile
asymmetry results from the dynamical interplay between the
nonlinearity and the periodicity of the medium.

Structures of increasing complexity of the spatial mod-
ulation of the medium have also been considered from the
point of view of engineering the inhomogeneity in order to
provide desirable properties of SW formation and propagation
dynamics. Among them, a large amount of work has been
focused on media where, in addition to the linear properties, the
nonlinearity is also transversely modulated forming nonlinear
lattices [13,31,32]. In such structures both the strength and
the sign of the nonlinearity can vary across their transverse
dimension. A periodic alternation of the sign of the nonlinear
refractive index corresponds to a periodically focusing and
defocusing optical medium in the context of nonlinear optics,
whereas in the context of BEC the periodic alternation of
the sign of the scattering length corresponds to periodically
repulsive and attractive interactions between the atoms [32].
Layered structures combining piecewise constant profiles of
the linear and nonlinear properties of the medium are usually
referred to as Kronig-Penney (KP) lattices and have been
considered in terms of SW formation and propagation [33–35].

In this work, a layered medium with periodically alternating
sign of nonlinearity is considered. The continuous model of the
NLS equation with piecewise constant coefficients of the linear
and nonlinear terms is utilized to describe wave propagation
under no restriction as those implied by the tight-binding
approximation or the coupled-mode approach. A geometrical
phase space analysis reveals the remarkable richness of all
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types of SW that can be supported by such structures, including
bright, dark, antidark, and kink solitons as well as bound states.
The propagation dynamics of these SW are investigated with
the utilization of numerical simulations.

II. MODEL

Wave propagation in a nonlinear inhomogeneous medium
is governed by the NLS equation with transversely varying
coefficients

iψz + ψxx + n(x)ψ + 2s(x)|ψ |2ψ = 0. (1)

We consider the case of a periodic slab structure consisting
of alternating focusing and defocusing layers [as shown in
Fig. 1(a)] with the linear refractive index and nonlinearity
varying as

[n(x),s(x)] =
{

[nF ,1] , 0 < mod(x,L) � LF

[nDF , − 1] , LF < mod(x,L) � L,
(2)

where nF and nDF are the values of the linear refractive index
in focusing and defocusing layers, respectively. The widths
of the layers are LF and LDF and the spatial period of the
structure is L = LF + LDF .

Stationary wave solutions of Eq. (1) have the form

ψ(x,z) = u(x) exp (ikzz) (3)

with kz being the propagation constant, and are given from the
equation

uxx + [n(x) − kz] u + 2s(x)u3 = 0 (4)

corresponding to a nonautonomous dynamical system. This
system is nonintegrable and describes chaotic dynamics for
the transverse wave profile formation. The dynamics can be

studied in the three-dimensional extended phase space of the
system consisting of (u,ux,x) by utilizing Poincaré surfaces
of section at x = mL, with m integer, due to the periodicity
of the x dependence. The respective Poincaré map has a fixed
point at the origin O of the plane (u,ux), corresponding to
a constant zero solution u0 = 0. An additional pair of fixed
points, corresponding to nonzero constant solutions u0 �= 0,
exists when

kz = nDF + nF

2
≡ n̄. (5)

The amplitude u0 of such solutions is given by

u2
0 = nDF − nF

4
≡ �n

4
(6)

and the corresponding fixed points P± of the Poincaré map
are located at (u,ux) = (±√

�n/2,0). The condition for the
existence of these fixed points is that the value of the linear
refractive index in the defocusing layers is greater than the
value of the linear refractive index in the defocusing layers
(nDF > nF ). In such case a high value of the linear refractive
index can counterbalance the effect of the nonlinear reduction
of the refractive index inside a defocusing layer, whereas the
opposite holds for a focusing layer. Therefore, interesting
dynamics of the system (4) are expected as a result of the
interplay between these two mechanisms. The stability type of
the fixed points O,P± can be determined by linearizing Eq. (4)
resulting in

qxx + s(x)

(
−�n

2
+ 6u2

0

)
q = 0, (7)

where q is the first-order variation around the solutions
corresponding to O,P±. This is a linear periodic system
having solutions that satisfy the Bloch periodicity condition
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FIG. 1. (Color online) (a) Transverse profile of the structure and variation of the linear refractive index. Blue (dark) and (light) cyan regions
denote focusing and defocusing layers. (b)–(d) Parametric space regions with different stability type of the fixed points P−,O,P+ with “X”
and “O” denoting a saddle and a center, respectively. (b) �n/2 = 1, (c) LF = 1, and (d) LDF = 1.
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FIG. 2. (Color online) Branches of the stable Ost (blue) and unstable Oun (red) manifolds of O in a Poincare surface of section. Black
dots denote intersections of the manifolds. (a) LF = 1, LDF = 0.5, �n/2 = 1, (b) LF = 1, LDF = 2.15, �n/2 = 1.2. Both parameter sets
correspond to “O X O” cases.

q(x + L) = exp(ipx)q(x) with p ∈ [−π/L,π/L] being the
respective Floquet exponent. Using continuity of u and ux at
the boundaries of the layers we obtain

cos(pL) = cos(
√

aiLF ) cos(
√−aiLDF ) ≡ �, i = O,P±

(8)

with aO = −�n/2 and aP± = 2�n for the two fixed-point
solutions, respectively. Floquet exponents p obtained from
Eq. (8) have a zero imaginary part when � � 1 corresponding
to stable solutions, while they have a nonzero imaginary part
when � > 1 corresponding to unstable solutions. The respec-
tive fixed points of the Poincaré map correspond to centers
and saddles. Therefore, the function � = �(LF ,LDF ,�n)
determines the stability of the constant solutions of zero and
nonzero amplitude in terms of the geometrical and material
properties of the structure. In Figs. 1(b)–1(d), the dependence
of the stability type of O and P± on the parameters of the
structure is illustrated. Four different combinations, labeled as
“O O O,” “O X O,” “X O X,” and “X X X,” can take place in

the parameter space, with “O” denoting a stable (center) and
“X” denoting an unstable (saddle) fixed point and the relative
position of the symbols corresponding to the fixed-point order
“P− O P+.” As expected, LF � LDF (LF � LDF ) corre-
sponds to “O X O” (“X O X”), since focusing (defocusing)
dominates across the structure. Comparable widths of the
focusing and defocusing layers additionally allow for cases
corresponding to “X X X” as well as “O O O,” since the
interplay between the two competing mechanisms of nonlinear
focusing and defocusing can alter the type of stability of one
of the fixed points. The result of this interplay depends not
only on the relative widths of the focusing and defocusing
layers, as shown in Fig. 1(b), but it also depends crucially on
the difference of the linear refractive index (�n) between the
layers, as shown in Figs. 1(c) and 1(d).

III. SOLITARY WAVES

Stationary solitary wave solutions of Eq. (1) correspond
to solutions of Eq. (4) with constant asymptotic values.
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FIG. 3. (Color online) Bright soliton profiles corresponding to points A (a), B (b), C (c), and D (d) of Fig. 2(a).
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FIG. 4. (Color online) Propagation of bright solitons with profiles shown in Fig. 3.

Therefore, the existence of solitary waves is directly related
to the existence of constant solutions of Eq. (4) that are
saddle points of the respective Poincaré map. Solitary waves
correspond to orbits connecting a saddle point either to
itself (homoclinic orbits) or to another saddle point (het-
eroclinic orbits). These orbits are located within both the
two-dimensional stable and unstable manifolds of the same
or different saddle points and can be found as intersections of
these manifolds in the three-dimensional extended phase space
of system (4). In the Poincaré surface of section, the traces of
these orbits are found as points of intersection between the
curves corresponding to the intersection between the Poincaré
surface of section and the respective stable and unstable
manifolds, namely, homoclinic or heteroclinic points [9,13].
Solitary wave solutions can be found by utilizing standard
techniques for solving boundary-value problems [36]. In this
work, the aforementioned geometrical approach is adopted, so
that the problem of finding stationary SW solutions is replaced
with the problem of finding intersection points between two
invariant curves. This method not only provides accurate
solitary wave solutions but it also allows for an overview of
solution families existing for each parameter set and provides
physical understanding of the underlying mechanisms of
solitary wave formation.

The stationary solitary waves can be either stable or
unstable under propagation. A necessary condition for their
stability is that the respective background corresponding to
constant zero or nonzero solutions is modulationally stable. It
is well known [37] that for a self-focusing nonlinearity only
the zero background is modulationally stable, while for a self-
defocusing nonlinearity both zero and nonzero backgrounds
are modulationally stable. In a structure with alternating
sign of nonlinearity it is expected that modulational stability
or instability is a result of the interplay between the two
competing mechanisms analogously to cases of discrete binary
models [21]. In order to focus on the propagation stability
of solitary waves having various profiles, we consider cases
where the respective background solutions are modulationally
stable. In the following propagation simulations a noise level
of the order of 1% with respect to the soliton amplitude has
been superimposed in order to confirm modulational stability
of nonzero backgrounds and investigate soliton stability.

A. Bright solitons

Bright solitons have zero asymptotic values and correspond
to orbits homoclinic to the fixed point O at the origin, which
has to be a saddle point. In Fig. 2(a) the intersection of

−30 −20 −10 0 10 20 30

−0.2

0

0.2

x

u

(a)

−30 −20 −10 0 10 20 30

−0.2

0

0.2

0.4

x

u

(b)

FIG. 5. (Color online) Bright soliton profiles corresponding to points A (a) and B (b) of Fig. 2(b).
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FIG. 6. (Color online) Branches of the stable P st
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+ (red) manifolds of P+ and the unstable P un
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of P− in a Poincare surface of section. Black dots denote intersections of the manifolds. The insets show details close to the fixed points.
(a) LF = 0.5, LDF = 1, �n/2 = 0.5, (b) LF = 0.7, LDF = 1, �n/2 = 0.8. Both parameter sets correspond to “X O X” cases.

the stable and unstable manifolds of O with the Poincaré
surface of section are shown, for a parameter set (LF ,LDF ,�n)
corresponding to an “O X O” case. Note that, due to symmetry,
only one branch of the manifolds is shown. The respective
curves intersect transversely at several sequences of points,
with each sequence corresponding to a different bright soliton
profile. Fundamental soliton profiles corresponding to points
A and B of Fig. 2(a) are symmetric with respect to the center of
the focusing and the defocusing layers as shown in Figs. 3(a)
and 3(b). Their propagation dynamics show that the first soliton
that is symmetric with respect to the focusing layer propagates
in a stable fashion, undergoing periodic amplitude and width
oscillations [Fig. 4(a)], whereas the second soliton initially
transforms to the first and then propagates as such [Fig. 4(b)].

More complex bright solitons correspond to intersections
of the homoclinic tangles formed by the respective stable
and unstable manifolds and consist of multihump profiles
as those shown in Figs. 3(c) and 3(d) corresponding to
points C and D of Fig. 2(a), respectively. These cases can
be considered as bound states composed of combinations
of fundamental solitons separated by a finite distance and

appropriately matched. It is worth mentioning that the phase
space geometrical approach for the study of solitary wave
formation provides a clear view of the conditions of existence
of such solitons as well as a method for their systematic
categorization as intersection points between two invariant
curves. Oscillatory propagation of a bound state consisting of
a pair of solitons that are symmetric with respect to the center
of the focusing layer [profile shown in Fig. 3(c)] is shown in
Fig. 4(c), whereas a bound state consisting of two such in-phase
solitons separated by an out-of-phase such soliton [profile
shown in Fig. 3(d)] evolves to an oscillatory two-soliton bound
state under propagation as shown in Fig. 4(d).

Depending on the topology of the stable and unstable
manifolds, bipolar bright solitons can also occur for cases as
that of Fig. 2(b). Bright soliton profiles being symmetric with
respect to the center of the focusing and the defocusing layers
correspond to points A and B and are shown in Figs. 5(a)
and 5(b). All bright solitons considered here correspond to
cases where the origin O is the only saddle point, namely,
“O X O” cases; however, as will be shown in the following,
bright solitons can also exist in “X X X” cases.
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FIG. 7. (Color online) Antidark [(a),(b)] and dark [(c),(d)] soliton profiles corresponding to points A (a), B (b), C (c), and D (d) of Fig. 6(a).
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FIG. 8. (Color online) Propagation of antidark and dark solitons with profiles shown in Fig. 7.

B. Dark and antidark solitons

Dark and antidark solitons lay on a constant background
and have nonzero asymptotic values. Their existence depends
on the existence of nonzero saddle fixed points and on the
intersections between branches of the respective stable and
unstable manifolds. In Fig. 6(a) branches of the stable and
unstable manifolds of P+ and P− along with their intersections
are shown, for a parameter set corresponding to an “X O X”
case. Note that due to symmetry not all branches are shown.
Antidark soliton profiles correspond to intersections between
the stable and unstable manifold of the same fixed point. Points
A and B of Fig. 6(a) correspond to orbits homoclinic to P+
with the respective transverse profiles depicted in Figs. 7(a)
and 7(b) as antidark solitons having profiles that are symmetric
with respect to the center of the focusing and defocusing layers.
Figure 8(a) shows that the first antidark soliton undergoes
stable (oscillatory) propagation, whereas the second antidark
soliton transforms to the first one, after emitting a secondary
wave that travels transversely across the structure and decays
to radiation, as shown in Fig. 8(b).

Heteroclinic points, where the invariant manifolds of the
two different fixed points P− and P+ intersect, correspond to

dark solitons. Dark soliton profiles corresponding to points
C and D of Fig. 6(a) are shown in Figs. 7(c) and 7(d).
These dark solitons are antisymmetric with respect to the
center of the defocusing and the focusing layers. The former
undergo an instability due to which they leave the layer where
they were originally centered and start traveling across the
layers until they are eventually transformed, through radiation
emission, in their stable counterpart centered in a different
layer, whereas the latter are stable, as shown in Figs. 8(c)
and 8(d), respectively.

Bound states composed of the same or different types
of solitons can also be found corresponding to intersections
between the various branches of the invariant manifolds of the
saddle points. The intersection of one branch of the unstable
manifold of P− with a branch of the stable manifold of P+
depicted by point A in Fig. 6(b) corresponds to a bound
state consisting of a dark and an antidark soliton, as shown
in Fig. 9(a). Propagation dynamics of such a bound state is
depicted in Fig. 9(b) where it is shown that, after an initial
stage where the antidark part of the wave evolves to a different
antidark wave, a bound state with an oscillatory antidark part
emerges. The cases of dark and antidark solitons shown here
correspond to parameter regions denoted as “X O X” in Fig. 1;
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FIG. 9. (Color online) Profile (a) and propagation (b) of composite solitary wave corresponding to point A of Fig. 6(b).
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(a) LF = 1, LDF = 4.5, �n/2 = 0.5, (b) LF = 1, LDF = 3.6, �n/2 = 0.5. Both parameter sets correspond to “X X X” cases.

however, these types of solitons can also be found in cases
where not only P± but also the origin O is a saddle, namely,
cases “X X X.”

C. Kink solitons

Kink solitons are asymmetric solitary waves corresponding
to orbits connecting a saddle at the origin O with a saddle
at P+ or P−. Therefore kink solitons can be found in
parameter regions denoted as “X X X” in Fig. 1 and are
related to heteroclinic points where invariant manifolds of
O and P± intersect. However, as shown in Fig. 10(a),
it is possible that invariant manifolds of the origin do
not intersect with invariant manifolds of the nonzero fixed
points. In such cases bright solitons coexist with dark
and antidark solitons but the existence of kink solitons is
precluded.

In the most common case, where all invariant manifolds
intersect with each other, all types of solitons, including kinks,
coexist. Such a case is depicted in Fig. 10(b) where branches
of the invariant manifolds (not all of them due to symmetry)

are shown. Points A, B, C, and D denote intersections
between the unstable manifold of the origin O and the
stable manifold of P+ with the respective profiles shown in
Fig. 11. These profiles have no symmetry with respect to
the underlying layered structure. Stable propagation is shown
in Figs. 12(a) and 12(c), whereas oscillatory propagation is
shown in Fig. 12(b). A case of unstable propagation is depicted
in Fig. 12(d) where the small amplitude part of the wave
propagates in a stable fashion, whereas the part of the wave
close to the nonzero background undergoes more complex
dynamics.

IV. SUMMARY AND CONCLUSIONS

A periodic layered structure with piecewise constant linear
refractive index and alternating sign of nonlinearity has
been considered in terms of solitary wave formation and
propagation. A detailed analysis of the dynamical system
governing the transverse profile of the wave has been utilized in
order to identify parameter space regions where saddle points
corresponding to plane-wave solutions exist. The various

−40 −20 0 20 40
−0.2

0

0.2

0.4

x

u

(a)

−40 −20 0 20 40
−0.4

−0.2

0

0.2

0.4

x

u

(b)

−40 −20 0 20 40

−0.4

−0.2

0

0.2

0.4

x

u

(c)

−40 −20 0 20 40

−0.4

−0.2

0

0.2

0.4

u

x

(d)

FIG. 11. (Color online) Kink soliton profiles corresponding to points A (a), B (b), C (c), and D (d) of Fig. 10(b).

063849-7



YANNIS KOMINIS PHYSICAL REVIEW A 87, 063849 (2013)

0

10

20

30

40

−30 −20 −10 0 10 20 30

0

0.5

x

z

|u|

(a)

0

20

40

60

80

−20 −10 0 10 20

0

0.5

x

z

|u|

(b)

0

10

20

30

40

−30 −20 −10 0 10 20 30

0

0.5

x

z

|u|

(c)

0

20

40

60

80

−20 −10 0 10 20

0

0.5

x

z

|u|

(d)

FIG. 12. (Color online) Propagation of kink solitons with profiles shown in Fig. 11.

types of SW are localized transitions between the same or
different asymptotic plane-wave backgrounds and can be
found as solutions of this dynamical system corresponding
to intersections of invariant stable and unstable manifolds
of the respective saddles in the phase space. The phase
space analysis allows for the systematic investigation of the
existence conditions of SW. It is shown that all types of
SW, including bright, dark, antidark, and kink solitons as
well as bound states can exist in different parameter space
regions, while in the greater part of the parameter space they
actually coexist. Propagation dynamics of the SW have been
investigated with the utilization of numerical simulations and a
rich set of dynamical features has been shown including stable
and unstable SW propagation and mode transformation. The

remarkable richness of all types of SW supported by this class
of periodic structures along with its relatively simple periodic
form provides intuition in understanding SW formation and is
very promising for realistic experiments and applications.
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