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Two-mode back-action-evading measurements in cavity optomechanics
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We study theoretically a three-mode optomechanical system where two mechanical oscillators are coupled
to a single cavity mode. By using two-tone (i.e., amplitude-modulated) driving of the cavity, it is possible
to couple the cavity to a single collective quadrature of the mechanical oscillators. In such a way, a back-
action-evading measurement of the collective mechanical quadrature is possible. We discuss how this can allow
one to measure both quadratures of a mechanical force beyond the full quantum limit, paying close attention
to the role of dissipation and experimental imperfections. We also describe how this scheme allows one to
generate steady-state mechanical entanglement; namely, one can conditionally prepare an entangled, two-mode
squeezed mechanical state. This entanglement can be verified directly from the measurement record by applying
a generalized version of Duan’s inequality; we also discuss how feedback can be used to produce unconditional
entanglement.
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I. INTRODUCTION

The idea of a back-action-evading quantum measurement
is by now a well-known concept [1–4]. The simplest and most
studied realization is the continuous position measurement of
a simple harmonic oscillator. If one tries to simultaneously
follow both quadratures of the oscillator’s motion (i.e., both
the amplitudes of the sine and cosine components of the
motion), then the unavoidable effects of quantum back-action
imply that one cannot improve the measurement indefinitely
by increasing the measurement strength. This leads to the
quantum limit on continuous position detection [3,5]. If instead
one measures just a single quadrature of the motion (say the
X̂ quadrature), there is no such limit as one has “evaded”
the back-action: The measurement back-action only heats
the conjugate P̂ quadrature, which has no effect on the
measurement, as the oscillator dynamics does not couple it
to X̂.

Such back-action-evading (BAE) measurement schemes
allow one to measure one quadrature of a narrow-bandwidth
force acting on a mechanical oscillator with arbitrary precision.
They also naturally lead to squeezing of the measured
quadrature, albeit a conditional squeezing, where one must
have access to the full measurement record to produce
unconditional squeezing. Back-action-evading schemes are
also known as “quantum-nondemolition (QND) in time”
measurements, as one is making a QND measurement of
an observable which is explicitly time dependent. These
ideas have recently been discussed [6] within the specific
context of quantum optomechanics [7], where a mechanical
oscillator is dispersively coupled to a driven cavity. A
BAE single-quadrature measurement was even implemented
experimentally by Herzberg et al., using a nanomechanical
oscillator coupled to a driven microwave-frequency cavity [8].

One could now ask about exploiting the idea of back-action
evasion in more general settings. The simplest generalization
would involve two harmonic oscillators, implying four quadra-
tures of motion. Such a two-mode BAE scheme would involve
measuring two quadratures of motion, with the back-action
only driving the unmeasured conjugate quadratures. If one

could suitably couple the system, one could imagine measuring
both quadratures of an applied force without any quantum
limit.

That such a scheme is possible was recently discussed in
detail by Tsang and Caves [9,10], though similar ideas were
discussed earlier (see, for example, Ref. [11] or Appendix D of
Ref. [12]). From a practical perspective, it appears challenging,
as it requires one of the two oscillators involved to have
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FIG. 1. (Color online) (a) The system studied consists of two
mechanical oscillators, each coupled to a cavity (or circuit) mode.
Measurement is performed via phase-sensitive detection near the
cavity resonance of the cavity output field. (b) Frequencies in this
system, defined with respect to the cavity resonance frequency
ωc. The blue lines indicate the standard mechanical sidebands, at
±ωa and ±ωb. The cavity is driven at ±ωm = ±(ωa + ωb)/2, as
indicated by vertical red lines on either side of the cavity resonance.
(c) Representation of the two-mode BAE scheme in the ideal, fully
symmetric case. The observable X̂+ is directly measured, and the
observable P̂+ is heated by the corresponding back-action. P̂−
is dynamically coupled to X̂+ and therefore effectively measured
provided that � � γ . In this limit, X̂− (which is dynamically coupled
to P̂−) is also heated by the back-action of the measurement.
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effectively a negative mass (and hence a negative frequency).
Similar to standard single-oscillator back-action evasion, one
might expect that there is also a squeezing aspect to such
two-mode BAE. This was discussed by Hammerer et al. [13]:
The squeezing here of the delocalized measured quadratures
naturally gives rise to an EPR-style entanglement between the
two modes.

In this paper, we now extend the above idea of two-mode
back-action evasion to quantum optomechanics, specifically
considering a system where two mechanical oscillators are
coupled to a single electromagnetic mode, as depicted in
Fig. 1. Such two-mode optomechanical systems have recently
been realized experimentally [14]. We show that the two-mode
BAE scheme can be realized in a relatively simple fashion in
such a system, using a generalization of the two-tone driving
scheme used to achieve single-mode back-action evasion [1,6].
This is in contrast to previous proposals, where to achieve
the requisite negative mass, one of the two modes was not
mechanical, but rather an atomic ensemble [13] or another
cavity mode [9]. Unlike the single-mode back-action-evasion
case, we expect that this scheme will not be susceptible to
parametric instabilities [15], since here the number of photons
in the cavity will not oscillate at double the mechanical
resonance frequencies.

Note that applications of BAE measurement ideas to a
system of two mechanical oscillators have previously been
studied [16–22], motivated by attempts at gravitational wave
detection. The approaches presented in those works differ
significantly from our scheme; in particular, they involve
an explicit coupling between the mechanical oscillators,
something that is not required with our scheme.

We provide a thorough discussion of the optomechanical
two-mode BAE scheme, including a discussion of expected
experimental imperfections and methods for countering these.
In addition, we provide a full analysis of the force sensitivity
of this scheme and the possibility of beating conventional
quantum limits. Unlike previous work [9,10], we include
dissipation in this analysis.

Finally, we also consider the generation of stationary,
conditional entanglement using this scheme and the possibility
of turning this into unconditional entanglement using feed-
back. This is in contrast to more conventional measurement-
based entanglement-generation schemes, which rely on strong
measurements and postselection; such schemes are well-
established in optics [23–25] and have recently been discussed
in the context of superconducting circuits [26,27]. Our scheme
also differs from that in Ref. [13] as we generate stationary
entanglement and do not require a single-shot strong feedback
operation.

The remainder of this paper is structured as follows. In
Sec. II we derive the Hamiltonian and Heisenberg-Langevin
equations describing this system and introduce a method
for compensating for system asymmetries. In Sec. III we
calculate the back-action heating effect and the measured noise
spectrum, with a view to assessing the 5 limits of our system.

In Sec. IV we rigorously compare the force sensitivity
of our scheme, including imperfections, against conventional
quantum limits. The situation is significantly more compli-
cated when one includes the presence of dissipation (unlike

Refs. [9] and [10]). We find that for a signal force applied
at the mechanical resonance frequency, the number of added
noise quanta can be made to go to zero (below the quantum
limit of 1/2),

n̄add[ωa] → 0, (1)

even in the presence of dissipation. However, this is only pos-
sible in a narrow bandwidth about the mechanical resonance
and requires a careful tuning of optomechanical couplings.
For a signal force off-resonant from the mechanical resonance
frequency (detuned by an amount �), we find that the added
noise can be made to go to

n̄add[ωa + �] = 1

2
√

2
, (2)

well below the standard quantum limit in this case (n̄add[ωa +
�] = �/γ , where γ is the average mechanical damping rate)
and even below the full quantum limit (i.e., allowing for
optimal detector noise correlations).

The conditional dynamics of the mechanical oscillators,
under a continuous measurement via the coupled cavity, are
described in Sec. V. The steady-state conditional variances are
determined, and these are used to determine in which regimes
the mechanical oscillators are conditionally entangled. The
presence of all-mechanical entanglement is determined from
Duan’s inequality [28], which here (in the case of symmetric
optomechanical couplings and mechanical damping rates)
becomes the requirement

VX+ + VP− =
√

2(n̄th + 1/2)

ηC
< 1, (3)

where VX+ (VP− ) is the variance in the sum (difference) of
the mechanical X̂ (P̂ ) quadratures, n̄th is the effective thermal
occupation of the mechanical environment [see Eq. (83a)], η is
the quantum efficiency of the measurement [see Eq. (73)], and
C is the so-called optomechanical cooperativity, essentially
quantifying the measurement strength [see Eq. (29)]. Both
quantities on the left-hand-side of Eq. (3) may be obtained
in a straightforward manner from the measurement record.
Therefore, the mechanical oscillators should be entangled
provided that the cooperativity obeys

C >
2(n̄th + 1/2)

η
. (4)

From an experimental perspective, this would appear to
be a modest requirement, well within the reach of current
optomechanics experiments based on microwave circuits
[29]. In Sec. VI, the total unconditional variances of the
collective quadratures are calculated, and a feedback scheme
is introduced that allows the conditional entanglement to be
converted to unconditional entanglement.

II. SYSTEM

A. Hamiltonian

The system (see Fig. 1) is composed of two mechanical
oscillators, with resonance frequencies ωa and ωb, each
independently and dispersively coupled (with strengths ga and
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gb, respectively) to a common cavity mode having resonance
frequency ωc. The Hamiltonian is

Ĥ = ωaâ
†â + ωbb̂

†b̂ + ωcĉ
†ĉ + ga(â + â†)ĉ†ĉ

+ gb(b̂ + b̂†)ĉ†ĉ + Ĥdrive + Ĥdiss, (5)

where â and b̂ denote mechanical lowering operators, ĉ denotes
the electromagnetic lowering operator, and Ĥdrive accounts for
driving of the electromagnetic mode. The term Ĥdiss accounts
for dissipation, with the modes subject to damping at rates γa ,
γb, and κ , respectively.

To realize the two-mode BAE dynamics suggested by Tsang
and Caves [9], we need the two mechanical oscillators to
have equal and opposite frequencies and, moreover, have
the cavity (the detector in this scheme) only couple to a
single collective quadrature of the two mechanical oscillators
(an operator which is explicitly time dependent). Both these
requirements can be realized by simply adapting the two-tone
(i.e., ampltiude-modulated) driving scheme used for ordinary
single-quadrature BAE in Refs. [6] and [8]. One applies a
drive to the cavity at both ωc + ωm and ωc − ωm, where
ωm = (ωa + ωb)/2 is the average of the two mechanical
frequencies; i.e.,

Ĥdrive = (E∗
+e−iωmt + E∗

−eiωmt )eiωct ĉ + H.c. (6)

Working in an interaction picture with respect to Ĥ0 =
ωm(â†â + b̂†b̂) + ωcĉ

†ĉ, one finds that the frequencies of
the mechanical oscillators are now ±� as desired, where
2� = ωa − ωb. We further specialize to an optomechanical
system in the good cavity limit (ωm � κ) and assume large
driving amplitudes |E+|,|E−|, such that one can linearize the
optomechanical interaction. In this standard regime, one finds
(as desired) that in the interaction picture, the cavity only
couples to a collective mechanical quadrature with a time-
independent coupling. Specifically, defining the the quadrature
operators for each mode in the interaction picture in the
standard manner (α = a,b,c),

X̂α = (α̂ + α̂†)/
√

2, (7a)

P̂α = −i(α̂ − α̂†)/
√

2, (7b)

and collective (canonically conjugate) mechanical quadrature
observables via

X̂± ≡ (X̂a ± X̂b)/
√

2, (8a)

P̂± ≡ (P̂a ± P̂b)/
√

2, (8b)

the optomechanical Hamiltonian takes the form

Ĥ = �(X̂+X̂− + P̂+P̂−) + GX̂+X̂c − GdX̂−X̂c + Ĥdiss.

(9)

Here, the many-photon optomechanical couplings are given
by

G ≡
√

2 (ga + gb) c̄, (10a)

Gd ≡
√

2 (gb − ga) c̄, (10b)

where c̄ = |E±|/√ω2
m + κ2/4 is the steady-state amplitude of

the cavity field at the driven sidebands. Note that we want to
be in a regime where κ � �, such that the cavity responds
fast enough to monitor the collective mechanical oscillation.

The details of this derivation are given in Appendix A.
We stress here that the interaction terms in Eq. (9), even
accounting for contributions from the off-resonant sidebands
of the driving fields, will not include terms oscillating at
double the mechanical resonance frequencies. Accordingly,
the cavity photon number will not oscillate at this frequency
and the parametric instabilities associated with single-mode
back-action evasion [15] should be avoided in the two-mode
case.

For equal optomechanical couplings (i.e., Gd = 0) and
equal mechanical damping rates (γa = γb ≡ γ ), this system
perfectly realizes the BAE scheme of Tsang and Caves. To
see this, consider the Heisenberg-Langevin equations for our
system in this ideal symmetric limit. Defining the vector of
collective mechanical quadrature operators as

�V = (X̂+,P̂−,X̂−,P̂+)T , (11)

a standard calculation yields

d

dt
�V = M · �V + �FBA + N · �ξ . (12)

Here, M describes the oscillator dynamics in the rotating
frame,

M =

⎡
⎢⎣

−γ /2 � 0 0
−� −γ /2 0 0

0 0 −γ /2 �

0 0 −� −γ /2

⎤
⎥⎦ , (13)

while �FBA is the back-action force from the cavity:

�FBA = (0,0,0,−GX̂c)T . (14)

Further,

�ξ = (X̂+,in,P̂−,in,X̂−,in,P̂+,in)T , N = √
γ I4, (15)

describe the Langevin noise arising from the dissipative baths
of each mechanical resonator, with In denoting the n × n

identity matrix. Finally, the equations of motion for the cavity
quadratures are

˙̂Xc = −κ

2
X̂c + √

κX̂c,in, (16a)

˙̂P c = −GX̂+ − κ

2
P̂c + √

κP̂c,in. (16b)

We thus have the desired behavior.
(i) The collective X̂+ and P̂− quadratures are linked dy-

namically the same way as X̂ and P̂ for a harmonic oscillator,
but are dynamically independent from their conjugate pair (P̂+
and X̂−). In the language of Tsang and Caves, the commuting
observables X̂+ and P̂− form a quantum-mechanics-free
subspace.

(ii) From Eq. (16b), we see that the cavity measures X̂+
(and hence the dynamically linked P̂− quadrature) and its back-
action only drive the unmeasured mechanical quadratures P̂+
and X̂− [cf. Eq. (14)].

One thus has a setup which allows the BAE measurement
of both of the collective quadratures, X̂+ and P̂−. Information
about the motion of these collective quadratures appears at the
cavity output at sidebands ±� from the cavity resonance.
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B. Compensating for unequal optomechanical couplings

While the scheme is easy to understand in the perfectly
symmetric case, any real expeirment will have to contend
with both an asymmetry in the optomechanical couplings
(ga �= gb) and an asymmetry in the mechanical damping
(γa �= γb). Asymmetric couplings cause Gd in Eq. (9) to be
nonzero, implying that the cavity measures both the X̂+ and
X̂− collective quadratures. As a result, the measurement is no
longer BAE (i.e., the unwanted measurement of X̂− causes
back-action to drive P̂−, which then corrupts the measurement
of X̂+). Even if there is no coupling asymmetry, if γa �= γb,
the damping terms in the Heisenberg-Langevin equations
will link X̂+ and X̂−, also ruining the back-action-evasion.
Both these effects can easily be seen by writing out the
Heisenberg-Langevin equations in the general asymmetric
case; see Appendix B, especially Eqs. (B2) and (B5).

We show in later sections that while small deviations from
the ideal symmetric system cause a departure from perfect
back-action evasion, one can still beat quantum limits on
detection as well as generate squeezing and entanglement.
Here, we point out that it is possible to exactly null the
deleterious effects of asymmetric optomechanical couplings
by introducing additional parametric drives on each me-
chanical resonator. Note that attempting to compensate for
the asymmetric optomechanical couplings by modifying the
weights of the two cavity drives only leads to more unwanted
interaction terms.

To begin our analysis of the case ga �= gb, it is useful
to introduce a new set of canonically conjugate collective
mechanical quadratures, such that in this basis, the cavity
only couples to a single (collective) quadrature. Defining the
rotation angle θ as

θ = tan−1 (Gd/G) , (17)

we introduce

X̃± ≡ cos θ X̂± ∓ sin θ X̂∓, (18a)

P̃± ≡ cos θ P̂± ∓ sin θ P̂∓. (18b)

The Hamiltonian of Eq. (9), in terms of the observables
introduced in Eqs. (18a) and (18b), takes the form

Ĥ = �̃(X̃+X̃− + P̃+P̃−) + G̃X̃+X̂c + Ĥdiss

+ 1
2p�̃(X̃2

− + P̃ 2
− − X̃2

+ − P̃ 2
+), (19)

where we have defined

p ≡ tan 2θ = 2Gd/G

1 − G2
d/G2

= g2
a − g2

b

2gagb

, (20a)

�̃ ≡ � cos 2θ = �
1 − G2

d/G2

1 + G2
d/G2

= 2
gag

2
b

g2
a + g2

b

, (20b)

G̃ ≡ G sec θ = G

√
1 + G2

d/G2. (20c)

One can recast the Heisenberg-Langevin equations describing
the system in terms of these rotated observables. The system
retains the form of Eq. (12), now in terms of the vector of
rotated observables,

�V = (X̃+,P̃−,X̃−,P̃+)T , (21)

with the input noise vector given by

�ξ = (X̃+,in,P̃−,in,X̃−,in,P̃+,in)T . (22)

The appropriate matrices are specified in Eqs. (B9) and (B10).
The cavity is now only coupled to a single collective

quadrature X̃+, with a modified coupling constant G̃. The free
evolution of the oscillators in this quadrature basis is, however,
not of the desired form; the back-action evasion is ruined by
the terms in the last line of Eq. (19), which dynamically link the
measured observables (X̃+,P̃−) to their (perturbed) conjugate
pair (P̃+,X̃−)

It is now natural to ask whether it is possible to modify
the mechanical system in some simple way so as to elim-
inate the last line in Eq. (19). Such a modification would
require introducing both position and momentum couplings
between the two mechanical oscillators, something that is
not experimentally feasible. A more modest approach would
involve simply adding terms to the Hamiltonian of each
mechanical oscillator (but not introduce any coupling). We
consider parametrically driving each mechanical oscillator,
and thus adding a term Ĥpa to the system Hamiltonian of
the form

Ĥpa = −�(â2 + â†2 + b̂2 + b̂†2). (23)

This is written in the interaction picture; in the nonrotating
laboratory frame, this corresponds to an equal-strength para-
metric modulation of each oscillator’s spring constant at the
frequency 2ωm. Writing this in the tilde quadrature basis of
interest, we have

Ĥpa = �(P̃ 2
− + P̃ 2

+ − X̃2
+ − X̃2

−). (24)

We thus see that by taking � = p�̃/2, these terms combine
with the last term in Eq. (19) to give a Hamiltonian which has
the general BAE form

ĤC = Ĥ + Ĥpa = �̃(X̃+X̃− + P̃+P̃−) + G̃X̃+X̂c

+p�̃(P̃ 2
− − X̃2

+) + Ĥdiss. (25)

Note that the required value of the parametric modulation
corresponds to requiring the amplitude of the spring constant
modulation of each oscillator to satisfy �ki/ki = 4p�̃/ωi

(i, = a,b). In this Hamiltonian, the measured observables
X̃+ and P̃− are dynamically independent of their conjugate
quadratures, as required. The extra terms in the last line
of Eq. (25) only modify the dynamics of the unmeasured
subsystem. We thus see that two-mode BAE is possible
even without having perfectly symmetric optomechanical
couplings.

III. NOISE SPECTRA

To gain a better appreciation of the two-mode BAE scheme
introduced above, we calculate the noise spectra of the mea-
sured and perturbed collective mechanical quadratures, and of
the homodyne current from measurement of the cavity output.
These may be calculated from the Heisenberg-Langevin
equations in the usual manner [4]; the details are given in
Appendix C . Note that all quantum noise spectra quoted
throughout this paper are symmetrized quantum noise spectra.
Of particular interest here are the effects of asymmetries (either
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in the optomechanical couplings or in the mechanical damping
rates), which will cause deviations from the perfectly BAE
result. Readers not interested in the effects of imperfections
(i.e., asymmetries) may wish to read Sec. III A and then jump
to Sec. IV, where we discuss beating the quantum limit on
force sensing.

A. Ideal symmetric case

We start with the ideal case of symmetric optomechanical
couplings (ga = gb) and symmetric mechanical damping
(γa = γb = γ ). The symmetrized noise spectral density of an
observable Ẑ ≡ [ �V ]i is defined by

SZ[ω] ≡ 1

2

∫ +∞

−∞
dt eiωt 〈{Ẑ(t),Ẑ(0)}〉. (26)

For the measured observable X̂+ it is

SX+ [ω] = 1

2
(n̄a + n̄b + 1)

[
γ /2

(γ /2)2 + (ω − �)2

+ γ /2

(γ /2)2 + (ω + �)2

]
, (27)

where n̄a and n̄b are the temperatures of the two mechanical
baths (expressed as a number of thermal quanta). We are work-
ing here in the interaction picture as always (i.e., ω is measured
with respect to the average mechanical frequency ωm) and
have assumed the good cavity (or “resolved-sideband”) limit
κ  ωm. The spectrum of Eq. (27) consists of two Lorentzians,
centered at ±�, and weighted by the thermal and quantum
fluctuations of the mechanical oscillators. Since we are in
the perfect back-action-evasion limit, there is no dependence
on the optomechanical coupling G. Turning to the perturbed
observable P̂+, the spectrum is given, in the limit κ � �, by

SP+[ω] = 1

2
[n̄a + n̄b + 1 + C(2n̄c + 1)]

×
[

γ /2

(γ /2)2 + (ω − �)2
+ γ /2

(γ /2)2 + (ω + �)2

]
,

(28)

where n̄c is the number of thermal quanta associated with
cavity dissipation, and we have quantified the optomechanical
coupling G in terms of the cooperativity parameter [30],
defined as

C = 2G2

γ κ
. (29)

The cooperativity here is essentially the measurement strength,
and thus describes the back-action heating rate of the perturbed
collective quadrature. It is equivalent to the quantity nBA used
in Ref. [6] to denote back-action heating of the perturbed
quadrature (as a number of quanta) in optomechanical single-
mode back-action evasion.

We now turn to the spectrum of the cavity output. We
consider the case of a single-sided cavity, with homodyne
detection of the cavity output field. The measured spectrum
of X̂+ is then defined in terms of the total homodyne current

noise spectrum SI [ω] as

Smeas
X+ [ω] = SI [ω]/K2, (30)

where K ≡ 2BG/
√

κ/2 is a measurement gain with B

denoting the amplitude of the local oscillator in the homodyne
detection scheme. Further details of the calculation of this
quantity are given in Appendix C. Taking the most interesting
limit κ � �,γ (i.e., the cavity is fast enough to measure the
collective quadrature), we find

Smeas
X+ [ω] = SX+[ω] + 1/γ

8C
(2n̄c + 1). (31)

The second term here is the imprecision noise of the mea-
surement (i.e., output shot noise). In the perfect BAE limit
considered here, it can be made arbitrarily small without any
resulting back-action penalty by increasing the cooperativity
via the driving strength E±. Note that the standard quantum
limit result at resonance (applicable when one is limited by
back-action) is that the added noise must be at least as large
as the zero-point motion of the oscillator. We thus see that one
beats this standard quantum limit constraint when

C > (1 + 2n̄c)/8. (32)

Typically, the thermal occupation of the cavity, n̄c, is small,
such that the constraint of Eq. (32) is not experimentally
demanding. Indeed, henceforth, we set n̄c = 0. The results
accounting for nonzero n̄c are readily obtained by multiplying
cavity-dependent contributions to the noise spectra by
(2n̄c + 1).

B. Asymmetric optomechanical couplings and
mechanical damping

In the presence of coupling asymmetry, the measured
collective quadrature is now X̃+ (rather than X̂+) as defined
in Eq. (18a), and so it is the noise spectrum of this quantity
that we seek. Our goal is to understand whether coupling and
damping asymmetries can be tolerated, or even exploited, for
the purpose of force sensing beyond the usual quantum limits.

In the presence of asymmetry, the two sets of collective
quadratures (X̃+,P̃−) and (X̃−,P̃+) are coupled to one another,
increasing the complexity of the spectra. In general, we
write the noise spectral density as the sum of a contribution
from thermal and quantum fluctuations of the mechanical
oscillators, a contribution from the back-action of the cavity
detector, and an imprecision noise contribution, as

Smeas
X̃+

[ω] = S th
X̃+

[ω] + Sba
X̃+

[ω] + S
imp
X̃+

[ω]. (33)

Now in the fully symmetric case considered previously, we
have S th

X̃+
[ω] = SX+[ω] as given in Eq. (27), Sba

X̃+
[ω] = 0 (since

the measurement is BAE), and Smeas
X̃+

[ω] is given by Eq. (31).
Now the simplest contribution to the spectrum in the

asymmetric case is the imprecision noise contribution. This
is given by [cf. Eq. (31)]

S
imp
X̃+

[ω] = 1/γ

8C̃
, (34)

where γ is now the average mechanical damping rate,

γ = (γa + γb)/2, (35)
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and we have introduced the rotated cooperativity parameter by

C̃ = 2G̃2

γ κ
= C[1 + (Gd/G)2] = C sec2

(
arctan p

2

)
, (36)

which follows from Eqs. (20a), (20c), and (29).
The thermal and back-action contributions to the noise

spectrum exhibit complicated dependencies on system asym-
metries. They are given, in a general form, by Eqs. (C6)
and (C10), respectively. For weak asymmetries, however,
one finds that the measured noise spectrum of X̃+ still has
approximately Lorentzian peaks at ω = ±� (not �̃), as in the
symmetric case. The system asymmetries will be quantified
through the dimensionless parameters p and d, which quantify
the degree of coupling and damping asymmetry, respectively.
The parameter p is defined in Eq. (20a), while d is defined by

d = (γa − γb)/(γa + γb). (37)

Since the general expressions for these noise contributions
are complicated, we focus on two special cases: the noise at
the effective mechanical resonance (�, where � � γ ) and the
noise far detuned from the effective mechanical resonance
(� + �, where � � � � γ ). Furthermore, we focus on
the limit γ /� → 0. First we consider the system in the
absence of the compensating parametric driving, such that
the Hamiltonian is given by Eq. (9). In Sec. III B3 we consider
the compensated system, with Hamiltonian given by Eq. (25).

1. Noise at mechanical resonance

First we consider the noise contributions at the effective
mechanical resonance frequency. The noise contribution from
thermal and quantum fluctuations is a complicated function
of the coupling asymmetry, as this asymmetry modifies the
effective mechanical susceptibility. However, in the case where
the coupling asymmetry is zero (p = 0), we simply have

S th
X+[�] = 1

γa

(1/2 + n̄a) + 1

γb

(1/2 + n̄b) . (38)

That is, the noise contribution from each mechanical oscillator
is simply given by the thermal and quantum fluctuations of the
bath to which it is coupled, scaled by its damping rate. Another
case of interest, for reasons that shall become clear later, is that
of matched asymmetries (p = −d), and in this case we find

S th
X̃+

[�] = 1

γ
[(1/2 + n̄a)(1 + d3) + (1/2 + n̄b)(1 − d3)].

(39)

Next we consider the noise contribution due to the back-
action of the cavity on the mechanical oscillators. At the
resonant peaks, this is

Sba
X̃+

[�] = 1

γ

(p + d)2(1 + p2)

(1 − d2 + p2)2
C̃. (40)

That is, the asymmetries lead to back-action heating which
is proportional to the measurement strength C. As shown in
Fig. 2, in general, the back-action noise contribution increases
in the presence of either coupling or damping asymmetries (as
indicated by the solid lines). Surprisingly, however, by having
appropriately tuned damping and coupling asymmetries such
that p + d = 0, one can cancel this extra heating effect at

FIG. 2. (Color online) Back-action noise, Sba
X̃+ [ω], for a range

of optomechanical coupling and mechanical damping asymmetries,
centered on ω = +�. The plotted spectra are offset and normalized
by the noise spectral density at � in the ideal, fully symmetric
case; cf. Eq. (27). In the fully symmetric case (black line), there
is no back-action contribution to the spectrum. Asymmetries lead
to back-action contributions to the spectra (solid lines). However, by
matching asymmetries the back-action contribution on resonance may
be nullified (dashed lines); see Eq. (40). The asymmetries for each
line are [cf. Eq. (37)]: d = 0,Gd/G = 0 (black); d = 0.05,Gd/G =
0.025 (blue, solid); d = 0.05,Gd/G = −0.025 (blue, dashed); d =
0.2,Gd/G = 0.1 (purple, solid); d = 0.2,Gd/G = −0.1 (purple,
dashed); d = 1,Gd/G = 0.414 (red, solid); d = 1,Gd/G = −0.414
(red, dashed). The other parameters used here (and in subsequent
figures) are based on the experiments performed by Teufel and
co-workers [29], as described in Sec. V G.

resonance (as indicated by the dashed lines). The measured
observable is driven by back-action from both the coupling
asymmetry and the damping asymmetry; at resonance these
are precisely out of phase and may coherently cancel. Un-
fortunately, though, this cancellation occurs only in a small
bandwidth about the mechanical resonance, as is described
quantitatively in Sec. IV. Recall that this back-action noise
cancellation occurs in the limit γ /� → 0. To higher-order
in γ /�, and in the case of matched coupling and damping
asymmetries (p = −d), we have

Sba
X̃+

[�] = 1

γ

(
γ

�

)2 1

8
(1 + d2)3(1 + d2 −

√
1 + d2)C. (41)

This result is useful in determining the ultimate limit to force
sensing in this system.

2. Noise away from mechanical resonance

Next we consider the noise spectrum far from the effective
resonance frequency (ω = ±�) at a detuning �, where � �
� � γ . The thermal contribution in this limit is

S th
X̃+

[� + �] = γ

4�2

[
(1 + d)

(
1

2
+ n̄a

) (
1 − p

1 + p2

)

+ (1 − d)

(
1

2
+ n̄b

) (
1 + p

1 + p2

)]
. (42)

In the case of no asymmetries (p,d = 0), Eq. (42) reduces to
a simple result consistent with Eq. (27).
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Next, the back-action contribution to the noise spectrum at
ω = ±(� + �) is

Sba
X̃+

[� + �] = γ

4�2

p2

1 + p2
C̃. (43)

Clearly, far from the effective mechanical resonance, the
back-action heating due to the presence of damping asymmetry
is strongly suppressed compared to the heating due to coupling
asymmetry. As we see in Sec. IV, this will allow for excellent
force sensing of a force applied to one of the mechanical
oscillators which is strongly detuned from resonance. In the
absence of coupling asymmetry, the dominant back-action
noise contribution is at higher order in γ /�,

Sba
X+[� + �] = γ

4�2

(
γ

2�

)2

d2C. (44)

That is, the back-action heating due to damping asymmetry
is suppressed by the small factor (γ /2�)2.

3. Noise with compensation

Now we turn to the noise spectra in the presence of the
compensation described in Eq. (25). The question is whether
such compensation is useful for the purpose of force sensing,
and to answer this question, we calculate the measured noise
spectra. For weak asymmetries, the noise spectrum remains
well-approximated by Eq. (27) if we make the replacement
� → �̃. That is, the effective collective mechanical oscillator
frequency is now �̃ (rather than �), but again we shall quote
results in two cases: at resonance (�̃, assuming �̃ � γ ) and
far-detuned from resonance (�̃ + �, assuming �̃ � � � γ ).

At resonance, the thermal noise contribution is

S th
X̃+

[�̃] = 1

γ [1 − d2(1 − p2)]

[
n̄a + n̄b + 1

+ (n̄b − n̄a)d
1 − d2(1 + p2)

1 − d2(1 − p2)

]
. (45)

This reduces to the result of Eq. (38) in the case p = 0 (where
�̃ → �). The back-action contribution is

Sba
X̃+

[�̃] = 1

γ

d2

[1 − d2(1 − p2)]2
C̃. (46)

Clearly, the back-action heating due to coupling asymmetry
is now attenuated compared with the uncompensated case; cf.
Eq. (40).

Far from the effective mechanical resonance, the thermal
noise contribution, S th

X̃+
[�̃ + �], is given by Eq. (42) with

p = 0, and the back-action noise contribution, Sba
X̃+

[�̃ + �],
is given by Eq. (44) provided that we make the replacement
C → C̃. In both cases, the noise contribution due to coupling
asymmetry is suppressed by the use of compensation.

C. Summary

The noise spectrum of the measured observable may be
expressed as a sum of contributions from thermal and quantum
fluctuations, back-action noise, and imprecision noise, as per
Eq. (33). In the fully symmetric case there is no back-action
contribution, and the noise spectrum is given by Eqs. (27)
and (31). In the asymmetric case, the back-action noise

contribution is a complicated function of the asymmetries. At
resonance it is possible to cancel this contribution by matching
asymmetries [see Eq. (40)], while the contribution far from
resonance is relatively insensitive to damping asymmetry [see
Eq. (44)].

IV. FORCE SENSITIVITY

A key motivation for the two-mode BAE scheme is the
possibility of continuously monitoring both quadratures of a
narrow-band force without any back-action-related quantum
limit. We now analyze this possibility in detail, paying close
attention to the role of mechanical dissipation, something that
was not discussed in Ref. [10].

A. Conventional quantum limits

We consider the standard situation where a narrow-band
force F (t) is applied to one of the two mechanical oscillators
in our setup (say the a mechanical oscillator):

ĤF = F (t)x̂a = f (t)(â + â†), (47)

where f (t) = �xaF (t). In the standard way, we express the
total noise in the measured homodyne signal as an equivalent
added thermal noise on the driven oscillator. The measured
force noise spectral density has contributions both from the
added noise of the measurement as well as the inherent
quantum (zero-point) and thermal fluctuations of the measured
system, and takes the general form

Smeas
F [ω] ≡ h̄mγaω(1 + 2n̄a[ω] + 2n̄add[ω]), (48)

where n̄a[ω] describes the thermal occupation of the driven
oscillator and n̄add[ω] is the noise added by the measurement.
The most straightforward way to monitor F (t) would be to
continuously monitor the position x̂a of the driven mechanical
oscillator. In this case, the full quantum limit on continuous
position detection [5] directly leads to a quantum limit on force
detection:

n̄add[ω] � 1/2. (49)

We refer to this as the full quantum limit on continuous force
detection: The added noise at each frequency is at best equal
to the zero-point noise.

Reaching the above-defined conventional quantum limit at
frequencies far from the mechanical resonance requires strong
correlations between the position detector’s back-action and
imprecision noises [5], something that can be difficult to
achieve. In the absence of such correlations, one is subject
to a more severe constraint, the so-called “standard quantum
limit.” For frequencies ω = ωa + � far from the mechanical
resonance (i.e., |�| � γa), this standard quantum limit takes
the form

n̄add[ωa + �] � �/γa. (50)

By now calculating the added noise n̄add[ω] of the two-mode
BAE scheme which is the focus of this paper, we can deter-
mine whether one can surpass these conventional quantum
limits. Naively, one might think that as one is evading the
measurement back-action, there should be no quantum limit
on the added noise. The situation is, however, more complex.
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The auxiliary oscillator in our scheme (mechanical oscillator
b) will have its own quantum and thermal fluctuations which
contribute to the output noise and thus the added noise of the
measurement. One cannot simply set this to zero by making
γb = 0, because if γa �= γb, the complete BAE nature of the
scheme is lost (as shown above). Despite these complications,
we find that there are ways to perform force sensing using
our scheme that yield added noise numbers far below the
conventional quantum limits.

B. Results for two-mode BAE

The two-mode BAE scheme is capable of measuring both
quadratures of the signal force F (t) as long as it is contained in
a bandwidth � about the mechanical resonance frequency
ωa; we thus restrict attention to this case. The linearized
equations of motion readily yield the linear-response relation
between the measured observable X̃+ and the frequency
components of the applied force (see Appendix D). For
frequencies δ satisfying |δ|  �, we find

〈X̃+[±(ω2 + δ)]〉 = �xa χF [±(ω2 + δ)]F [±(ω1 + δ)], (51)

where ω2 = � and ω1 = ωa in the uncompensated case,
and χF [ω] is a transfer function (which satisfies χF [−ω] =
χF [ω]∗) whose form follows from the equations of motion;
we discuss its properties further in what follows. Note that
in the compensated case the relevant frequencies are shifted
such that ω2 = �̃ and ω1 = ω′

a = ωa + �(1 − cos 2θ ), with
θ as defined in Eq. (17), and for this reason results in this
section are expressed in terms of the general frequencies ω1

and ω2. We consider both the cases of a mechanically resonant
signal force (δ = 0) and a mechanically nonresonant signal
force (δ = � � γ ). We stress here that the left-hand side of
Eq. (51) involves the frequency components of X̃+[ω] in the
rotating frame used to write the system Hamiltonian in Eqs. (9)
and (25), whereas the frequency components of F [ω] are in
the (nonrotating) laboratory frame.

Equation (51) tells us that the full spectral information of
the signal force is reproduced in the dynamics of the collective
mechanical quadrature X̃+, the only proviso being that the
mechanical resonance frequency ω1 is effectively shifted to
ω2. It follows that the measured force noise spectral density is
given by

Smeas
F [ω1 + δ] = h̄2/(�xa)2

|χF [ω2 + δ]|2 Smeas
X̃+

[ω2 + δ], (52)

where the calculation of the output noise Smeas
X̃+

[ω2 + δ] is
discussed in Sec. III; recall that these noise spectra were
explicitly symmetric in frequency.

Writing the measured force noise spectral density in the
form of Eq. (48), we can express the added noise of our scheme
as

n̄add[ω] = n̄aux
add[ω] + n̄cav

add[ω]

= n̄aux
add[ω] + n̄ba

add[ω] + n̄
imp
add [ω], (53)

where n̄aux
add[ω] is the added noise associated with the inherent

thermal and quantum fluctuations of the auxiliary mechanical
oscillator, and n̄cav

add[ω] is the added noise associated with
the coupling of the mechanical oscillators to the cavity.

This second contribution may be further decomposed into
back-action noise, n̄ba

add[ω], and imprecision noise, n̄
imp
add [ω],

contributions. These quantities follow from Eqs. (48) and (52).
While full expressions for the frequency-dependent added

noise n̄add[ω] may be readily derived, for simplicity we focus
on the two main cases of interest: that of a mechanically reso-
nant signal force, and that of a far-detuned mechanical signal
force. Henceforth, in this section we consider results in the
zero-temperature limit (n̄a,n̄b = 0), allowing the possibility
of force sensing near and beyond quantum limits.

1. Detection of a mechanically resonant force

The resonant signal force corresponds to having F (t)
centered in a narrow bandwidth γa about the mechanical
resonance frequency ω1. We can consider resonant force
detection both without and with the compensation scheme
described in Sec. III B. From Eq. (51), we see that we need
to know the transfer function χF at the effective resonance
frequency ω2 (δ = 0). One finds, in the regime ω2 � γ , that

χF [±ω2] = ∓ i

γ
gr (p,d), (54)

where gr describes the modification of the susceptibility due
to asymmetries; its full form as a function of the asymmetry
parameters p and d is given by Eq. (D5) or (D6) in the
uncompensated or compensated cases, respectively.

In the perfectly symmetric case (i.e., both mechanical oscil-
lators have identical optomechanical couplings and damping
rates), gr = 1, implying that X̂+ responds to the applied force
analogously to an oscillator driven on resonance. In this case,
from Eq. (31) we find that the added noise of the force-sensing
scheme on resonance is

n̄add[ωa] = 1

2
+ 1

8C
→ 1

2
. (55)

As expected, there is no back-action contribution to the added
noise, and the added noise is a monotonically decreasing
function of the measurement strength C. Nonetheless, one
cannot beat the standard quantum limit in this case. Even
though the measurement back-action goes to zero, the added
noise is still limited by the zero-point fluctuations of the
auxiliary mechanical oscillator.

Now we consider force sensing in the presence of asym-
metries. First we consider the case of damping asymmetry
without coupling asymmetry (d �= 0,p = 0). In this case the
added noise due to the auxiliary mechanical oscillator is simply

n̄aux
add[ωa] = 1

2

1 + d

1 − d
. (56)

This contribution may be understood in the following manner.
As the damping rate of the auxiliary mechanical oscillator is
increased beyond that of the driven oscillator (i.e., d from
0 → −1), its noise spectrum is broadened. Therefore, most of
its noise is outside the force detection bandwidth of the driven
oscillator, and the added noise of the force detection scheme
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at resonance is reduced. If we consider the opposite limit, in
which the damping rate of the auxiliary mechanical oscillator is
reduced below that of the driven oscillator (i.e., d from 0 → 1),
the added noise contribution is increased. The force noise
spectrum due to the auxiliary oscillator is narrowed, becoming
sharply peaked about resonance. In either case, however, the
damping asymmetry alone will lead to a back-action noise
contribution, as given by Eq. (40), that will typically dominate
the noise due to the auxiliary oscillator.

Next we consider the case of coupling asymmetry without
damping asymmetry (p �= 0,d = 0). Again, coupling asym-
metry leads to back-action heating and therefore reduces force
sensitivity. However, compensation, as per Eq. (25), can be
used to almost restore the system’s force-sensing capability.
The added noise at the shifted mechanical resonance fre-
quency, ω′

a , is now

n̄add[ω′
a] = 1

2
sec2

(
arctan p

2

)
+ 1

8C̃
→ 1

2
, (57)

with the limit (equal to the full quantum limit) being ap-
proached in the high-cooperativity, low-coupling asymmetry
regime. Again, the full quantum limit cannot be surpassed,
however.

The situation becomes more complex with both damping
and coupling asymmetries. In general, these asymmetries
cause back-action heating and reduce the system’s force
sensitivity. Indeed, using Eq. (40), the added noise due to
back-action, to second-order in p and d, is

n̄ba
add[ωa] = (p + d)2C. (58)

The added noise now has terms which increase with the
measurement strength C.

However, from Eq. (40), we know that it is possible to
cancel back-action on resonance by matching asymmetries
(i.e., setting p = −d). This is promising for force sensing,
but we must also check the added noise due to the auxiliary
mechanical oscillator. This contribution is

n̄aux
add[ωa] = 1

2

1 − d

1 + d
(1 + d + d2)

(
1 + d√

1 + d2

)
. (59)

Clearly, the added noise contribution of the auxiliary mechan-
ical oscillator goes to zero when d → 1, and combined with
Eq. (40), this suggests the added noise of the scheme can go to
zero with matched asymmetries. This suggestion is based on
calculations performed in the limit γ /� → 0. We can check
this possibility by calculating the added noise to higher order
in γ /�. The added noise contribution due to back-action with
matched asymmetries (p = −d) is

n̄ba
add[ωa] = [1 −

√
1 + d2 − d(1 − d −

√
1 − d2)]

× (1 + d2)3

1 + d

1

8

(
γ

�

)2

C. (60)

From Eqs. (41) and (60) we find, in the extreme damping
asymmetry case (d = 1 and p = −1), that the added noise
due to the cavity is

n̄cav
add[ωa] = γ 2

2�2
C + 3

128(
√

2 − 1)C
. (61)

While there is a back-action contribution here (first term), it is
proportional to (γ /�)2 and hence small. One readily finds an
optimal measurement strength,

C0 =
√

3

8
√√

2 − 1

�

γ
, (62)

at which point the total added noise is

n̄add[ωa]|C0
= γ

�

√
3

8
√√

2 − 1
. (63)

The added noise remains close to zero provided that � � γ ,
and so the full quantum limit can be beaten for resonant force
sensing via matched asymmetries.

Unfortunately, this result applies over only a very small
bandwidth about the mechanical resonance frequency. The
added noise may be evaluated as a function of frequency, and
we are interested in the bandwidth B over which the added
noise remains below the full quantum limit. It may be shown
that, in the case of extreme damping asymmetry (d → 1), this
bandwidth is

B = 1

2
√

2

γ√
C

∼ γ

√
γ

�
, (64)

with the second scaling attained for an optimal measurement
strength (cooperativity); see Eq. (62). That is, the useful
bandwidth becomes very small.

Plots of the added noise, as a function of the damping rate
of the auxiliary oscillator (with the damping rate of the driven
oscillator held constant), are shown in Fig. 3. The added noise
is shown for three coupling asymmetries, and in each case
the added noise at resonance may be reduced to the level of
the auxiliary oscillator fluctuations by matching coupling and
damping asymmetries.

FIG. 3. (Color online) Added noise for resonant (ω = ωa) and
nonresonant (ω = ωa + �) force sensing, n̄add[ω], as a function
of the damping rate of the auxiliary mechanical oscillator, γb/γa ,
while γa is held fixed. The dashed black line is a lower bound
on the contribution due to auxiliary oscillator thermal fluctuations;
see Eqs. (59) and (68a), for example. The blue, purple, and red
curves correspond to the added noise for resonant force sensing
at Gd/G = 0,−0.162 and −0.414, respectively. The back-action
contribution to the added noise can be made to go to zero on resonance
by matching asymmetries, irrespective of the size of the damping
asymmetry. The cyan line is the added noise for off-resonant force
sensing, with no coupling asymmetry and the measurement strength
optimized.
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2. Detection of a mechanically nonresonant force

We now turn to the case where the signal force F (t) is
detuned from the mechanical resonance, and again we consider
both the original and the compensated systems. Specifically,
we consider the case where F (t) is contained in a bandwidth
B centered on a frequency ω1 + �, where |�| � γa and B �
|�|. From Eq. (51), we see that we need to know the transfer
function at ω2 + �,

χF [±(ω2 + �)] = 1

2�
gn(p,d), (65)

where gn describes the modification of the transfer function
due to asymmetries; its full form as a function of the asymmetry
parameters p and d is given by Eq. (D7) in the original case
and by Eq. (D8) in the compensated case. As compared with
the case of a mechanically resonant signal force [see Eq. (54)],
the symmetric “gain” is now 1/(2�) rather than 1/γ . Also note
that force detection, in this case, is not limited by a resonant
detection bandwidth of order γ .

In the perfectly symmetric case (i.e., both mechanical oscil-
lators have identical optomechanical couplings and damping
rates), gn = 1. Then we find that the added noise is

n̄add[ωa + �] = 1

2
+

(
2�

γ

)2 1

8C
→ 1

2
, (66)

with the limit being approached in the high-cooperativity
regime. Clearly, the scheme surpasses the standard quantum
limit on nonresonant force detection [cf. Eq. (50)]. It, however,
is only equal to the full quantum limit [cf. Eq. (49)] that
comes from allowing detector noise correlations. Again, the
residual added noise of 1/2 a quantum in Eq. (66) is due to the
zero-point noise of the auxiliary mechanical oscillator.

We can easily determine the effects of asymmetries on our
force-sensing scheme. From Eq. (43), to second-order in the
asymmetry parameters and in the limit γ /� → 0, we find

n̄ba
add[ωa + �] = p2C. (67)

As already noted, in this highly detuned regime, it is only
the optomechanical coupling asymmetry that yields an appre-
ciable deviation from being quantum-limited. This suggests
that one could improve on the symmetric added noise result
of Eq. (66) by exploiting damping asymmetry to reduce the
added noise contribution from the auxiliary oscillator.

Indeed, these added noise contributions due to the auxiliary
mechanical oscillator are given by

n̄aux
add[ωa + �] = 1

2

1 − d

1 + d
[1 + p(p +

√
1 + p2)], (68a)

n̄aux
add[ω′

a + �] = 1

2

1 − d

1 + d
sec2

(
arctan p

2

)
, (68b)

in the original and compensated cases, respectively. In both
cases, they go to zero in the limit d → 1. Combined with the
insensitivity of the back-action noise to damping asymmetry
as expressed in Eq. (67), this would appear to enable force
sensing beyond the full quantum limit, provided that there
is no coupling asymmetry. In fact, we might expect that this
force sensitivity can be achieved in the presence of coupling
asymmetry if compensation is used.

These arguments can be made precise. The following results
describe the case with compensation included and so reduce
to the case of no compensation when there is no coupling
asymmetry to begin with (p = 0 such that ω′

a → ωa). The
added noise associated with the cavity is

n̄cav
add[ω′

a + �] = γ 2

4�2

d2

1 + d
sec4

(
arctan p

2

)
C

+ 4�2

γ 2

1

1 + d

1

8C
. (69)

This added noise is minimized by a cooperativity,

C0 = 4�2

γ 2

1

2
√

2|d| cos2

(
arctan p

2

)
, (70)

at which point the added noise due to the cavity is

n̄cav
add[ω′

a + �]|C0 = 1√
2

|d|
|1 + d| sec2

(
arctan p

2

)
. (71)

Taking the limit d → 1, the added noise due to the auxiliary
oscillator vanishes as per Eq. (68b), and the total added noise
becomes

n̄add[ω′
a + �]|C0 = 1

2
√

2
sec2

(
arctan p

2

)
→ 1

2
√

2
, (72)

with the result tending to the limit as the coupling asymmetry,
p → 0. Now, one cannot only beat the standard quantum limit
for nonresonant force detection [cf. Eq. (50)] by a greater
amount, but one can also surpass the full quantum limit on
force detection [cf. Eq. (49)]. Without compensation, the added
noise in Eq. (72) grows more rapidly as |p| increases.

C. Summary

In summary, for sensing of a mechanically resonant force,
force sensing at the full quantum limit (being equal to the
standard quantum limit, on resonance) is possible in the
symmetric case. Even with coupling asymmetry, the possibility
of force sensing near this quantum limit is retained via
compensation. Further, it is possible to surpass this full
quantum limit via matched asymmetries, though only in a
very narrow bandwidth.

For sensing of a mechanically nonresonant force we can
surpass the standard quantum limit in the symmetric case.
Furthermore, one may exploit damping asymmetry to surpass
the full quantum limit. In both cases, these results can
be retained in the presence of coupling asymmetry using
compensation. Additionally, force sensing in this case is not
limited to a resonant detection bandwidth.

V. CONDITIONAL VARIANCES AND ENTANGLEMENT

In Sec. III we calculated the noise spectra of measured
and perturbed observables in our system, with a view to
analyzing its force-sensing capabilities in Sec. IV. These are
all unconditional quantities; that is, the description of the state
of the system is not updated based on the measurements made
upon it. However, since we are continuously monitoring the
system, we can also discuss its conditional dynamics, arising
from updating the best estimate of the state of the system
based on the measurement record. In particular, a continuous
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measurement conditionally projects the system into an eigen-
state of the measured observable. This shall enable, in this
system, conditional mechanical two-mode squeezing and the
entanglement of the two mechanical oscillators.

A. All-mechanical entanglement

The preparation and verification of macroscopic, all-
mechanical entanglement is a fundamental goal of the study
of mechanical systems in the quantum regime [7]. Such a
state is also a physical approximation of an Einstein-Podolsky-
Rosen channel [31], a key ingredient in quantum information
processing protocols with continuous variables [32]. Elec-
tromechanical entanglement [33] and the entanglement of
phonons in bulk [34], at the single-phonon level, have both
been demonstrated, though this is not the case for mechanical
continuous variables. The entanglement of collective spin
operators of atomic ensembles [35] and that of the motional
states of trapped ions [36] have been achieved, however.

There has been a great deal of discussion of the possibility
of entangling macroscopic mechanical degrees of freedom
with other degrees of freedom (see [37] and references
therein), including other mechanical degrees of freedom.
Particular attention has been paid to the possibility of all-
mechanical entanglement with the interaction being mediated
by an electromagnetic field. Proposals studied include placing
mechanical oscillators in a ring cavity or interferometer, both
without [38–40] and with [41] measurement and feedback,
placing dielectric membranes in a cavity [42], and using remote
optomechanical systems, both with [43–45] and without
[46,47] protocols dependent on optical measurements.

More recently, Schmidt and co-workers have proposed an
all-mechanical entanglement generation scheme based on the
detuned, modulated (and therefore, two-tone) driving of a
coupled electromagnetic cavity [48]. Compared with their
approach, our scheme has the considerable advantages that
it does not require highly detuned driving of the cavity and
is robust to the initial thermal populations of the mechanical
oscillators. Further, the possibility of entanglement verification
is built into our proposal.

B. Conditional dynamics in adiabatic limit

The conditional dynamics of the system may be described
in the standard manner using a stochastic master equation
[49]. The evolution of the joint density operator, σ , of the
two mechanical modes and one electromagnetic mode, under
homodyne detection of the cavity mode quadrature ĉeiφ +
ĉ†e−iφ with a quantum efficiency η, is given by

dσ = −i[Ĥ,σ ] dt + κ(n̄c + 1)D[ĉ]σ dt

+ κn̄cD[ĉ†]σ dt + √
ηκM[ĉeiφ]σ dW

+ γa(n̄a + 1)D[â]σ dt + γan̄aD[â†]σ dt

+ γb(n̄b + 1)D[b̂]σ dt + γbn̄bD[b̂†]σ dt, (73)

where Ĥ denotes the original or compensated Hamiltonian of
Eq. (19) or (25), respectively, D[Â]σ ≡ Âσ Â† − 1

2 Â†Âσ −
1
2σÂ†Â is the dissipative superoperator, M[Â]σ = Âσ +
σÂ† − Tr [Âσ + σÂ†]σ is the measurement superoperator,
and dW is the Wiener increment.

We consider the “good measurement” limit, in which the
cavity damping rate exceeds the rates in the Hamiltonians of
Eq. (19) or Eq. (25); that is, κ > �,p�̃,G̃ (�̃ rather than � in
the compensated case). In this limit, the cavity responds rapidly
to the dynamics of the coupled mechanical oscillators, and
we may adiabatically eliminate the cavity mode [50]. Setting
φ = π/2 for convenience, the cavity lowering operator is given
by ĉ = −i

√
2G̃X̃+/κ . Note that it is crucial that the adiabatic

elimination is performed in terms of the rotated observables;
otherwise, the dissipative terms in Eq. (73) will involve linear
combinations of mechanical annihilation operators, which
greatly complicates the description.

Now the evolution of the (reduced) joint density operator
of the two mechanical oscillators having traced out the cavity
mode, ρ = Trcav [σ ], is given by

dρ = −i[Ĥ′,ρ] dt − �

2
[X̃+,[X̃+,ρ]] dt

+
√

η�M[X̃+]ρ dW + γa(n̄a + 1)D[â]ρ dt

+ γan̄aD[â†]ρ dt + γb(n̄b + 1)D[b̂]ρ dt

+ γbn̄bD[b̂†]ρ dt, (74)

where Ĥ′ now denotes the Hamiltonian of either Eq. (19) or
Eq. (25), excluding terms involving the electromagnetic mode
operators. We have also introduced the collective quadrature
measurement rate as

� ≡ γ C̃ = 2G̃2/κ, (75)

where G̃ is the modified coupling constant introduced in
Eq. (20c). The measurement record increment associated with
Eq. (74) is given by

dr = 〈X̃+〉dt + dW/
√

4η�. (76)

Integrating Eq. (74) according to the measurement record
increment of Eq. (76) allows us to continually update our
best estimate of the state of the two mechanical oscillators.

C. Best estimates of quadratures and conditional variances

Now according to Eq. (74), with the quadratic Hamiltonian
obtained from Eq. (19) or Eq. (25), and linear damping,
decoherence, and measurement, the steady-state reduced
density operator ρ will be Gaussian. Therefore, the conditional
state of the system will be fully described by knowledge of
its first and second moments. One can immediately write
the equations of motion for the (scalar) best estimates of
the collective quadrature observables and for the conditional
variances corresponding to the stochastic master equation in
Eq. (74). The vector of best estimates is formed as

�̄V = (X̄+,P̄−,X̄−,P̄+)T . (77)

For later convenience, we introduce the following notation for
the ten independent elements of the two-mode, symmetrically
ordered covariance matrix, �:

� =

⎡
⎢⎢⎣

VX̃+ �+− �XX �++
�+− VP̃− �−− �PP

�XX �−− VX̃− �−+
�++ �PP �−+ VP̃+

⎤
⎥⎥⎦ . (78)
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In general, the elements of � will describe covariances of
the rotated observables, though we drop the tilde notation in
the subscripts of the off-diagonal covariances in Eq. (78) for
convenience. In the symmetric case, the tilde notation on the
subscripts of the collective quadrature variances in Eq. (78)
are dropped.

The equations for the best estimates of the collective (sum
and difference) mechanical quadrature observables take the
form of an Ornstein-Uhlenbeck process [cf. Eq. (12)],

d

dt
�̄V = M · �̄V + �Q · ξ (t), (79)

where the system matrix M is given by Eq. (B9) or Eq. (B12),
for the Hamiltonian of Eq. (19) or Eq. (25), respectively, the
measurement noise weighting vector is

�Q =
√

4η�(VX̃+ ,�+−,�XX,�++)T , (80)

and ξ (t) = dW/dt is a white-noise process describing the
noise in the measurement.

The equation for the best estimates of the covariances of
the collective mechanical quadrature observables is

�̇ = M� + �MT + L − �KT K�, (81)

where � is the symmetrically ordered two-mode covari-
ance matrix in the ordered basis defined by Eq. (21),
(X̃+,P̃−,X̃−,P̃+), and again M is given by Eq. (B9) or
Eq. (B12). The matrices K and L are defined by

(K)11 =
√

4η�, (K)ij = 0, (82a)

L = γ

⎡
⎢⎢⎣

n̄′
eq 0 n̄′

d 0
0 n̄′

eq 0 n̄′
d

n̄′
d 0 n̄′

eq 0
0 n̄′

d 0 n̄′
eq

⎤
⎥⎥⎦ , (82b)

where we have introduced the notation n̄′
eq = n̄th + 1/2 + dn̄d

and n̄′
d = n̄d + d(n̄th + 1/2), in terms of the dimensionless

damping asymmetry introduced in Eq. (37) and the effective
mechanical thermal occupations,

n̄th = 1
2 (n̄a + n̄b), (83a)

n̄d = 1
2 (n̄a − n̄b). (83b)

Note that an equation of the form of Eq. (81) has previously
been obtained in a study of the optimal control of two-mode
entanglement (parametrically coupled optical modes) under
feedback [51].

Due to the rules of the Itō calculus, Eq. (81) is a
deterministic system and we may solve for the steady-state
covariance matrix. The steady-state equation corresponding
to Eq. (81) is a continuous-time algebraic Riccati equation
(CARE). This is a system of nonlinear algebraic equations,
though one for which numerical methods are well-developed.

D. Steady-state conditional variances and entanglement

The two-mode, symmetrically ordered covariance matrix
� enables a full characterization of the entanglement and
purity of the system [52]. Indeed, the entanglement may be
directly quantified using the logarithmic negativity [53]. From
an experimental perspective, however, the estimation of all
elements of the covariance matrix is challenging. A simpler

method for determining whether the mechanical oscillators are
entangled is provided by Duan’s inseparability criterion [28].
Note that this is a sufficient, but not necessary, condition for
the inseparability of a bipartite quantum state. Specifically, we
consider a generalized version of Duan’s criterion [54], which
here takes the form

VX̃+ + VP̃− < cos 2θ = 1 − G2
d/G2

1 + G2
d/G2

. (84)

In the case of symmetric optomechanical coupling (Gd = 0),
the criterion of Eq. (84) reduces to the standard version of
Duan’s criterion,

VX+ + VP− < 1. (85)

Crucially, both quantities on the left-hand side of Eq. (84) may
be obtained in a straightforward manner from the measurement
record. The quantity X̃+ is measured directly, while in the
regime � � γ , P̃− is dynamically coupled to it such that it is
also effectively measured.

E. The symmetric case

1. Conditional variances

In the ideal, symmetric case, an analytic form for the steady-
state covariance matrix can be found (see Appendix E). Of
particular interest is the variance of the measured collective
quadrature. Taking the limit γ /� → 0 while the cooperativity
C is fixed leads to

VX+ =
√

8ηC(n̄th + 1/2) + 1 − 1

4ηC
→

√
n̄th + 1/2√

2η

1√
C

,

(86)

with the latter result following for C � 1/[8η(n̄th + 1/2)].
This is a very good approximation for most experimentally
relevant scenarios, including that which we consider in more
detail below. Alternatively, taking the limit C → ∞ while
γ /� is fixed, we find the form

VX+ =
√

4ηC(n̄th + 1/2) + 1 − 1

4ηC
→

√
n̄th + 1/2

2
√

η

1√
C

.

(87)

The scaling with C is now the same as in the case � = 0 [cf.
Eq. (E3a)], which itself scales as in the case for single-mode
BAE measurement [6]. Clearly, for a sufficiently strong mea-
surement (large cooperativity), the conditional variance of the
measured collective quadrature observable, X̂+, is squeezed
below the vacuum level (1/2) and tends asymptotically to
zero.

To assess whether we are truly generating a two-mode
squeezed state and entanglement, we also need to check that the
P̂− quadrature is squeezed by the measurement [cf. Eq. (85)].
It can be shown (see Appendix E) that

VP− = VX+ +
(

γ

�

)2 1

16ηC
[16η2C2n̄tot

+ (1 + 4ηCn̄tot +
√

1 + 8ηCn̄tot)
2] (88)
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to second order in γ /�, where we have introduced the notation
for the total thermal and quantum fluctuations,

n̄tot = n̄th + 1/2. (89)

Note that Eq. (88) does not imply that the difference between
VP− and VX+ diverges as C → ∞. In this limit higher-order
contributions are important, and the perturbative result of
Eq. (88) is not valid. However, provided the ratio γ /� is
small, from Eq. (88) we do have

VP− ∼ VX+ . (90)

That is, in the limit that the collective oscillator frequency
greatly exceeds the mechanical damping rate, the collective
quadrature P̂− that is dynamically coupled to the directly
measured observable X̂+ is also effectively measured and
therefore conditionally squeezed. Accordingly, the measure-
ment conditionally generates a two-mode squeezed state.

That both X̂+ and P̂− are effectively measured (and
therefore conditionally squeezed) in the regime � � γ can be
seen in the following way. Defining primed operators by the
transformation Ẑ′

± = e−iĤ0t Ẑ±e+iĤ0t with Ĥ0 = �(X̂+X̂− +
P̂+P̂−), we can express the observables X̂+ and P̂− as[

X̂+
P̂−

]
=

[
cos �t sin �t

− sin �t cos �t

] [
X̂′

+
P̂ ′

−

]
. (91)

While the observables X̂+ and P̂− oscillate at ±�, the
observables X̂′

+ and P̂ ′
− are constants of the motion with

respect to the closed system dynamics. From Eq. (91) it is
clear that by continuously monitoring X̂+, we are continuously
monitoring both X̂′

+ and P̂ ′
−. Since these observables also

determine P̂−, we are effectively measuring P̂− as well
(provided that � � γ ).

Recalling the “subspaces” (or subsystems) introduced in
Sec. II, we now know the conditional variances of the
observables in the “measured” subsystem. For the observables
in the “perturbed” subsystem, the variances in the limit
γ /� → 0 follow from Eqs. (E9a) and (E9b) as

VX− ,VP+ = n̄th + 1/2 + C/2. (92)

Effectively, we are measuring both X̂+ and P̂− in this limit,
and so the conjugate observables of both are equally perturbed.

2. Entanglement

Next we explicitly consider the entanglement of the
mechanical oscillators. From Eqs. (86) and (90), in the
regime � � γ and the strong measurement limit, we find that
VX+ + VP− < 1, implying that our mechanical oscillators are
conditionally entangled. Substituting the asymptotic form of
Eq. (86) into Duan’s criterion leads to the sufficient condition
on the measurement strength for the generation of mechanical
entanglement by measurement,

C >
2(n̄th + 1/2)

η
. (93)

Experimentally, this is not an overly demanding condition. It is
interesting to note, however, that this condition does not exhibit

FIG. 4. (Color online) The Duan quantity, VX+ + VP− , as a func-
tion of the cooperativity C, for effective temperatures corresponding
to n̄th = 0,1,25, and in the regime � � γ . The bound on the Duan
criterion, as in Eq. (85), is shown as the dashed black line. The
quantity VX+ + VP− is seen to be below this line for sufficiently
large cooperativities, indicating that the mechanical oscillators
are entangled. This remains the case even for a relatively large
thermal occupation. The required cooperativities are experimentally
accessible.

the total insensitivity to temperature that has been found in a
scheme to generate an EPR channel in a cascaded atomic and
nanomechanical system [13]. The primary distinction is that
here we are describing steady-state entanglement, rather than
instantaneous entanglement arising from a strong single-shot
feedback operation.

The Duan quantity of Eq. (85) is plotted in Fig. 4, as a
function of cooperativity, for a range of thermal occupations
and for parameters corresponding to the experiment of Teufel
and co-workers [29]. It is seen that the mechanical oscillators
will be entangled in an achievable parameter regime, even for
mechanical oscillators initially in a thermal state far from the
ground state.

Further, one can explicitly evaluate the entanglement
measure known as the logarithmic negativity [53]. Using the
result of Eq. (86) we find

EN = 1
2 {log2 [ηC/(n̄th + 1/2)] − 1} (94)

in the regime specified by the criterion of Eq. (93) and
zero otherwise. The onset of entanglement, as a function
of cooperativity, according to this measure is found to be
consistent with that predicted by the application of Duan’s
criterion [cf. Eq. (93)].

F. The asymmetric case

If the damping rates or the optomechanical coupling rates of
the mechanical oscillators are different, an analytical solution
for the steady-state covariance matrix is no longer possible
and we must resort to numerical methods. The one exception
to this is the case where we have coupling asymmetry
alone and compensation as per Eq. (25). In this case, the
asymptotic results of Eqs. (86) and (87) remain valid, implying
entanglement can still be achieved for strong measurements;
see Appendix E for more details.

Figures 5 and 6 show the steady-state conditional variance
VP̃− and the generalized Duan quantity VX̃+ + VP̃− as a
function of the coupling asymmetry Gd/G. These are plotted
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FIG. 5. (Color online) The variances VP̃− (dashed lines), and the
generalized Duan quantities VX̃+ + VP̃− (solid lines) as a function
of the optomechanical coupling asymmetry Gd/G for the original
[Eq. (19)] and compensated [Eq. (25)] Hamiltonians. We assumed
γa = γb, though even for large damping asymmetries, the modifi-
cation to these lines is small. The bound on the generalized Duan
inequality, as in Eq. (84), is shown as the curved dashed black
line. This plot was prepared with the effective occupation set to
n̄th = 0 and a cooperativity of C = 100. At such low temperature, the
scheme is highly robust against coupling asymmetry. Even without
compensation, the mechanical oscillators remain entangled for a
coupling asymmetry of up to ∼60%. With compensation, the scheme
is unaffected by coupling asymmetry.

assuming γa = γb, though the entanglement generated is only
very weakly dependent on damping asymmetry, even when this
asymmetry is large. Curves are shown for both the original
and the compensated cases in both figures, for the effective
occupation n̄th = 0 in Fig. 5 and for n̄th = 5 in Fig. 6. Note
that in the original (uncompensated) case, the variance of the
directly measured observable VX̃+ (the difference between
the solid and dashed lines) is independent of the coupling
asymmetry, while the variance of the dynamically coupled
observable VP̃− is less effectively squeezed as the coupling
asymmetry is increased.

FIG. 6. (Color online) The variances plotted in Fig. 5, but now
with an effective thermal occupation n̄th = 5. At this higher effective
temperature, the robustness of the scheme (without compensation) is
reduced. The mechanical oscillators remain entangled for coupling
asymmetries up to ∼17%. With compensation, the scheme is
unaffected by coupling asymmetry.

At n̄th = 0, the entanglement generation is seen to be
highly robust against coupling asymmetry, even without
compensation. The mechanical oscillators remain entangled up
to a coupling asymmetry of ∼60%. At n̄th = 5, the robustness
against coupling asymmetry is reduced. In this case, the
oscillators only remain entangled for a coupling asymmetry
up to ∼17%. It should, however, be possible to independently
cool the mechanical oscillators via auxiliary cavities such that
they are initially at low thermal occupations [29]. Further, with
compensation included, the entanglement generation is totally
insensitive to coupling asymmetry. Furthermore, the coupling
asymmetry for which entanglement generation is possible,
beyond a threshold value, is not strongly dependent on the
cooperativity.

G. Experimental parameters

The experimental parameters used to prepare Figs. 2–7 cor-
respond to a micromechanical membrane in a superconducting
microwave cavity, a design due to Teufel and co-workers
[29]. One could conceivably form the microwave cavity from
two micromechanical membranes, forming the three-mode
optomechanical system that we have studied. However, the
two-mode BAE scheme we have described could be performed
in a number of cavity optomechanics implementations.

For the purpose of numerical calculations, the cavity
resonance frequency is taken to be 8 GHz and the mechanical
resonance frequencies are centered around 10 MHz. The
cavity damping rate is κ/2π = 200 kHz, such that the system
is operating well into the resolved-sideband regime. The
mechanical damping rate is γ /2π = 100 Hz. The zero-point
fluctuations of the membrane are given by �x = 4 fm,
such that the nominal single-photon optomechanical coupling
rate in Eq. (5) is gi/2π = 200 Hz. Further, suppose the
cavity is driven such that its steady-state population at the
driven sidebands is 106 photons. This corresponds to a
(nominal) effective optomechanical coupling rate in Eq. (9)
that is G/2π = 200 kHz. These parameters correspond to a
cooperativity of C = 4 × 103. This is a much larger coop-
erativity than is actually required for the scheme presented.
In fact, such an optomechanical coupling rate would inval-
idate the adiabatic elimination performed in order to obtain
Eq. (74).

For the purpose of calculations here, we take a nominal
effective coupling G/2π = 70.7 kHz, corresponding to a
cooperativity of C = 500. Throughout this work, a quantum
measurement efficiency of η = 1 has been assumed. Note
that, from the perspective of entanglement generation, one
can compensate for the reduced efficiency via a larger
cooperativity [cf. Eq. (93)]. These parameters are within the
limits of validity of our analysis: Recall that we assumed
resolved-sideband operation (ωa,ωb � κ) in order to avoid
spurious back-action heating of the measured observable and
the “good measurement” regime (κ > �,p�̃,G̃) such that it
was possible to perform the adiabatic elimination.

H. Summary

The conditional dynamics of the system under homodyne
detection of the field output from the cavity are described by
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Eq. (73). In the adiabatic limit, in which the cavity responds
rapidly to the mechanical motion, we have the simplified
description of Eq. (74). This equation allows us to calculate the
steady-state conditional variances of the collective mechanical
quadratures [see Eq. (81)] and then assess the entanglement
of the mechanical oscillators using Duan’s criterion [see
Eq. (84)]. It is found that the mechanical oscillators will be
entangled for reasonable experimental parameters (see Fig. 4),
even in the presence of considerable asymmetries (see Figs. 5
and 6).

VI. UNCONDITIONAL VARIANCES AND FEEDBACK

The variances and covariances calculated in the previous
section as solutions of Eq. (81) are conditional quantities.
However, the measured output noise spectrum of Eq. (31) is
an unconditional quantity. This means it consists of both the
fluctuations described by the best estimate of the conditional
variance (VX̃+) and the fluctuations in the best estimate of the
observable itself (〈X̄2

+〉):
V tot

X̃+
= VX̃+ + 〈X̄2

+〉. (95)

We can define the total (unconditional) variances of the other
collective quadratures in a similar fashion. From Eq. (95),
the fact that the conditional variance is squeezed below the
vacuum level does not necessarily imply that the unconditional
variance will be also. Here we calculate the total variances and
describe how one can use feedback to reduce the unconditional
variances to the conditional variances.

A. Unconditional variances

Fluctuations in the best estimates of the collective quadra-
ture observables are described by Eq. (79). The steady-state
fluctuations are then given by the solution of the Lyapunov
equation,

M�̄ + �̄MT = − �Q �QT , (96)

where �̄ is a matrix of second moments of best estimates
of collective quadrature observables, described in the ordered
basis defined by Eq. (77), (X̄+,P̄−,X̄−,P̄+)T . The matrix M is
given by Eq. (13), Eq. (B9), or Eq. (B12), in the symmetric, un-
compensated asymmetric or compensated asymmetric cases,
respectively, while �Q is given by Eq. (15) in the symmetric
case and by Eq. (B3) in both asymmetric cases.

In the fully symmetric case, and in the relevant regime
� � γ , we find the total unconditional variances to be

V tot
P− ∼ V tot

X+ = VX+(1 + 2ηCVX+ ). (97)

Substituting the first asymptotic form of Eq. (86) into Eq. (97)
we find that

V tot
P− = V tot

X+ = n̄th + 1/2. (98)

This is precisely as expected; a BAE measurement should
neither heat nor cool the mechanical oscillators in the uncon-
ditional sense. The unconditional variances in the asymmetric
case, both without and with compensation, are given in
Appendix F1 . Note, however, that Eq. (97) remains valid (in
terms of rotated observables) for the compensated case with
no damping asymmetry.

B. Measuring conditional variances

The conditional variances may be obtained from measure-
ments of the unconditional variances and the fluctuations in
the best estimates, as per Eq. (95). The unconditional variances
may be obtained directly from the measured noise spectral
density, or equivalently, from the measurement record. The
unconditional variance of X̃+ is obtained directly, while
the unconditional variance of P̃− follows from looking at the
quadratures of the measurement signal itself, as described
around Eq. (91).

The fluctuations in the best estimates of X̃+ and P̃− may
be obtained from the filter of Eq. (79). Written out explicitly
in terms of the measurement record of Eq. (76), the filter is

d

dt
�̄V = M · �̄V +

√
4η�[I (t) − X̄+] �Q, (99)

where M, �Q, and �̄V are as specified following Eq. (79), and
I (t) = dr/dt is called the measurement current. Of course,
the filter of Eq. (99) is itself dependent on knowledge of the
system’s covariance matrix. We assume the system covariances
have reached their steady-state values: That is, one should use
the calculated values that follow from the steady-state solution
of Eq. (81).

In the fully symmetric case, the measured subsystem
decouples from the perturbed subsystem. Then the filter of
Eq. (99) can be recast in the limit �+− → 0 as[

X̄+(t)
P̄−(t)

]
=

√
4η� VX+e−γ̃ t

[
cos �t

−sin�t

]
∗ I (t), (100)

where the asterisk denotes convolution and we have introduced
the notation γ̃ = γ + 4η�VX+ . The fluctuations in the best
estimates may be obtained from the filtered measurement
record of Eq. (100).

C. Feedback

1. Unconditional variances

As noted earlier, feedback may be employed to reduce the
fluctuations in the best estimates of our observables and so
reduce the unconditional variances to conditional variances.
In general, this may be achieved by adding the damping
terms −(αγ/2)X̄+ and −(αγ/2)P̄− to the equations for X̄+
and P̄− (respectively) to the filter of Eq. (99). This requires
the application of (asymmetric) feedback forces to the two
mechanical oscillators, given by

Fa(b)(t) = αγ√
2

(cos θ ∓ sin θ ) X̄+ sin ωmt

+ αγ√
2

(cos θ ± sin θ ) P̄− cos ωmt, (101)

in the laboratory frame. From the form of Eq. (99), we
expect that X̄+ and P̄− will themselves oscillate at ±�, and
therefore the applied feedback force of Eq. (101) will, in
fact, have significant weight at the two mechanical resonance
frequencies. In most cases (except the case where there are
significant coupling and damping asymmetries) it suffices to
apply the feedback component proportional to the estimate X̄+
alone.
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In order to calculate the variances under feedback we
can use an equivalent classical description of the dynamics
of our quantum system [55], coupled to the filter giving
the best estimates of the collective quadrature observables
(and upon which the feedback will be based). The classical
quantity representing the collective mechanical quadrature
X̃+ is denoted x̃+ (and similarly for the other collective
quadratures). The total unconditional variance of the measured
observable, under feedback, is then V fb

X̃+
= 〈x̃2

+〉.
Now we can write the measurement record increment

in terms of such a classical representation as dr = x̃+dt +
dW/

√
4η�. We can also write the measurement record

increment in terms of the best estimate of the measured
observable as dr = X̄+dt + dW̃/

√
4η�. Comparing these

expressions leads to

dW̃ =
√

4η�(x̃+ − X̄+)dt + dW. (102)

Putting Eq. (102) together with the system dynamics and
filter from Eqs. (12) and (99), respectively, both the conditional
and unconditional dynamics can be described by the Ornstein-
Uhlenbeck process,

d

dt
�Y = −S · �Y + T · d �W

dt
, (103)

where the system matrix S and the noise weighting matrix
T are defined in Eqs. (F2) and (F5) of Appendix F. The
state vector �Y and noise increment vector d �W in Eq. (103)
are formed as

�Y =
[ �̄V

�v
]
, d �W =

[
d �̄W
d �w

]
, (104)

where �̄V is the vector of best estimates of collective quadrature
observables introduced in Eq. (77), �v is the vector of classical
representations of the collective quadratures,

�v = (x̃+,p̃−,x̃−,p̃+)T , (105)

d �̄W is a vector of Wiener increments corresponding to the
measurement noise,

d �̄W = dW (1,1,1,1)T , (106)

and d �w is a vector of independent Wiener increments describ-
ing the noise associated with the coupling of the oscillators to
their mechanical environments,

d �w = (dWx̃+ ,dWp̃− ,dWx̃− ,dWp̃+ )T . (107)

Now Eq. (103) is, in general, an eight-dimensional
Ornstein-Uhlenbeck process, with the steady-state variances
given by solutions of the Lyapunov equation,

S� + �ST = TTT , (108)

where � denotes the steady-state covariance matrix in the
ordered basis �Y . Solving Eq. (108) provides all of the
conditional and unconditional variances of interest. Note,
however, that the matrices S and T themselves depend on
the steady-state conditional variances, which must first be
obtained by solving the algebraic Riccati equation giving the
steady-state of Eq. (81).

2. The symmetric case

In the fully symmetric case, the equations for the measured
subsystem (X̂+,P̂−) in Eq. (103) decouple from those for the
perturbed subsystem (X̂−,P̂+). Since θ = 0 now, the feedback
force applied to both mechanical oscillators, from Eq. (101),
should be

F (t) = αγ√
2
X̄+ sin ωmt. (109)

The equations for the measured subsystem alone can be
written in the same form as Eq. (103), with the appropriate
matrices specified in Appendix F 3 . This now describes a
four-dimensional Ornstein-Uhlenbeck process, with steady-
state solutions for the covariances again given by the solution
of Eq. (108). The reduced system size in this case facilitates
a perturbative solution. Expanding in the (assumed) small
parameter (1 + α)−1, where α is the feedback gain in Eq. (109),
we find

V fb
X+ = VX+ + 4ηC

V 2
X+

1 + α
, (110a)

V fb
P− = VP− + 4ηC

V 2
X+

1 + α
, (110b)

to first-order in (1 + α)−1 and in the regime � � γ . That is, in
the limit of a large feedback gain α, the unconditional variances
reduce to the conditional variances. The conditional two-
mode squeezing and entanglement calculated in Sec. V can
therefore be converted to unconditional two-mode squeezing
and entanglement via feedback. In the opposite limit of
no feedback (α = 0), we have V fb

X+ = V fb
P− = n̄th + 1/2, as

expected.
Note that in the (opposite) case � = 0, the result of

Eq. (110a) is exact, consistent with the known result for
single-mode BAE measurement [6]. In this case we also have
V fb

P− = VP− , as the observable P̂− is neither measured nor
perturbed by the measurement.

3. The asymmetric case

Again, in the asymmetric case all conditional and uncon-
ditional covariances may be obtained by solving the system
of Eq. (108). However, the size of the system is such that
we cannot obtain useful analytical solutions, and we resort to
numerical solutions. Figure 7 shows unconditional variances
under feedback as a function of the feedback gain, in the
uncompensated asymmetric case and for an optomechanical
coupling asymmetry of 5%. It is seen that these steady-state
unconditional variances (V fb

X̃+
and V fb

P̃−
) approach the steady-

state conditional variances (VX̃+ and VP̃− ) asymptotically as
the feedback gain is increased. However, this approach is
slower than in the fully symmetric case. In the compensated
asymmetric case, the unconditional variance V fb

X̃+
is the same

as V fb
P̃−

, and both tend to the (common) steady-state conditional
variances under strong feedback.

D. Summary

In this section the unconditional variances of the collective
mechanical quadratures were calculated. The fact that there
is two-mode squeezing in the conditional variances does not
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FIG. 7. (Color online) The steady-state unconditional variances
under feedback, V fb

X̃+ and V fb
P̃− , as a function of the feedback gain α

[introduced in Eq. (101)], for an optomechanical coupling asymmetry
of Gd/G = 0.05, n̄th = 25, C = 500, and in the regime � � γ . The
steady-state conditional variances VX̃+ and VP̃− are shown as the
dashed horizontal lines. These conditional variances are unequal due
to the coupling asymmetry. The steady-state unconditional variances
approach the steady-state conditional variances asymptotically as the
feedback gain is increased, though not as rapidly as in the case of
symmetric coupling.

imply that there is two-mode squeezing in the unconditional
variances. However, feedback can be employed [see Eq. (101)]
to reduce the unconditional variances to their corresponding
conditional variances (see Fig. 7).

VII. CONCLUSIONS

A BAE measurement of a collective quadrature of two
mechanical oscillators may be performed using a cavity
detector. This is achieved, for a system operated in the
resolved-sideband regime, by two-tone driving of the cavity
with a detuning of plus and minus the average of the two
mechanical oscillator frequencies.

For the purpose of force sensing, one can surpass the full
quantum limit on resonant force sensing provided the damping
rate of the auxiliary oscillator is much lower than that of
the driven oscillator, and the coupling asymmetry is matched
accordingly. This would be experimentally challenging, so
perhaps more useful is the fact that one can significantly
surpass the standard quantum limit (and also surpass the
full quantum limit) on detuned force sensing without such
constraints on system asymmetries.

Further, in the adiabatic limit and in the regime where the
collective mechanical oscillator frequency is much greater
than the average mechanical damping rate, one can condi-
tionally prepare an entangled two-mode squeezed state of the
mechanical oscillators via measurement of the cavity output
field. The presence of this entanglement may be verified
in a straightforward manner from the measurement record.
Further, simple feedback based on the measurement record
may be used to convert the conditional two-mode squeezing
and entanglement to unconditional entanglement.

Given the rapid progress in the measurement of microwave
fields [8,56,57], including demonstrations of feedback control
[58,59], the proposed scheme appears to be a promising
route towards the generation and verification of macroscopic,

all-mechanical entanglement and force sensing beyond con-
ventional quantum limits.

Note added. Recently, we became aware of a recent related
work by Zhang et al. [60]. This work described how the
Hamiltonian of Eq. (9) in our paper could also be obtained
for two condensates in an optical lattice. However, neither an
analysis of the conditional dynamics under measurement nor
a calculation of the force sensitivity of the system was given
there.
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APPENDIX A: DERIVATION OF HAMILTONIAN

We start from the Hamiltonian of Eq. (5), with the signal
force given by Eq. (6). Moving into an interaction picture with
respect to Ĥ0 = ωm(â†â + b̂†b̂) + ωcĉ

†ĉ, we can rewrite this
Hamiltonian as

Ĥ = �(â†â − b̂†b̂) + ga(âe−iωmt + â†eiωmt )ĉ†ĉ

+ gb(b̂e−iωmt + b̂†eiωmt )ĉ†ĉ + Ĥdiss + Ĥdrive. (A1)

The environments of the three oscillators are assumed to
be ensembles of noninteracting oscillators. The usual Born,
Markov, and rotating-wave approximations are made on
the system-environment interactions, and we also ignore
environment-induced level shifts, as is typical for quantum
optical master equations [4]. Therefore, the Heisenberg equa-
tions corresponding to Eq. (A1), neglecting noise terms, are

˙̂a = −i�â − igae
iωmt ĉ†ĉ − γa

2
â, (A2a)

˙̂b = i�b̂ − igbe
iωmt ĉ†ĉ − γb

2
b̂, (A2b)

˙̂c = −iga(âe−iωmt + â†eiωmt )ĉ − igb(b̂e−iωmt + b̂†eiωmt )ĉ

− iE+e−iωmt − iE−eiωmt − κ

2
ĉ. (A2c)

Adopting the ansatz ĉ(t) = ĉ0(t) + ĉ+(t)e−iωmt + ĉ−(t)eiωmt ,
assuming ωm � κ (resolved-sideband regime), explicitly sep-
arating out the Fourier components of the field at the driven
sidebands, and then equating frequency components [61], we
obtain the system

˙̂a = −i�â − iga(ĉ†0ĉ+ + ĉ
†
−ĉ0) − γa

2
â, (A3a)

˙̂b = i�b̂ − igb(ĉ†0ĉ+ + ĉ
†
−ĉ0) − γb

2
b̂, (A3b)

˙̂c0 = −iga(âĉ− + â†ĉ+) − igb(b̂ĉ− + b̂†ĉ+) − κ

2
ĉ0, (A3c)

˙̂c+ = −iE+ + iωmĉ+ − κ

2
ĉ+ − igaâĉ0 − igbb̂ĉ0, (A3d)

˙̂c− = −iE− − iωmĉ− − κ

2
ĉ− − igaâ

†ĉ0 − igbb̂
†ĉ0. (A3e)

Solving Eqs. (A3d) and (A3e) for the steady-state at the
driven sidebands, assuming the optomechanical couplings are
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relatively small, yields

〈ĉ+〉 = −iE+
−iωm + κ/2

≡ c̄+, (A4a)

〈ĉ−〉 = −iE−
iωm + κ/2

≡ c̄−. (A4b)

Then we can write down the effective Hamiltonian, corre-
sponding to Eqs. (A3a)–(A3c), as

Ĥ = �(â†â − b̂†b̂) + Ĥdiss

+ ga(c̄+ĉ†â† + c̄∗
−ĉâ† + c̄∗

+ĉâ + c̄−ĉ†â)

+ gb(c̄+ĉ†b̂† + c̄∗
−ĉb̂† + c̄∗

+ĉb̂ + c̄−ĉ†b̂). (A5)

Now we assume that the cavity sideband amplitudes will have
the same steady-state amplitudes but different phases, c̄+ =
c̄e−iψ and c̄− = c̄eiψ . Here c̄ is assumed to be real, without
loss of generality, because it only changes the cavity quadrature
to which the collective mechanical quadrature is coupled, and
is readily compensated by adjusting a local oscillator phase.
The Hamiltonian becomes

Ĥ = �(â†â − b̂†b̂) + 2gac̄X̂a,ψX̂c + 2gbc̄X̂b,ψX̂c + Ĥdiss,

(A6)

where we have introduced quadratures of mechanical and
electromagnetic modes as X̂q,ψ ≡ (q̂eiψ + q̂†e−iψ )/

√
2 and

P̂q,ψ ≡ −i(q̂eiψ − q̂†e−iψ )/
√

2, with the lack of a phase
subscript implying that the phase has been set to zero. The
Hamiltonian of Eq. (A6) may be rewritten as

Ĥ = �(X̂+X̂− + P̂+P̂−) + G(cos ψX̂+ − sin ψP̂+)X̂c

−Gd (cos ψX̂− − sin ψP̂−)X̂c + Ĥdiss. (A7)

Irrespective of the value of ψ , there exists back-action in the
“unperturbed” subspace due to asymmetric coupling (Gd �=
0), and so we may set ψ to zero. Then the Hamiltonian reduces
to that given in Eq. (9).

APPENDIX B: HEISENBERG-LANGEVIN EQUATIONS

The system of Heisenberg-Langevin equations describing
the dynamics of the two mechanical oscillators is given in
Sec. II by Eq. (12), repeated here for convenience,

d

dt
�V = M · �V + �FBA + N · �ξ, (B1)

where �V is the vector of collective mechanical quadrature
operators of Eq. (11) and �ξ is the vector of input noise operators
of Eq. (15). The coupling of the mechanical oscillators to the
cavity mode is included in Eq. (B1) as an inhomogeneity,
the vector of back-action forces �FBA. In the fully symmetric
case (symmetric mechanical damping rates and symmetric
optomechanical coupling rates) the system matrix M is given
by Eq. (13), the back-action force vector �FBA is given by
Eq. (14), and the input noise weighting matrix N is given by
Eq. (15). The Heisenberg-Langevin equations for the cavity
quadratures themselves are given by Eqs. (16a) and (16b).
Here we give the Heisenberg-Langevin equations describing
the system in the presence of both damping and coupling
asymmetries. These equations retain the form of Eq. (B1) in
all cases, and they shall be specified both in the original and

rotated bases and both without and with the compensating
parametric driving.

1. Original system, original basis

In the presence of both coupling and damping asymmetries,
in the basis of the original collective observables of Eq. (11)
and without compensation, the system matrix is

M =

⎡
⎢⎣

−γ /2 � −dγ /2 0
−� −γ /2 0 −dγ /2

−dγ /2 0 −γ /2 �

0 −dγ /2 −� −γ /2

⎤
⎥⎦ , (B2)

where the average mechanical damping rate γ and the dimen-
sionless damping asymmetry d are as introduced in Eqs. (35)
and (37), respectively. Clearly from Eq. (B2), the asymmetric
damping directly couples the nominally “measured” (X̂+,P̂−)
and the nominally “perturbed” (X̂−,P̂+) subsystems. The
vector of noise input operators is given by Eq. (15), though the
noise input weighting matrix is

N =

⎡
⎢⎢⎣

√
γ+(d) 0

√
γ−(d) 0

0
√

γ+(d) 0
√

γ−(d)√
γ−(d) 0

√
γ+(d) 0

0
√

γ−(d) 0
√

γ+(d)

⎤
⎥⎥⎦ , (B3)

where we have introduced the collective damping rate notation,√
γ±(d) ≡ √

γ (
√

1 + d ± √
1 − d)/2. (B4)

The vector of back-action forces associated with the coupling
to the cavity is now

�FBA = (0,GdX̂c,0,−GX̂c)T , (B5)

with the asymmetric coupling rate Gd as introduced in
Eq. (10b). The equation for the cavity quadrature X̂c is still
Eq. (16a), while the equation for P̂c is now

˙̂P c = −GX̂+ + GdX̂− − κ

2
P̂c + √

κP̂c,in. (B6)

According to Eq. (B6), the cavity is no longer coupled to (i.e.,
measures) X̂+ alone, but to a linear combination of X̂+ and
X̂−. Accordingly, the observable P̂− (which is dynamically
coupled to the measured observable X̂+) is now heated by
back-action from coupling to the cavity, as is also clear from
Eq. (B5). Clearly, both types of asymmetries ruin the perfect
BAE property of the measurement scheme. The significance
of these asymmetries is addressed throughout the paper.

2. Original system, rotated basis

In the presence of optomechanical coupling asymmetry
it is convenient to move into a basis of rotated collective
quadrature observables, as defined in Eqs. (18a) and (18b). The
Heisenberg-Langevin equations retain the form of Eq. (B1),
with �V now denoting the vector of rotated quadrature observ-
ables as defined in Eq. (21),

�V = (X̃+,P̃−,X̃−,P̃+)T , (B7)

and the vector of input noise operators as introduced in
Eq. (22),

�ξ = (X̃+,in,P̃−,in,X̃−,in,P̃+,in)T , (B8)
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with the rotated collective input noise operators defined in
terms of the original collective input noise operators in the
obvious manner.

The system matrix is now [cf. Eq. (B2)]

M =

⎡
⎢⎢⎣

−γ /2 �̃ −dγ /2 −p�̃

−�̃ −γ /2 −p�̃ −dγ /2
−dγ /2 p�̃ −γ /2 �̃

p�̃ −dγ /2 −�̃ −γ /2

⎤
⎥⎥⎦ , (B9)

with �̃ as introduced in Eq. (20b), while the matrix N is still
given by Eq. (B3). The back-action force vector is now

�FBA = (0,0,0,−G̃X̂c)T , (B10)

while the Heisenberg-Langevin equations for the cavity
quadratures are now Eqs. (16a) and [cf. Eq. (B6)]

˙̂P c = −G̃X̃+ − κ

2
P̂c + √

κP̂c,in. (B11)

From Eq. (B9), it is clear that in the rotated basis both
the damping and the coupling asymmetries directly couple
the nominally measured (X̃+,P̃−) and nominally perturbed
(X̃−,P̃+) subsystems. However, now only the rotated observ-
able X̃+ is coupled to the cavity (i.e., measured); indeed, this
motivated the definition of the rotated observables in the first
place. Accordingly, and as seen in Eq. (B10), the back-action
of the cavity only directly heats P̃+.

3. Compensated system, rotated basis

Including compensating parametric driving as per Eq. (25),
the system matrix in the rotated basis of Eq. (21) is

M =

⎡
⎢⎢⎣

−γ /2 �̃ −dγ /2 0
−�̃ −γ /2 0 −dγ /2

−dγ /2 2p�̃ −γ /2 �̃

2p�̃ −dγ /2 −�̃ −γ /2

⎤
⎥⎥⎦ . (B12)

The effect of the compensation is that the nominally measured
subsystem is no longer coupled to the nominally perturbed
subsystem via the coupling asymmetry, though it remains
coupled through the damping asymmetry. This partial decou-
pling shall prove to be useful. The other parts of Eq. (B1)
remain unchanged: The vector of noise input operators is
given by Eq. (22), the vector of back-action forces is given
by Eq. (B10), and the equations for the cavity quadratures are
given by Eqs. (16a) and (B11).

APPENDIX C: CALCULATION OF SPECTRA

1. Heisenberg-Langevin equations in the frequency domain

The back-action of the cavity on the mechanical oscillators
may be determined by calculating noise spectra of the
measured and perturbed observables. The system of Eq. (B1)
is readily solved in the frequency domain in all cases. Taking
the Fourier transform of Eq. (B1) leads to

�V [ω] = −χ [ω] · N · �ξ [ω] − χ [ω] · �FBA[ω], (C1)

where we have introduced the susceptibility matrix,

χ [ω] = (M + iω1)−1. (C2)

For convenience, we also introduce the thermal susceptibility
matrix,

χ̄ [ω] ≡ χ [ω] · N. (C3)

The symmetrized noise spectral densities of interest, for an
observable Ẑ = [ �V ]i , are defined in Eq. (26). They may be
obtained from frequency-domain solutions of the Heisenberg-
Langevin equations as

SZ[ω] = (Ẑ[ω])†Ẑ[ω]. (C4)

From Eq. (C1), there are clearly two contributions to the noise
spectra of the collective mechanical quadratures. The first term
describes the intrinsic thermal and quantum fluctuations of the
mechanical oscillators, while the second term describes the
back-action heating of the mechanical oscillators due to their
coupling to the cavity. We now calculate these contributions
in turn.

2. Thermal noise spectra

The thermal noise spectra ultimately depend on the corre-
lation functions of the input mechanical noise operators; these
are

〈Ẑi,in(t)Ẑi,in(t ′)〉 = 1
2 (n̄a + n̄b + 1)δ(t − t ′), (C5a)

〈Ẑi,in(t)Ẑj,in(t ′)〉 = 1
2 (n̄a − n̄b)δ(t − t ′), (C5b)

for i �= j in the second correlation function, and where
Ẑ ∈ {X̃,P̃ } and i,j ∈ {+,−}. Note that n̄a(n̄b) is the thermal
occupation of the environment to which mechanical oscillator
a(b) is coupled. Therefore, the thermal contribution to the
noise spectral density of the measured observable X̃+ is

S th
X̃+

[ω] = 1

2
(n̄a + n̄b + 1)

(
4∑

m=1

|χ̄1m[ω]|2
)

+ 1

2
(n̄a − n̄b)

{
2∑

m=1

(χ̄∗
1m[ω]χ̄1(m+2)[ω]

+ χ̄∗
1(m+2)[ω]χ̄1m[ω])

}
, (C6)

with χ̄jk[ω] denoting elements of the thermal susceptibility
matrix introduced in Eq. (C3). This quantity is evaluated
explicitly, both at the resonant peaks (� in the original case,
�̃ in the compensated case) and at a large detuning �, in
Sec. III B.

3. Back-action noise spectra

The contribution to the noise spectral density of the
measured observable due to back-action is itself dependent
on the dynamics of the cavity. Accordingly, we first take the
Fourier transform of the coupled cavity quadrature in Eq. (16a),

X̂c[ω] = χc[ω]
√

κX̂c,in[ω], (C7)

where we have introduced the cavity susceptibility,

χ−1
c [ω] ≡ −iω + κ/2. (C8)
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The input noise correlation function for this cavity quadrature
is

〈X̂c,in(t)X̂c,in(t ′)〉 = 1
2 (2n̄c + 1) δ(t − t ′), (C9)

where n̄c is the thermal occupation of the cavity bath.
Frequently, in experiments, n̄c will be very close to zero. From
Eqs. (B10), (C1), (C7), and (C9), the back-action contribution
to the spectrum of the measured observable, assuming that
κ � �, is

Sba
X̃+

[ω] = γ |χ14[ω]|2C̃(2n̄c + 1), (C10)

where χ14[ω] is an element of the susceptibility matrix
introduced in Eq. (C2) and C̃ is the rotated cooperativity
parameter introduced in Eq. (36). Equation (C10) is evaluated
explicitly at resonance and far-detuned from resonance in
Sec. III B.

However, for the purpose of assessing the system’s use-
fulness for force sensing, we need to know the bandwidth
over which quantum limits can be surpassed. This requires
knowledge of the full frequency-dependent contribution to
the noise spectrum. In general, this is complicated, though
reasonably simple forms may be obtained in the perturbative
regime (i.e., to second-order in p and d) and in the extreme
asymmetric case (d = 1 and p = −1 without compensation,
or just d = 1 in the case with compensation).

4. Output noise spectrum

The total output noise spectrum of the measured collective
mechanical quadrature consists not only of the quantum and
thermal fluctuations of the mechanical oscillators (calculated
in Appendix C) and the back-action heating due to the
coupling to the cavity (calculated in Appendix C), but also
includes the noise added by the detector (i.e., the cavity).
The total noise spectrum is readily calculated using the
input-output formalism of quantum optics [4], and this will
facilitate comparisons with conventional quantum limits on
measurement [5].

To calculate this noise spectrum, we need to know how
the collective mechanical quadrature couples to the cavity
field. This is given, in the frequency domain, by the Fourier
transform of Eq. (B11),

P̂c[ω] = −χc[ω]G̃X̃+[ω] + χc[ω]
√

κP̂c,in[ω], (C11)

where the cavity susceptibility χc[ω] is defined in Eq. (C8).
From Eqs. (C7) and (C11), we have for the cavity mode
annihilation operator

ĉ[ω] = √
κχc[ω]ĉin[ω] − iχc[ω]G̃X̃+[ω]/

√
2. (C12)

Applying the usual boundary condition for a single-sided
optical cavity,

√
κĉ[ω] = ĉin[ω] + ĉout[ω], (C13)

we find the cavity output field to be

ĉout[ω] = −c̄out[ω] − i(ω − ωc) + κ/2

i(ω − ωc) − κ/2
ĉin[ω]

−iχc(ω − ωc)
√

κ/2G̃X̃+[ω − ωc], (C14)

with the frequencies now specified in the (nonrotating)
laboratory frame. Here c̄out[ω] describes the output field due

to the coherent cavity driving fields, the second term describes
fluctuations of the input field filtered by the cavity, and the
third term carries the signal due to the mechanical oscillation.

It is assumed that the output cavity field is subject to
homodyne detection in the usual manner [4]. The measured
homodyne current is then

Î (t) = b∗
LO(t)ĉout(t) + bLO(t)ĉ†out(t), (C15)

where the local oscillator amplitude is bLO(t) = iBe−iωct ,
with B assumed real without loss of generality. The Fourier
transform of each component in Eq. (C15) is evaluated as
a convolution integral, allowing us to calculate the spectrum
of the homodyne measurement current SI [ω], as quoted in
Eqs. (30) and (31) [6].

APPENDIX D: FORCE-SENSING TRANSFER FUNCTIONS

The ability to perform a BAE measurement of an oscil-
lating mechanical observable suggests the possibility of force
sensing beyond conventional quantum limits. Given that the
noise spectral density of the measured observable has been
calculated (see Sec. III), the next task is to calculate the transfer
function relating the signal force on one mechanical oscillator
to the measured collective mechanical quadrature. This allows
one to determine the noise added by the force-sensing scheme
and facilitates a comparison with conventional quantum limits
(see Sec. IV). These transfer functions are calculated here.

Suppose that the mechanical oscillator a is subject to the
signal force f (t), as per Eq. (47). In a frame rotating at the
average mechanical frequency ωm [i.e., the same frame used to
write the Hamiltonian in Eq. (9)], the signal force is described
by

ĤF = f̄ (t)â + f̄ ∗(t)â†, (D1)

where we have

f̄ (t) = f (t)e−iωat ei�t . (D2)

The Hamiltonian driving of Eq. (D1) adds a vector of driving
forces �F (t) to the Heisenberg-Langevin equations of Eq. (12),
given by

�F (t) = −

⎡
⎢⎣

(cos θ − sin θ ) Im f̄ (t)
(cos θ + sin θ ) Re f̄ (t)
(cos θ + sin θ ) Im f̄ (t)
(cos θ − sin θ ) Re f̄ (t)

⎤
⎥⎦ , (D3)

where θ is the angle describing the coupling asymmetry
introduced in Eq. (17). In order to evaluate the force-sensing
transfer function, we can neglect the noise terms and the
coupling to the cavity in Eq. (12), leaving the system of
Heisenberg equations

d

dt
�V = M · �V + �F (t), (D4)

where �V is the vector of rotated quadrature observables in
Eq. (21), and the system matrix M is given by Eq. (B9)
or Eq. (B12) for the uncompensated or compensated cases,
respectively. The system of Eq. (D4) with the drive of Eq. (D3)
is readily solved in the frequency domain, leading to the
required transfer functions. These results are now given, for the
cases of a signal force resonant with the mechanical oscillator
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and for a signal force far-detuned from the mechanical
resonance frequency.

1. Detection of mechanically resonant force

First we consider a mechanically resonant signal force.
For the uncompensated system, assume the signal force f (t)
is contained in a narrow bandwidth about the mechanical
resonance frequency ωa . This implies that in the rotating frame
f̄ [ω] is peaked at ±�. For the compensated system we assume
f (t) is contained in a narrow bandwidth about ω′

a , leading
to f̄ [ω] being peaked at ±�̃. The transfer function between
the signal force and the measured observable takes the form
specified by Eqs. (51) and (54).

The transfer functions are modified in the presence of
asymmetries by the function gr (p,d). For the uncompensated
system, this modification is given by

gr (p,d) =
√

1 + p2(1 + d + p) − 1 − d − dp − p2

2(1 − d2 + p2)

× cosec

(
arctan p

2

)
. (D5)

This factor is just 1 for vanishing asymmetries (p,d = 0),
implying that X̂+ responds resonantly to the force as expected.
In the absence of coupling asymmetry, we find gr (p = 0,d) =
1/(1 + d). That is, the gain in Eq. (54) is given by the damping
rate of the driven oscillator. Accordingly, for d → −1 (the
damping rate of the driven oscillator goes to zero), the gain
diverges. For the compensated system, the transfer function
modification is given by

gr (p,d) = 1

1 − d2 + d2p2

[
(1 − d) cos

(
arctan p

2

)

− dp sin

(
arctan p

2

)]
. (D6)

2. Detection of mechanically nonresonant force

The second case of interest is that in which the signal force
is far-detuned (by an amount � � γ ) from the mechanical
resonance frequency. The transfer function is now specified by
Eqs. (51) and (65). The modifications to the transfer functions
due to asymmetries are given by the function gn(p,d). In the
uncompensated case this is

gn(p,d) = 1 + p −
√

1 + p2

2
√

1 + p2
cosec

(
arctan p

2

)
, (D7)

while in the compensated case we find

gn(p,d) = cos

(
arctan p

2

)
. (D8)

In both cases the modulation is independent of the damping
asymmetry and so approaches 1 for vanishing coupling
asymmetry.

APPENDIX E: BEST ESTIMATES OF QUADRATURES AND
CONDITIONAL VARIANCES—THE SYMMETRIC CASE

1. Quadratures

In the fully symmetric case (equal optomechanical coupling
rates and mechanical damping rates), the measured subsystem
(X̂+,P̂−) decouples from the perturbed subsystem (X̂−,P̂+) in
Eqs. (99) and (B1). For the measured subsystem alone, we can
still write the filter, for instance, in the form of Eq. (79), but
now with the matrices

M =
[−γ /2 �

−� −γ /2

]
, (E1a)

�Q =
√

4η�

[
VX+
�+−

]
, (E1b)

where � is the measurement rate introduced in Eq. (75).

2. Conditional variances

Also, in the fully symmetric case the system matrix M of
Eq. (B9) simplifies to that given in Eq. (13), and the system of
conditional covariance equations of Eq. (81) becomes, writing
out the equations for the independent elements explicitly,

V̇X+ = 2��+− − γVX+ − 4η�V 2
X+ + γ n̄tot, (E2a)

V̇P− = −2��+− − γVP− − 4η��2
+− + γ n̄tot, (E2b)

V̇X− = 2��−+ − γVX− − 4η��2
XX + γ n̄tot, (E2c)

V̇P+ = −2��−+ − γVP+ − 4η��2
++ + γ n̄tot + �, (E2d)

�̇+− = −�VX+ + �VP− − γ�+− − 4η�VX+�+−, (E2e)

�̇−+ = −�VX− + �VP+ − γ�−+ − 4η��XX�++, (E2f)

�̇++ = −��XX + ��PP − γ�++ − 4η��++VX+ , (E2g)

�̇−− = −��XX + ��PP − γ�−− − 4η��+−�XX, (E2h)

�̇XX = ��++ + ��−− − γ�XX + γ n̄d − 4η�VX+�XX,

(E2i)

�̇PP = −��++ − ��−− − γ�PP + γ n̄d − 4η��+−�++,

(E2j)

with n̄tot, accounting for quantum and thermal fluctuations, as
defined in Eq. (89). From Eq. (E2d), note that the observable
that is perturbed by the measurement, P̂+, is heated at the
measurement rate �, as required by Heisenberg’s uncertainty
principle. Further note that Eqs. (E2a), (E2b), and (E2e),
including the equations for the variances of most interest (VX+
and VP− ), form a closed system and analytical steady-state
solutions are readily found.

First consider the simplest case, � = 0. Writing the
measurement rate in terms of the cooperativity parameter,
� = γC, we have

VX+ =
√

4ηC(n̄th + 1/2) + 1/4 − 1/2

4ηC

→
√

n̄th + 1/2

2
√

η

1√
C

, (E3a)

VP+ = n̄th + 1/2 + C, (E3b)

VX− = VP− = n̄th + 1/2. (E3c)
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The variance of the measured observable (X̂+) falls with
a stronger measurement (higher cooperativity), while the
conjugate observable (P̂+) is heated to a greater extent. The
uncoupled observables (X̂−,P̂−) are unaffected by the mea-
surement. Note that if we set the thermal occupation of each
mechanical oscillator to be the same, the results of Eqs. (E3a)
and (E3b) are consistent with that for a BAE measurement of
a quadrature of a single mechanical oscillator [6].

However, for both generating entangled states and force
sensing beyond quantum limits, we require that the collective
mechanical oscillation frequency, �, is nonzero. Solving for
the steady-state of Eqs. (E2a), (E2b), and (E2e) in this case
leads to a fourth-order polynomial equation in VX+ . This may
be solved analytically, and expressions for �+− and VP− then
follow in turn. We find

VX+ = 1

4ηC

(
−1 + 1√

2γ

√
8ηγ 2Cn̄tot + γ 2 − 4�2 +

√
γ 2 + 4�2

√
γ 2 + 4�2 + 16ηγ 2Cn̄tot

)
, (E4a)

�+− = γ

2�

(
VX+ + 4ηCV 2

X+ − n̄tot
)
, (E4b)

VP− = 2n̄tot − VX+ − 4ηCV 2
X+ + ηC

(
γ

�

)2 (
n̄tot − VX+ − 4ηCV 2

X+

)2
, (E4c)

with n̄tot given by Eq. (89). The results of Eqs. (E4a)–(E4c)
also apply to the compensated asymmetric system, with
the understanding that the observables referred to are then
the rotated observables, and we must replace parameters
without tildes with the corresponding parameters with tildes.
More useful results based on Eqs. (E4a)–(E4c) are given in
Sec. V E1. Note also that the second expression in Eq. (E3a)
follows as a limit of Eq. (E4a) in the regime �  γ . Further,
substituting the full result for VX+ from Eq. (E4a) into the
expression for VP− in terms of VX+ from Eq. (E4c), and
re-expressing the result in terms of VX+ , we find the result
of Eq. (88).

In the compensated case (with no damping asymmetry),
the solutions for the steady-state covariances are given by
Eqs. (E4a)–(E4c), with the understanding that they are now
solutions for the rotated observables, and parameters without
tildes must be replaced with the corresponding parameters
with tildes. Consequently, the asymptotic results of Eqs. (86)
and (87) remain valid.

Given the solutions in Eqs. (E4a)–(E4c), Eqs. (E2g)–(E2j)
form a linear system

Ai · �Ri = �Bij , (E5)

where the appropriate matrices are

�R1 = (�++,�−−,�XX,�PP )T , (E6a)

A1 =

⎡
⎢⎣

−γ 0 −� �

0 −γ −� �

� � −γ 0
−� −� 0 −γ

⎤
⎥⎦

− 4ηγC

⎡
⎢⎣

VX+ 0 0 0
0 0 �+− 0
0 0 VX+ 0

�+− 0 0 0

⎤
⎥⎦ , (E6b)

�B11 =

⎡
⎢⎣

0
0

−γ n̄d

−γ n̄d

⎤
⎥⎦ , (E6c)

�B12 = �B11 − 2p�̃

⎡
⎢⎣

VX+
VP−
�+−
�+−

⎤
⎥⎦ , (E6d)

where �B11 or �B12 is the appropriate inhomogeneity in the
symmetric or compensated case, respectively. Subsequently,
Eqs. (E2c), (E2d), and (E2f) form a linear system of the form
of Eq. (E5), now with

�R2 = (VX− ,VP+ ,�−+)T , (E7a)

A2 =
⎡
⎣ −γ 0 2�

0 −γ −2�

−� � −γ

⎤
⎦ , (E7b)

�B21 =
⎡
⎣ 4ηγC�2

XX − γ n̄tot

4ηγC�2
++ − γ n̄tot − γC

4ηγC�XX�++

⎤
⎦ , (E7c)

�B22 = �B21 − 2p�̃

⎡
⎣ 2�−−

2�++
�XX + �PP

⎤
⎦ , (E7d)

again with �B21 or �B22 being the appropriate inhomogeneity
in the symmetric or compensated case, respectively. Note
that in the compensated case, as compared with the fully
symmetric case, there are simply additional inhomogeneous
terms, leading to excess heating in the perturbed subsystem.

The solutions to these linear systems take simple forms in
the fully symmetric case, particularly in the physically relevant
case n̄d = 0 (both oscillators at the same temperature). The
linear systems defined by Eqs. (E6a)–(E6d) and (E7a)–(E7d)
are readily solved in turn, leading to

�++,�−−,�XX,�PP = 0, (E8)

and subsequently to

VX− = n̄th + 1

2
+ C

2�2

γ 2 + 4�2
, (E9a)
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VP+ = n̄th + 1

2
+ C

γ 2 + 2�2

γ 2 + 4�2
, (E9b)

�−+ = C
γ

�

�2

γ 2 + 4�2
. (E9c)

In the limit γ � �, VX− ∼ n̄th + 1/2 and VP+ ∼ n̄th + 1/2 +
C. In this limit, the measurement is of X̂+ alone, and so the
conjugate observable P̂+ is heated by an amount corresponding
to the cooperativity. In the opposite (and more interesting)
limit, � � γ , we find VX+ ∼ VP− ∼ n̄th + 1/2 + C/2. In
this case, X̂+ is directly monitored, but it is dynamically
coupled to P̂−. Therefore, both of these collective quadratures
are effectively measured, and the corresponding conjugate
quadratures are heated by an equal amount.

APPENDIX F: UNCONDITIONAL VARIANCES
AND FEEDBACK

1. Unconditional variances

The expressions for the unconditional variances, in the
absence of feedback, still take reasonably simple forms in the
asymmetric case, provided we consider the regime where � �
γ . In the original (uncompensated) case we find, assuming that
the asymmetries are small,

〈X̃2
+〉 = 2ηCV 2

X̃+

(1 + p2)(1 + dp) − d2/2

(1 + p2)(1 − d2 + p2)
, (F1a)

〈P̃ 2
−〉 = 2ηCV 2

X̃+

1 + p2 − d2/2

(1 + p2)(1 − d2 + p2)
. (F1b)

Note that there is a discrepancy between Eqs. (F1a) and (F1b)
only when there is both a coupling asymmetry and a damping
asymmetry.

2. Feedback: The general case

The equation describing both the best estimates of the
collective mechanical quadratures and the classical represen-
tations of these observables takes the form of Eq. (103). In
the general (asymmetric) case, the measured and perturbed
subspaces are coupled, such that the state vector contains
all collective quadratures and the noise vector includes
measurement noise and the noise due to the independent
mechanical environments, as specified by Eq. (104). The
system matrix in Eq. (103) may be expressed in the block

matrix form

S ≡
[

M + F + Q1 −Q1

F M

]
, (F2)

where (as usual) M is given by Eq. (13), Eq. (B9), or Eq. (B12),
F is the feedback matrix defined in block matrix form as

F ≡
[

(αγ/2)I2 022

022 022

]
, (F3)

with In denoting the n × n identity matrix, 0mn representing
an m × n zero matrix, and

Q1 ≡
√

4η�[ �Q|043 ], (F4)

with �Q as defined in Eq. (80). Further, the input noise
weighting matrix in Eq. (103) may be expressed in block
matrix form as

T ≡
[

Q2 044

044
√

γ n̄totI4

]
, (F5)

where we have introduced

Q2 ≡
√

4η� Diag[VX+ ,�+−,�XX,�++]. (F6)

3. Feedback: The symmetric case

In the fully symmetric case we need only consider the
observables in the measured subsystem, such that Eq. (103)
describes a four-dimensional Ornstein-Uhlenbeck process.
The state vector is then

�Y = (X̄+,P̄−,x+,p−)T , (F7)

the input noise vector is

d �W = (dW,dW,dWx+ ,dWp− )T . (F8)

The system matrix is now, explicitly,

S ≡

⎡
⎢⎢⎣

γ /2 + αγ/2 + 4η�VX+ −� −4η�VX+ 0
� + 4η��+− γ /2 −4η��+− 0

αγ/2 0 γ /2 −�

0 0 � γ/2

⎤
⎥⎥⎦ ,

(F9)

and the input noise matrix is now, explicitly,

T ≡ Diag[
√

4η�VX+ ,
√

4η��+−,
√

γ n̄tot,
√

γ n̄tot]. (F10)

Of course, Eqs. (F9) and (F10) could be expressed in block
matrix form, as in Eqs. (F2) and (F5).
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