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The Carnot limit, formulated in 1824, represents the maximal efficiency of a classical heat engine. In this work
we present a thermodynamical analysis of a light amplifier based on a three-level atom coupled off-resonantly
to a single quantized cavity mode and to two heat reservoirs with positive temperatures. Based on standard
work and heat flow equilibrium, we show that for a cavity blue-detuned with respect to the atomic resonance,
the system can surpass the Carnot limit. Nevertheless, the second law of thermodynamics is still obeyed, as
the total entropy always increases. By analyzing a semiclassical version of the model, we derive a formula for the
critical frequency for which the Carnot limit is broken and a formula for the amplifier efficiency which agrees
with its quantum counterpart. In the semiclassical regime, however, the second law is not satisfied and hence it
does not offer a physically acceptable description of the system. Finally, we show that breaking the Carnot limit
occurs also in a blue-detuned quantum amplifier with output coupling, which represents a realistic model of a
laser or maser.
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I. INTRODUCTION

The Carnot limit, formulated in 1824 [1], represents the
maximal efficiency of any heat engine operating between two
heat reservoirs at different temperatures. It is considered as a
corollary of the second law of thermodynamics, which states
that in any given process the total entropy must rise.

Thermodynamics of a three-level maser-laser was first stud-
ied by Scovil–Schulz-DuBois [2], who heuristically showed
that a maser operated in resonance represents a heat engine,
whose efficiency is given by a ratio of the signal frequency
and the pump frequency which is bounded by the Carnot
limit efficiency. Boukobza-Tannor developed a general ther-
modynamical formalism for bipartite systems coupled to heat
reservoirs, in which one degree of freedom can be replaced
by a quantized field mode [3], and applied it to a single
three-level system coupled to a quantized cavity mode or a
classical coherent mode [4]. They showed that under perfect
resonance the laser efficiency coincides with the intuitive
maser efficiency due to Scovil–Schulz-DuBois and that the
quantum and semiclassical models show perfect agreement in
terms of steady-state thermodynamic currents.

In 2003, Scully et al. [5] theoretically proposed a physical
system that challenges the Carnot limit. They suggested a heat
engine in which mechanical work might arise from coupling
of an optical cavity to two heat reservoirs with the same
temperature. In Ref. [5] a movable mirror would be pushed
(work) via radiation pressure of photons in an optical cavity
interacting with a stream of coherently prepared atoms which
serve as one heat reservoir. In addition, a stationary mirror
is coupled to a second reservoir whose temperature might
be identical to the temperature of the coherent atomic cloud
passing through the cavity.

In this paper we present a full quantum thermodynamical
analysis of a three-level system coupled to two thermal
reservoirs and to a single quantized cavity mode. The thermo-
dynamical analysis incorporated here is based on a quantum
master equation treatment for the general bipartite formalism
developed in Ref. [3], which continues Alicki’s analysis of

systems driven by time-dependent external fields [6]. The
most remarkable feature of our model is that when the cavity
is detuned from atomic resonance the field can be infinitely
amplified with an efficiency that surpasses the Carnot limit,
while still obeying the second law, i.e., the total entropy
production function, introduced originally by Spohn [7], is
always positive.

II. QUANTUM TREATMENT

Consider a three-level system (which we call henceforth
atom) interacting with a quantized electric field mode close
to its |1〉 → |2〉 resonance and two thermal photonic reser-
voirs centered around the |0〉 → |1〉|0〉 → |2〉 resonances as
depicted in Fig. 1. The system is governed by the following
master equation:

ρ̇a f = Lh[ρa f ] + Ld1[ρa f ] + Ld2[ρa f ]. (1)

where Lh[ρa f ] and Ld1(2)[ρa f ] are the Hamiltonian part of the
Liouvillian and the two dissipative Lindblad superoperators,
respectively, given by

Lh[ρa f ] = − i

h̄
[H,ρa f ] =− i

h̄
[Ha + H f + Va f ,ρa f ],

Ld1(2)[ρa f ] = �1(2){(n1(2) + 1)([σ01(2)ρa f ,σ
†
01(2)] + H.c.)

+ n1(2)([σ
†
01(2)ρa f ,σ01(2)] + H.c.)}, (2)

where Ha = Ha ⊗ 1f ; Ha = h̄
∑2

i=0 ωi |i〉〈i| is the bare
atomic Hamiltonian; H f = 1a ⊗ Hf ; Hf = h̄ωf a†a is the
bare field Hamitonian; Va f = λ(σ21 ⊗ a† + σ

†
21 ⊗ a) is the

Jaynes-Cummings Hamiltonian in the rotating wave approxi-
mation (RWA) (operators related to reduced spaces are written
in regular font, whereas operators related to the full space are
written in boldface); �1(2) are the Weisskopf-Wigner decay
constants associated with the two reservoirs; and n1(2) are the
average numbers of thermal photons within the two reservoirs.
The temperature of each thermal photonic reservoir is positive
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FIG. 1. (Color online) Three-level system interacting with two
heat reservoirs (hot and cold) and a quantized cavity mode.

and is given by an inversion of Planck’s formula for the average
number of thermal photons.

We now define a new energy operator, H̃ = Ha + Va f ,
which is a quasi-semiclassical energy operator (see semiclas-
sical treatment), for which we can calculate the energy current
of the full atomic-field system, ˙̃E = Tr{ρ̇a f H̃ }, which is given
by

˙̃E = Tr{Ld(1+2)[ρa f ](Ha + Va f )} + i

h̄
Tr{ρa f [H f ,Va f ]}

= Q̇1a + Q̇1V + Q̇2a + Q̇2V − Pf = Q̇1 + Q̇2 − Pf ,

(3)

where Q̇1(2) ≡ Q̇1(2)a+Q̇1(2)V =Tr{Ld1(2)[ρa f ]H̃} and Pf ≡
− i

h̄
Tr{ρa f [H f ,Va f ]} are heat currents and field power, re-

spectively, as defined in Ref. [3].
In what follows we give a complete, thorough thermody-

namical steady-state analysis of the n1 > n2 regime. The total
entropy production function for the joint atomic-field system
and the reservoirs is given by

σ = Ṡaf − Q̇1

T1
− Q̇2

T2
, (4)

where Saf = −kBTr{ρa f ln ρa f } is the von Neumann entropy
[8] (analogous to the Gibbs entropy [9] S = −kB

∑
i pi ln pi).

Although the entropy production function can be negative (for
example, when time-dependent Hamiltonians are involved),
examples of its positivity at all times are known (for example,
see Refs. [4,10]). When the entropy production function is
positive at all times, then one obtains the second law of
thermodynamics in differential form at all times, σ � 0,
without any instantaneous violations of it. If indeed the entropy
production function is positive for the system in hand, and if
˙̃E = 0, one can write Q̇2 = Pf − Q̇1 and rearrange Eq. (4) to

obtain an upper bound on the amplifier’s efficiency, providing
that Q̇1 > 0, Q̇2 < 0, and Ṡaf > 0:

η ≡ Pf

Q̇1
� T1 − T2

T1
+ Ṡaf T2

Q̇1
. (5)

Equation (5) is the major motivation for this work, as the

inclusion of the last term, Ṡaf T2

Q̇1
, gives a more generous bound

on a heat engine’s efficiency coupled to two thermal reservoirs
with positive temperatures, as follows from Carnot’s famous
formula.
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FIG. 2. (Color online) (a) Quasi-steady-state efficiency (solid
green) and Carnot efficiency (dashed blue). (b) Total entropy produc-
tion. (c) Atomic (dashed red), field (dotted blue), and atomic-field
(solid green) entropies. (d) Average photon number. (e) Quasi-
semiclassical energy, Ẽ. Parameters: ωf = 50λ = 1.05(ω1 − ω2),
ω1−ω2

λ
= 103, λ

�1(2)
= 103, n1 = 5, and n2 = 4.3.

Figures 2(a)–2(c) are a second-law graphical summary
of the presented results, in which we plot the steady-state
efficiency of the light amplifier [Fig. 2(a)], the total entropy
production function [Fig. 2(b)], and the various von Neumann
entropies [Fig. 2(c)], for the following choice of param-
eters: ωf = 50λ = 1.05(ω1 − ω2), ω1−ω2

λ
= 103, λ

�1(2)
= 103,

n1 = 5, and n2 = 4.3. The initial evolution begins with an
atom in the excited state and an empty cavity (although
any initial state would do to demonstrate the steady-state
phenomena). The amplifier efficiency (solid green) in Fig. 2(a)
oscillates at short times, but reaches a steady-state value higher
than that of Carnot’s (dashed blue plateau) as determined
by the reservoirs’ temperatures. The total entropy production
function in Fig. 2(b) is positive at all times. The enhanced
steady-state amplifier efficiency combined with the positivity
of the entropy production function at all times is the main
qualitative result of this paper. Although the field mode is a
work reservoir, its entropy is not constant, as can be seen in
Fig. 2(c). In most examples in the scientific literature the work
reservoir has fixed entropy. However, there is no restriction
in classical thermodynamics for a work source or reservoir to
show a change in entropy, and the example provided here is
not rare when a full quantum treatment is involved. The fact
that the amplified cavity mode has an ever changing entropy
will be discussed in the context of the semiclassical model
later. Finally, we note that the partial (reduced) entropies of the
atom and field are not extensive in this case (even at the energy
steady state presented here), and hence the joint atomic-field
entropy satisfies Saf �= Sa + Sf .

Figures 2(d)–2(e) are a first-law graphical summary of the
presented results, in which we plot the average photon number
in the cavity, n̄f [Fig. 2(d)], and the quasi-semiclassical energy,
Ẽ [Fig. 2(e)], for the same choice of parameters mentioned
above. Figure 2(e) shows that Ẽ reaches a steady-state value,
while the field energy rises linearly after t ∼ 0.5�−1. We note
that although Ẽ reaches a constant value, the full atomic-field
density matrix ρa f is not stationary. Therefore, we call this
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situation an energy steady state. Moreover, unlike the resonant
case, the individual thermodynamic currents Q̇1(2)a(V ) and
Pa(f ) are quasiconstant off-resonantly, and they vary little over
a long time scale (a maximum of a few percent in �t = 100�−1

for various choices of detuning values and thermal excitation
values). We note that the growth of the energy inside the cavity
is essentially unbounded, which was verified numerically up
to t = 100�−1.

The off-resonant amplifier discussed here complements
in a way the saturated amplifier and attenuator discussed in
Ref. [11] which is in the n1 < n2 regime (higher thermal
photon excitation in the reservoir coupling levels |0〉 and |2〉)
and includes detuning. However, the latter is classified either
as a saturated amplifier, or an attenuator, according to the
path that an initial field state follows, and not according to its
steady-state behavior. Furthermore, the saturated amplifier and
attenuator in Ref. [11] reach a steady state which is in fact an
equilibrium state, with vanishing energy currents (including
power), and hence zero steady-state entropy production.

We now analyze in detail the quasi-semiclassical energy,
Ẽ. The field power Pf can be written as follows:

Pf = λ[(ω1 − ω2) + �]Tr{ρa f (iσ †
21 ⊗ a + H.c.)}

= −Pa + P�, (6)

where � ≡ ωf − (ω1 − ω2) is the detuning from reso-
nance, Pa = λ(ω1 − ω2)Tr{ρa f (iσ †

21 ⊗ a + H.c.)}, and P� =
λ�Tr{ρa f (iσ †

21 ⊗ a + H.c.)}. At the energy steady state both
˙̃E = 0 and Ėa ≡ Tr{ρaHa} = Q̇1a + Q̇2a + Pa = 0. There-

fore, Eq. (3) rearranges to

˙̃Ess = Q̇1V + Q̇2V − P� = 0, (7)

where ss stands for steady state. If one writes Q̇1(2)V and P�

explicitly one finds that

Q̇1(2)V = −2λ�1(2)(n1(2) + 1)
∑
m

√
m + 1Re

(
ρ

1m,2(m+1)
a f

)
(8)

P� = 2λ�
∑
m

√
m + 1Im

(
ρ

1m,2(m+1)
a f

)
,

hence one finds that at the energy steady state

cotss(θ ) =
∑

m

√
m + 1Re

(
ρ

1m,2(m+1)
a f

)
∑

m

√
m + 1Im

(
ρ

1m,2(m+1)
a f

) = −�

B
, (9)

where B = �1(n1 + 1) + �2(n2 + 1). Equation (9) represents
the semiclassical relative phase as we show in Sec. III. The
phase, however, cannot be recovered from a naive partial trace
over the field or the atom, as both the atomic and field reduced
density matrices are diagonal at steady state. To see this we
note that the full atomic-field bipartite density matrix assumes
the following form after t > �−1:

ρa f =

⎛
⎜⎜⎝

P0,0 0 0

0 P1,1 C

0 C† P2,2

⎞
⎟⎟⎠ , (10)

where 0 is an m × m zero matrix, Pi,i are diagonal matrices
(i = 0,1,2) whose elements are ρ im,im, and C is an m × m

correlation matrix whose elements are all zero except the

elements above the main diagonal ρ
1m,2(m+1)
a f . Clearly, tracing

over the field degree of freedom at the energy steady state will
yield a 3 × 3 diagonal atomic (reduced) density matrix with
no coherence whatsoever. To emphasize this point further,
if one would design a local atomic phase measurement
based on ρa at steady state and any linear combination of
σx and σy (or ρa f together with a linear combination of
σx ⊗ 1f and σy ⊗ 1f ), the obtained result would be zero.
Indeed, the three-level light amplifier presented in Ref. [3]
was shown to have a quasi-Poissonian photon statistics and
no intrafield coherence. Does this mean that amplified light
has no coherence? No. The observation that the field has no
internal coherence is a manifestation of Mølmer’s conjecture
[12], that pure optical coherence in an interacting light-matter
system is a convenient fiction. The coherence is a joint
atomic-field property as Eqs. (7) and (9) suggest (they include
the Jaynes-Cummings atomic-field interaction Hamiltonian
and the atomic-field density matrix elements which are absent
from a partial trace over the atom or field). Therefore, we
conclude that the semiclassical relative phase, θ , associated
with coherence of light amplification can be derived from
fundamental steady-state thermodynamic currents of the full
quantum model and is in fact an inter-atomic-field property
rather than a local atomic or field property.

III. SEMICLASSICAL TREATMENT

Consider now the three-level system as depicted in Fig. 1,
but where the quantized electric field mode is replaced by a
classical field. The system is governed by a dissipative Liou-
villian similar to the quantum case (written only in the reduced
atomic space) and by a semiclassical RWA JCM Hamiltonian:
H = Ha + V (t), V (t) = λ(σ21 expiωf t +σ

†
21 exp−iωf t ).

The energy currents of the three-level system Ė =
Tr{ ˙ρa[Ha + V (t)]} are given by

Ė = Tr

{
∂ρa

∂t
[Ha + V (t)]

}
+ Tr

{
ρa

∂V

∂t

}
= Q̇ + P

= Q̇1a + Q̇1V + Q̇2a + Q̇2V + P = Q̇1 + Q̇2 + P, (11)

where Q̇≡Tr{ ∂ρa

∂t
[Ha+V (t)]}=Tr{Ld(1+2)[ρa][Ha + V (t)]}

and P ≡ Tr{ρa
∂V
∂t

} are heat currents (Q̇1(2)a and Q̇1(2)V are
defined in a way similar to that of the bipartite treatment)
and power, respectively, as defined in accordance with the
general thermodynamical formalism for open forced unipartite
systems due to Alicki [6]. The steady-state efficiency of the
light generator is derived from the steady-state semiclassical
density matrix given by (in the Schrödinger picture)

ρ = 1

F

⎛
⎜⎝

1 − A1 − B1 0 0

0 A1 C1 exp−iωf t

0 C∗
1 expiωf t B1

⎞
⎟⎠ , (12)

where A1 = f (�1,�1,n1,n2,�) > 0, B1 =
f (�1,�1,n1,n2,�) > 0, and C1 = −�1�2λ(� − iB)(n1 −
n2). If one calculates the ratio between the real and imaginary
parts of the coherence density matrix element (without the
modulus 1 exponential which vanishes in the rotating frame)
in Eq. (12) one recovers exactly the phase as appears in
Eq. (9) in Sec. II. Diagonalization of this density matrix yields
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time-independent eigenvalues given by

λ0 = 1 − A1 − B1

F
,

(13)

λ1,2 = A1 + B1 ±
√

(A1 − B1)2 + 4|C1|2
2F

.

In order to find the steady-state thermodynamic currents,
one transforms to a rotating (field frequency) frame, finds
the steady-state solution of the density matrix, transforms
back to the Schrödinger picture, and finally calculates the
thermodynamic currents, which are given by

Q̇ss
1a = AB

F
(n1 − n2)(ω1 − ω0),

Q̇ss
1V = A

F
�1(n1 + 1)(n1 − n2)�,

Q̇ss
2a = −AB

F
(n1 − n2)(ω2 − ω0), (14)

Q̇ss
2V = A

F
�2(n2 + 1)(n1 − n2)�,

P ss = −AB

F
(n1 − n2)ωf ,

where A = 2�1�2λ and F = f (�1,�1,n1,n2,�) > 0. The
steady-state efficiency of the light generator is obtained by
dividing the power term, −P ss, by the hot reservoir heat current
term, Q̇ss

1 = Q̇ss
1a + Q̇ss

1V , which yields

η ≡ −P ss

Q̇ss
1

= ωs

ωp + α′�
, (15)

where ωs = ωf is the signal frequency, ωp = ω1 − ω0 is
the pump frequency, and 0 < α′ = �1(n1+1)

�1(n1+1)+�2(n2+1) < 1. We
found that Eq. (15) perfectly agrees with the numerical
efficiency of the quantum treatment. In perfect resonance,
� = 0, we recover the Scovil–Schulz-DuBois result [2].

Now we investigate the two regimes of detuning. If the light
is red-detuned from the atomic resonance, � < 0, then

ωs

ωp

= ωres + �

ωp

< η = ωres + �

ωp + α′�
<

ωres

ωp

< ηCarnot

= ωp − β ′(ωp − ωres)

ωp

, (16)

where ωres = ω1 − ω2 is the atomic resonance frequency and
0 < β ′ = ln(1+1/n1)

ln(1+1/n2) < 1 (for n2 < n1).
If the light is blue-detuned from the atomic resonance,

� > 0, then
ωres

ωp

< η <
ωf

ωp

, (17)

and there can be a detuning window for which the Carnot
limit is broken, as ωf

ωp
may be bigger than ηCarnot. By requiring

that η > ηCarnot [where η is the right-hand-side expression in
Eq. (15) and where ηCarnot is the right-hand-side expression in
Eq. (16)] one obtains the critical field frequency for breaching
the Carnot limit:

ωf �
(1 − β ′)ω2

p − α′β ′ω2
res + (α′β ′ + β ′ − α′)ωpωres

(1 − α′)ωp + α′β ′(ωp − ωres)
.

(18)

The immediate consequence of breaking the Carnot limit in the
semiclassical treatment is that the entropy production function
is negative. This follows from the fact that the three eigenvalues
of the semiclassical density matrix at steady state are time
independent, and hence the unipartite atomic system entropy
production, ∂Sa

∂t
, is zero. This is contradicted by the quantum

treatment for which ∂Saf

∂t
> 0 and also compensates for the

negative entropy production of the reservoirs. Therefore, it is
expected that the joint atomic-field entropy varies with time,
and in the long run we even see that the main contribution
comes from the field as Fig. 2(c) clearly shows. From this
comparison we learn that the drawback of the semiclassical
treatment is that it does not account for the change of the
field’s entropy (amplified noise), and hence the second law
is erroneously violated for certain detuning values. Moreover,
it seems that if one accounts for the field dynamics directly
(second quantization of the field), there is no need to amend the
dissipative part of the Liouvillian as was done, for example, in
Refs. [13,14].

Since the interaction heat currents Q̇1V and Q̇2V depend on
the detuning, they can change the thermodynamical picture as
Q̇1(2) = Q̇1(2)a + Q̇1(2)V may become negative (positive) for
red (blue)-detuned light. The limiting red-detuning is obtained
when Q̇1 � 0 and is given by

ωf � ωres −
(

1 + �2(n2 + 1)

�1(n1 + 1)

)
ωp < 0, (19)

which is unacceptable physically. The limiting field frequency
for blue-detuned light is obtained when Q̇2 � 0 and is given
by

ωf � ωp + �1(n1 + 1)

�2(n2 + 1)
(ωp − ωres), (20)

which means that the field frequency should be bigger than the
pump frequency (very hard to implement in a realistic physical
system).

We note that the individual analytical semiclassical steady-
state energy currents for off-resonant excitation do not agree
with their numerical counterparts in the fully quantized
treatment (with a deviation that increases with the absolute
value of the detuning). However, the semiclassical efficiency
that stems from the relevant energy currents does show
excellent agreement with its quantum counterpart. The an-
alytical prediction of Eq. (15) in the paper agrees with the
numerical steady-state efficiency presented in Fig. 2(a), up to
five significant digits, which in any case represents a higher
precision of the exemplified breaking of the Carnot limit. This
is because all the thermodynamical currents differ from their
quantum counterpart by a constant factor.

Finally, we note that in Ref. [15] it is indicated that
Spohn’s entropy production function can be negative for
certain detuning values. In order to circumvent the negativity
of the entropy production function, Boukobza and Tannor [15]
introduced a new entropy production function (which relies
on energy currents of the bare atomic Hamiltonian), σ̄ , that is
always positive. A nonideal property of this entropy production
function is that the efficiency that stems from it is constant,
regardless of detuning.
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IV. DAMPED QUANTUM AMPLIFIER

The final stage of this work is to thermodynamically
characterize a damped quantum amplifier, which represents
a more realistic model for a laser or maser, when compared
with the idealized amplifier described in Sec. II. A three-level
damped light amplifier is governed by the following master
equation:

ρ̇a f = Lh[ρa f ] + Ld1[ρa f ] + Ld2[ρa f ] + Ldf [ρa f ]. (21)

where Lh[ρa f ] and Ld1(2)[ρa f ] are the Hamiltonian part
of the Liouvillian and the two atomic dissipative Lindblad
superoperators described in Sec. II. Ldf [ρa f ] is the (zero
temperature) field dissipative damping term, given by

Ldf [ρa f ]=�f {([aρa f ,a†] + H.c.), (22)

where �f is the Weisskopf-Wigner field decay constant
associated with the reservoir of electromagnetic field modes
outside the cavity that are coupled to the cavity mirrors.

Since the field mode is now coupled directly to reservoir
modes, the energy currents directly associated with it will
include both a power term and a heat current term, unlike the
ideal amplifier described here and in Ref. [4]. To see this we
expand the average value of the field energy in differential
form:

Ėf ≡ Tr{ρ̇f Hf } = Tr{Ldf [ρa f ]H f } − i

h̄
Tr{ρm f [H f ,Vm f ]}

= Q̇f + Pf , (23)

where Q̇f ≡ Tr{Ldf [ρa f ]H f }. Equation (23) represents the
first law of thermodynamics from the field mode perspective.
At steady state (and since the field is also damped, there will
be a global steady state, ρ̇a f = 0), from the field perspective
all the positive field power is turned into heat (Q̇f < 0).
However, one would still be able to calculate the efficiency of
the amplifier, which is the efficiency of maintaining a positive
constant power inside the cavity. In Fig. 3(a) we plot the
amplifier efficiency for the following choice of parameters:
ωf = 50λ = 1.05(ω1 − ω2), ω1−ω2

λ
= 103, λ

�1(2)
= 103, n1 =

5, n2 = 4.3, and �1(2)

�f
= 103, and for extended times. The

calculation was carried out by direct integration of Eq. (21)
in Liouville space, ˆ̂ρaf (t) = eL ˆ̂ρaf (0), using a diagonal time-
independent total Liouvillian superoperator [“translated” from
the total Liouvillian that appears in Eq. (21)]. It is clearly
visible that the damped amplifier also breaches the Carnot
limit for identical detuning and atomic reservoirs conditions
as the nondamped oscillator. The redefined energy, H̃ , is now
decomposed into

˙̃E = Q̇1a + Q̇1V + Q̇2a + Q̇2V + Q̇f V − Pf , (24)

where Q̇f V ≡ Tr{Ldf [ρa f ]H f }. We note that at extended
times and when �f << �1(2), amplification is not artificial.
This is seen by the average number of photons inside the
cavity for ρa f = (|0〉〈0|)a ⊗ (|0〉〈0|)f , ωf = 50λ = 1.05ωres,
and pure Hamiltonian dynamics [Fig. 3(c)], as compared to
the case where both the atomic and field dissipation is dropped
[Fig. 3(d), JCM Hamiltonian dynamics]. The low excitation
in the cavity is attributed to the detuning value, which is
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FIG. 3. (Color online) (a) Steady-state efficiency (solid green)
and Carnot efficiency (dashed blue). (b) Entropy production without
the (positive) contribution of the reservoir coupled to the cavity
mirrors. (c) Average photon number of the damped amplifier.
(d) Average photon number of the detuned JCM (without damping and
amplification). Parameters: ωf = 50λ = 1.05(ω1 − ω2), ω1−ω2

λ
=

103, λ

�1(2)
= 103, n1 = 5, n2 = 4.3, and �1(2)

�f
= 103.

3 orders of magnitude lower than the amplification scenario in
Fig. 3(b).

The total entropy production function for the joint atomic-
field system and the reservoirs when the cavity mode is damped
is given by

σ = Ṡaf − Q̇1

T1
− Q̇2

T2
− Q̇3

T3
, (25)

where Q̇3 = Q̇f + Q̇f V and T3 = 0 as no external pumping
of the cavity is included. We note that at all times, Q̇3 < 0, and
hence the contribution of reservoir 3 (which is coupled to the
cavity mirrors) to the entropy production function is always
positive (σ3 = − Q̇3

T3
> 0). Numerically, however, division by

zero will yield +∞ contribution, and an analytical expansion
for the limit T3 → 0 should be sought. Nevertheless, one may
calculate numerically σ̃ = Ṡaf + σ1 + σ2, which is plotted in
Fig. 3(b). Since σ̃ is positive at all times, and since σ3 > 0
always, the entropy production function is positive at all times,
also for the damped amplifier. In a forthcoming publication,
we will give a full analysis of the various operation regimes of
the atomic-field system when T3 > 0, where the heat engine
picture might be reversed.

V. CONCLUSION

In this work we have given a complete thermodynamical
analysis of an off-resonant light amplifier. We have shown
that the off-resonant light amplifier represents a model of
a heat engine (for the n1 > n2 regime) with an efficiency
that surpasses the Scovil–Schulz-DuBois limit [2] for a red-
detuned cavity and under certain conditions can also surpass
the efficiency given by the famous Carnot formula for a
blue-detuned cavity, while still satisfying the second law
with respect to positive entropy production. Other significant
aspects of this work can be summarized in the following eight
points.
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First, we have presented an analytical formula for the
amplifier’s efficiency based on thermodynamic energy currents
at steady state. The efficiency alters with detuning and incor-
porates the true signal field frequency, ωf = ωres + �. This
feature is absent in other work, for example, Refs. [2,4,15].
This formula was obtained in the semiclassical treatment and
agrees perfectly with the efficiency that stems from an exact
numerical solution of the fully quantized treatment.

Second, we provided a critical field frequency formula,
which may give a reasonable physical bound on breaching the
Carnot limit, for which (a) the atomic-field coupling is still
substantial; (b) the RWA still holds; and (c) thermodynami-
cally, the positive heat current comes from the hot reservoirs
(positive higher temperature), while the negative heat current
comes from the cold reservoir (positive lower temperature).

Third, we have shown the importance of a full quantum
treatment of the problem in hand. While the semiclassical
treatment predicts correctly the efficiency formula of the light
amplifier, it does not capture at all the field dynamics. This
turns out to be a crucial aspect, as the entropy production
function becomes negative for certain detuning values in the
semiclassical treatment. However, in the fully quantum treat-
ment, the entropy production function is positive in total due
to a substantial entropy change of the field degree of freedom,
which represents a work reservoir with a nonfixed entropy.
Moreover, this work suggests that altering the dissipative
terms of the Liouvillian to have a positive entropy production
function is unnecessary, as full quantization of the field may
resolve this issue naturally.

Fourth, the heat engine described here can be compared
with the four-stroke heat engine due to Scully et al. [5].
The heat engine described in the present work (a) does not
require an a priori preparation of either the cavity field or
atom; (b) runs continuously; (c) does not break the Carnot
paradigm of extracting work from two reservoirs with different
temperatures; (d) does not reach a steady state in terms of the
atomic-field, or field state; and (e) shows that surpassing the
Carnot limit stems from a detailed thermodynamical balance
(of heat currents and field power) which explicitly accounts
for the atom, cavity mode, and heat reservoirs, using a full
quantum description. Moreover, the heat engine described
in Ref. [5] disregards atomic-microwave cavity correlation
and entanglement and does not explicitly thermodynamically
account for the microwave cavity.

Fifth, the heat engine described here can also be compared
with the laser and photocell continuous quantum heat en-
gines recently described by Scully et al. [16]. In Ref. [16],
enhanced power in a laser or photocell is achieved by noise-
induced coherence of a doubly split ground state. Whereas the
enhanced power (relative to the hot reservoir pump) of the
quantum optical heat engine described here is achieved via
off-resonant excitation.

Sixth, we showed that the semiclassical relative phase
associated with light amplification can be derived from funda-
mental thermodynamic currents of the fully quantized model,
in a way that demonstrates that coherence is an inter-atomic-
field property rather than a local atomic or field property.

Seventh, we have also demonstrated that a damped off-
resonant light amplifier, which represents a more realistic
model for a laser or maser, operates as a heat engine that
can (under certain conditions) surpass the Carnot limit, with
total positive entropy production at all times.

Finally, it is appropriate to ask how is the quantum optical
amplifier discussed in this paper different from classical or
Carnot heat engines discussed in standard thermomodynamics
textbooks (besides the obvious fact that classical heat engines
are operated in strokes and not continuously). Moreover,
can the quantum optical amplifier discussed in this paper be
analyzed as a heat engine at all? We believe that the answer to
the latter question is yes. However, two differences between
the quantum amplifier discussed here and a classical Carnot
heat engine should be pointed out. In the undamped case,
although the atomic working fluid might reach a steady state,
the field work reservoir does not, and hence the distinction
with a standard Carnot engine arises from the fact that the
blue-detuned amplifier is not periodic, and does not reach a
steady state. In the damped amplifier case, both the atomic
working fluid and field work reservoir reach a steady state,
but the distinction with a standard Carnot engine arises from
the fact that now the atomic-field system is coupled to three
heat reservoirs (as opposed to two in a standard Carnot heat
engine).
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