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Conditions for two-photon interference with coherent pulses
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We study the conditions for two-photon classical interference with coherent pulses. We find that the temporal
overlap between optical pulses is not required for interference. However, coherence within the same inputs is
found to be essential for the interference.
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Interference is one of the most interesting phenomena
in nature for many physicists. Since the first experimental
demonstration of optical interference by Young [1], it has
been considered one of the most important notions for under-
standing optics [2]. Classically, it is understood as a coherent
superposition of electromagnetic waves, and it explains, in
classical terms, many interesting phenomena. For example,
one of the outputs of a Mach-Zehnder (MZ) interferometer
shows a sinusoidal oscillation with respect to the relative phase
difference between two inputs, and this phenomenon can be
fully explained by classical theory.

Classical physics, however, sometimes cannot completely
describe interference. Let us consider a Hong-Ou-Mandel
(HOM) interference between two identical photons [3–5].
When two identical photons enter into a beam splitter (BS) at
the same time, the coincidences between two detectors at the
outputs of the BS are completely suppressed, a characteristic
referred as a HOM dip. The visibility, V , of the HOM
dip is defined as the relative depth of the dip compared
to the noninterfering cases. Using single-photon states, the
coincidences can be completely suppressed, so the visibility
can reach up to V = 1. The classical theory of the coherent
superposition of electromagnetic waves, however, can only
explain a HOM dip with V � 0.5 [6]. Thus, a HOM dip with
V > 0.5 should be considered as a nonclassical phenomenon,
and therefore a quantum effect described by a superposition
of indistinguishable probability amplitudes [7]. Note that the
classical HOM interference has been studied specifically for
the investigation of temporal and/or spectral properties of light
sources [8–12].

In many experimental demonstrations with optical pulses,
classical and quantum interference are measured when pulses
have temporal overlap at a BS [10–15]. This often leads to a
common misconception that classical and/or quantum interfer-
ence requires the optical pulses to be temporally overlapping.
However, it has been shown that temporal overlapping between
optical pulses is not a requirement for quantum interference;
both single- and two-photon quantum interference can occur
from temporally nonoverlapping single-photon states [16–20].
In these papers, the authors clearly explain the phenomena in
terms of quantum physics and the superposition of probability
amplitudes with Feynman diagrams [7].

In classical physics, however, the superposition of proba-
bility amplitudes and Feynman diagrams are not applicable.
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Instead, the classical electromagnetic wave superposition
theory should be employed to describe the interference. It
is easy to think that there would be no interference between
two temporally nonoverlapping optical pulses because it seems
that the electromagnetic waves do not exist without an optical
pulse. Counter-intuitively, however, classical interference does
not require the temporal overlap of optical pulses [8,9,21].

In this paper, we study the conditions for two-photon
interference between two classical optical pulses. In particular,
we investigate the HOM-type two-photon interference with co-
herent pulses. We found that classical two-photon interference
requires coherence within each input rather than the temporal
overlap of optical pulses from the inputs. The result can be
explained by the classical theory of wave superposition. We
also provide a quantum analogy to this phenomenon for more
intuitive understanding.

Figure 1 shows the schematic of our two-photon inter-
ference experiment with weak coherent pulses, IA(i), IA(j ),
IB(i), and IB(j ). Here, i,j denote the timing labels and the
subscripts A,B are the input modes. The intervals between
Ik(i) and Ik(j ) for both k = A,B are the same, T . The
optical delay between two inputs, �l = IA(i) − IB(i), can
be scanned for the interference measurement. Note that the
interval between IB(i) and IB(j ) is fixed at T during the
scanning. We will only consider the case in which the scanning
of �l is much smaller than T , so it does not provide temporal
overlap between two different labeling pulses, e.g., between
IA(i) and IB(j ). If the correlation measurement between two
outputs C and D is of interest, the electronic delay τd = 0 or
±T at C introduces the intensity correlation measurement
between pulses at various delays. Note that the electronic
delay τd is not interchangeable with the optical delay �l. The
intensities at the BS outputs IC(i) and ID(i) are

IC(i) = 1
2IA(i) + 1

2IB(i) −
√

IA(i)IB(i) sin �φ(i)
(1)

ID(i) = 1
2IA(i) + 1

2IB(i) +
√

IA(i)IB(i) sin �φ(i),

where �φ(i) denotes the relative phase between two pulses
IA(i) and IB(i). The relative phase can be represented as

�φ(i) = �φAB(i) + 2π�l

λ
, (2)

where �φAB(i) represents the inherent phase difference
between two pulses IA(i) and IB(i) and λ is the wavelength of
the light.

When two pulses IA(i) and IB(i) are coherent, that is
�φAB(i) has a fixed definite value, Eq. (1) shows sinu-
soidal interference which corresponds to a single-photon
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FIG. 1. (Color online) The schematic of Hong-Ou-Mandel inter-
ference with four weak coherent pulses.

interference, i.e., Mach-Zehnder-like interference. However,
if the two pulses are incoherent, and thus �φAB(i) varies
randomly, the single-photon interference will be washed out
since 〈sin �φ(i)〉 = 0, where 〈x〉 represents the average of x

over many events.
The coincidences between D1 and D2 correspond to the

correlation measurement between IC and ID for low input
intensities IA and IB . Let us first consider the correlation mea-
surement between two pulses at the same timing, 〈IC(i)ID(i)〉.
Note that this case is equivalent to a standard HOM interfer-
ometer with coherent pulses as the two pulses meet at the BS.
It is easily accomplished in the experiment by putting a zero
electronic delay at D2, τd = 0. Since 〈sin �φ(i)〉 = 0 for a
randomized �φ(i), the correlation measurement is represented
by [6]

〈ICID〉 = 1
4

〈
I 2
A

〉 + 1
4

〈
I 2
B

〉 + (
1
2 − 〈sin2 �φ〉)〈IA〉〈IB〉. (3)

Here, we omitted the label i in Eq. (3). The 〈sin2 �φ〉 term
vanishes for the interference free case. In the interference case,
〈sin2 �φ〉 = 1/2, thus the whole last term of Eq. (3) disap-
pears. Therefore, the visibility of the two-photon interference
in classical physics is

Vc = 2〈IA〉〈IB〉
〈
I 2
A

〉 + 〈
I 2
B

〉 + 2〈IA〉〈IB〉 . (4)

For constant intensities 〈I 2
k 〉 = 〈Ik〉2, the maximum classical

visibility is V max
c = 0.5 when 〈IA〉 = 〈IB〉. This result is the

classical limit of a HOM interference.
Now, let us consider the correlation measurement be-

tween pulses which did not exist at the same time,
i.e., 〈IC(i)ID(j )〉 where i �= j , thus, τd = T . Noting that
〈sin �φ(i)〉 = 〈sin �φ(j )〉 = 0, the correlation measurement
can be represented by

〈IC(i)ID(j )〉
= 1

4 〈IA(i)IA(j )〉 + 1
4 〈IA(i)IB(j )〉 + 1

4 〈IB(i)IA(j )〉
+ 1

4 〈IB (i)IB(j )〉 −
√

〈IA(i)IA(j )IB(i)IB(j )〉
× 〈sin �φ(i) sin �φ(j )〉. (5)

In general, 〈sin �φ(i) sin �φ(j )〉 = 0, thus, Eq. (5) does not
show interference. However, let us consider the case when
intensities of two pulses are the same at the same input, e.g.,
IA(i) and IA(j ), and also they are coherent. Then, one can find
the following conditions are satisfied:

Ik(i) = Ik(j ), �φ(i) = �φ(j ) + �φij , (6)

where �φij is a constant phase. Note that the second condition
is satisfied if �φAB(i) = �φAB(j ) + �φij . It is important to

remember that, although �φ(i) and �φ(j ) are related, they
are still randomly varying. This condition can be obtained
from, for example, mode-locked laser pulses. Note that, for the
mode-locked laser pulses, �φij = 0. With these conditions,
Eq. (5) transforms to Eq. (3), and therefore the two-photon
interference with a visibility V = 0.5 will be measured.

It is notable that all the events registered as coincidences for
this case come from two temporally separated coherent pulses:
one at i and the other at j . It seems natural that, when there is
no overlap between optical pulses, the electromagnetic waves
are also not overlapped, i.e., no superposition. This intuition,
however, is incorrect as indicated by the last term of Eq. (5).
This interference term contains all four intensities of input
pulses, and thus shows that all electromagnetic waves interfere
although there is no optical pulse overlapping. In short, in the
classical view of interference, the electromagnetic waves are
responsible for the interference, not the photons [21].

Because classical physics is a subset of quantum physics,
one should be able to explain the interference with temporally
nonoverlapping coherent pulses with quantum descriptions.
Moreover, quantum descriptions are usually more intuitive,
so one can more easily understand the underlying physics.
Therefore, let us consider quantum interpretations of the
phenomenon with Feynman diagrams. Since the coincidences
are registered by two photons separated by T = τd , there are
four possible biphoton amplitudes as depicted in Fig. 2. Here,
a and b denote the annihilation operators at input A and B, and
the subscripts i and j are the labeling parameters. Although
the Feynman diagrams are depicted with single-photon states,
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FIG. 2. (Color online) Feynman diagrams for �l = 0. In general,
all cases (a)–(d) are distinguishable, so they do not interfere. However,
when pulses in the same inputs (between ai and aj , for example) are
coherent, (a) and (b) become indistinguishable, so they interfere. For
single-photon pulses, one can effectively suppress (c) and (d) while
maintaining the coherence, so one can measure a V = 1 HOM dip
with temporally nonoverlapping pulses. For classical optical pulses
such as coherent states, however, one cannot remove cases (c) and
(d) without disturbing the coherence, so the maximum visibility is
limited to 0.5.
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they are still applicable for our case since the coherent pulses
are so weak that they mostly contain only a single photon;
also, when more than two photons exist at the same time, they
do not lead to relevant coincidences.

In general, all four cases are distinguishable, so they do
not interfere. However, when ai and aj are coherent and
bi and bj are also coherent, Figs. 2(a) and 2(b) become
indistinguishable, so they do interfere. Because half of the
cases interfere while the other half do not, the expected
visibility will be 0.5.

This quantum description raises an interesting question: If
coherent pulses only exist in the cases shown in Figs. 2(a)
and 2(b), do they show V = 1 two-photon interference?
The answer to this question is that it is impossible to remove
the other cases [Figs. 2(c) and 2(d)] while maintaining the
coherence between pulses in the same inputs unless the
optical pulses are single-photon states [22,23]. Thus, even
with the quantum description, the classical visibility is limited
to 0.5.

It is interesting to compare the visibility limitation scenario
to that of Franson interference [24]. When the coincidence
detection does not distinguish between the “long-short” and
“long(short)-long(short)” cases, the visibility is limited 0.5
[25,26]. This visibility limitation in the Franson interferometer
can be overcome once the measurement apparatus can distin-
guish them [27] while our visibility limitation is inherent.

Figure 3 shows our experimental setup. Femtosecond laser
pulses from a mode-locked Ti:sapphire laser are used for the
experiment. Note that the pulse train and the electronic delay
τd = T = mTp where Tp and m are the pulse period and
an integer, respectively, will implement Fig. 1. The central
wavelength and the spectral bandwidth of the pulses are
780 nm and 15 nm, respectively. The repetition rate of the
pulses is 85 MHz, so the interval between adjacent pulses Tp ≈
11.8 ns, which corresponds to 3.5 m in space. The attenuator
is introduced to reduce the average photon number per pulse.

A BS splits the incoming pulses into two paths. Each pulse
enters into acousto-optical modulators (AOM1 and AOM2)
and the deflected pulses are collected by single-mode optical
fibers at inputs A and B. After the fiber polarization controllers
(FPC), that make the polarization identical, the incoming
pulses interfere at the fiber beam splitter (FBS). The optical
path delay �l is scanned by a translation stage placed at
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FIG. 3. (Color online) Experimental setup. BS: beam splitter;
AOM: acousto-optic modulator; FPC: fiber polarization controller;
FBS: fiber beamsplitter; D1 and D2: single photon detectors. The
AOMs are used for the phase randomization between two arms.

input B. A typical scanning range for �l is hundreds of
μm which is much smaller than Tp, so the scanning of �l

does not provide temporal overlap between adjacent pulses.
Silicon avalanche photodiode based-single photon detectors
D1 and D2 are placed at the outputs of the FBS, and a variable
electronic delay τd is introduced at D2.

The phase randomization between inputs A and B can
be accomplished with the help of two AOMs modulated by
two independent radio frequency (RF) drivers. An AOM adds
additional phase to the deflected beam relative to the driving
RF signal. Thus, if the RF signals are unsynchronized, two
AOMs will wash out the phase relation between the two inputs.
It is experimentally verified by applying either synchronized
[see Fig. 4(a)] or independent [see Fig. 4(b)] RF signals.
While the synchronized RF signals maintain the single-photon
interference as they conserve the phase relation between
A and B, the independent RF signals completely suppress
the interference. Despite the independency of RF signals, the
frequencies are still almost the same: 40 MHz. Note that the
RF signals do not disturb the coherence within each input, e.g.,
between IA(i) and IA(j ).

After we confirmed the phase randomization between A and
B, we measured coincidence counts between D1 and D2. The
result with τd = 0 is shown in Fig. 4(c). It shows a clear HOM
interference with visibility 0.52 ± 0.09, which is consistent to
the classical limit of HOM interference visibility. Note that
this case corresponds to a standard HOM interference with
temporally overlapped coherent pulses.

Figure 4(d) shows the two-photon interference between
temporally nonoverlapped coherent pulses. Here, the
electronic delay τd = 212 ns, so m = 18 was chosen. The data
show a clear two-photon interference with V = 0.50 ± 0.09.
Since the mode-locked laser pulse trains satisfy the coherence
condition within the same inputs, Eq. (6), we can still
observe the same two-photon interference as the temporally
overlapped pulses.

In order to disturb the coherence within the same inputs,
that is, to prevent the pulses satisfying Eq. (6), we input
fast random noise to the frequency modulation (FM) input
of one of the AOM RF drivers. The random noise produces
random frequency deviations of ±50% to the RF signal, so the
coherence between pulses at the same input will be degraded
when τd is sufficiently large. This will cause �φAB(i) �=
�φAB(j ), thus �φ(i) �= �φ(j ). Note that the amount of the
frequency deviation is much smaller than the spectral band-
width of the coherent pulses, so the interference degradation
due to the frequency mismatch is negligible.

The coincidence counts with FM noise input are depicted in
Figs. 4(e) and 4(f) for τd = 0 and 212 ns, respectively. For the
case of τd = 0, the experiment corresponds to a standard HOM
interferometer with two temporally overlapping coherent
pulses, so we observe the HOM dip with classical visibility
limit. The measured visibility is 0.46 ± 0.09. When τd =
212 ns, however, the two-photon interference is eliminated
as the FM noise diminishes the coherence between pulses at
the same input.

To summarize, we studied the conditions for two-photon
interference with weak coherent pulses. While single-photon
interference was erased by two AOMs modulated by
independent RF signals, two-photon interference with
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FIG. 4. (Color online) Single and coincidence counts for various conditions. Single and coincidence counts are proportional to 〈IC〉 (〈ID〉)
and 〈ICID〉, respectively. Error bars are the experimentally obtained standard deviations. The single counts when RF signals to AOM1 and
AOM2 are (a) synchronized and (b) independent. The inset of (a) shows the envelope of the single-photon interference. (c)–(f) Coincidence
counts between D1 and D2. (c) τd = 0. (d) τd = 212 ns. (e),(f) τd = 0 and τd = 212 ns with an additional noise input to the FM input of the
RF driver to AOM1. Estimated visibilities are also shown. (c) and (e) correspond to a HOM interference with classical pulses so a standard
HOM dip is observed. (d) and (f) correspond to the two-photon interference between temporally nonoverlapping optical pulses.

V = 0.5 was still measured. We found that, counterintuitively,
classical two-photon interference requires coherence within
each input rather than the temporal overlap of optical pulses
from the inputs.
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