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Role of subcycle transition dynamics in high-order-harmonic generation in periodic structures
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In this paper a method is presented for calculating the subcycle rate for transitions of electrons between two
bands of a sinusoidal band structure. A simple closed-form expression for the rate is derived. We show that
transition dynamics are sensitive to the shape of the band structure away from the minima of the conduction
band. A model of high-order-harmonic generation in periodic solids that incorporates the subcycle dynamics of
transitions across the band gap is described. Harmonic emission is found to be highly sensitive to the temporal
shape of the transition rate. Destructive interference of electron currents in the conduction band due to subcycle
transition dynamics is described.
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I. INTRODUCTION

Strong-field ionization, pioneered by Keldysh [1], is the
first step in processes such as high-order-harmonic generation
(HHG). HHG today provides not only a path to the creation
of ultrashort light pulses, but also a method for understanding
the dynamics of quantum systems. By using HHG in atomic
and molecular systems, theory and experiment have come
together to explore orbital tomography (see, for instance, [2]
and references therein), molecular vibrational and dissociative
dynamics [3,4], attosecond hole dynamics [5–8], and many
other interesting effects.

Recent experiments by Ghimire et al. [9], made possible by
lasers operating in the mid-infrared (MIR) range, have shown
that it is also possible to generate nonperturbative high-order
harmonics within periodic solid structures. There is hope that
HHG in solids may be used to understand carrier dynamics
[10], and how the laser field affects the band structure, on a
subcycle time scale. There have been several approaches to
theoretically analyze the generation of high-order harmonics
in periodic solids [11–16].

The first experimental and theoretical studies of subfem-
tosecond currents in dielectrics have recently been carried
out [17,18]. The experiments measured the dependence of the
current induced in a dielectric on the carrier-envelope phase
of the nearly-single-cycle driving pulse [17]. The theoretical
analysis developed in [17,18] uses the basis of localized
Wannier-Stark states and the concept of Zener tunneling
to interpret the experimental results [17]. Quantum beats
occurring in dielectrics exposed to few-cycle laser pulses have
been theoretically studied in Ref. [19]. The authors of [19]
note that although Ref. [1] provides cycle-averaged transition
rates, a description on the subcycle time scale is missing.
Here we provide a very simple method to obtain this missing
information. We work in the basis of delocalized Bloch states
rather than in the basis of localized Wanneir-Stark states used
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in [17,18]. The results are applied to the description of high
harmonic emission driven by mid-IR fields [9].

Within the model of [15] the number density of electrons in
the band is time independent. The key step in decoding time-
resolved information encoded in any nonlinear spectroscopy,
such as high-order-harmonic emission, is the development of
analytical models capturing the essence of the process. In
this context, a description of the subcycle dynamics of the
transitions across the band gap is the key first step.

Transitions between bands of states of periodic solids were
considered by Keldysh in the second half of his seminal paper
on ionization [1]. Keldysh found that in the low-frequency
limit the transition rate took a form very similar to that of
the tunneling rate in atoms. Gruzdev developed the work of
Keldysh by applying it to cosine band structures [20] to obtain a
(time-averaged) transition rate and notes that the band structure
plays an important role in determining the rate, as we find in
this work also.

We show that in typical experimental conditions of [9]
the transition dynamics are sensitive to large values of
quasimomentum away from the minima of the conduction
band. The sensitivity arises not due to electron acceleration
after transition to the conduction band, but during the transition
itself. Small changes in the band structure due to interactions
beyond the nearest-neighbor approximation can be exponen-
tially enhanced; see Sec. IV.

Given that transitions across the band gap are similar to
nonadiabatic tunneling we present a strong-field approach,
similar to that of [21], to describe the subcycle transition
dynamics of electrons in periodic solids. We note here that
transitions across the band gap have a nature that is comprised
of both tunneling and multiphoton schemes, and as such we
shall refer to them simply as transitions. In Sec. II we present
the method by which the transition rate is calculated for a
band structure typical of the tight-binding approximation. In
Sec. III the strong-field, low-frequency limit of the transition
rate is discussed and a closed-form analytic approximation to
the transition rate is derived. A model of HHG in periodic
solids that incorporates the subcycle transition dynamics is
described in Sec. V.

063842-11050-2947/2013/87(6)/063842(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.063842


PETER G. HAWKINS AND MISHA YU. IVANOV PHYSICAL REVIEW A 87, 063842 (2013)

II. SUBCYCLE TRANSITION DYNAMICS
ACROSS THE BAND GAP

Consider the dispersion band in a bulk solid with nearest-
neighbor interactions; the band of states can be approximated
as

E(q) = Eg + ε(q), (1)

ε(q) = � [1 − cos(qd)] , (2)

where 2� is the width of the band, d is the lattice constant, and
q is the quasimomentum. This sort of band structure may be
obtained, for example, from the tight-binding approximation.
This particular form has been chosen in line with the band
structure used by Ghimire et al. [15] to model HHG in ZnO.
The parameter � can be adjusted to incorporate a tight-binding
valence band, thereby giving a general description of the
band structure. However, in our calculations we use � for
the conduction band, equivalent to assuming infinite effective
mass in the valence band. Longer-range terms within (2)
(containing cosines of multiples of qd) may be important,
as has been noted in [15].

In the Lewenstein et al. paper [22] the amplitudes of
continuum states excited by an electric field from a ground
state are calculated. The same approach is used here; it is
noted that the continuum states will now take the form of
Bloch states. The dipole transition matrix elements (DTMEs)
between Bloch states are similar to those between plane waves,
and so the derivation of the amplitudes of the continuum states
remains much the same as in [22].

The amplitude of creating an electron-hole pair with
quasimomentum q at time t is denoted by bq(t) and is the
solution of the equation

ḃq(t) = −i

(
q2

2
+ Ip

)
bq(t) + id(q)E(t) + E(t)

∂bq(t)

∂q
. (3)

Here E denotes the electric field, Ip is the ionization potential,
and d(q) is the DTME for quasimomentum q. This equation is
derived under the approximation that the ground state is only
weakly depleted. If we make a similar approximation for the
case of a periodic solid, that the valence band is only weakly
depleted, the semiconductor optical Bloch equations [12] can
be written as

ṗq(t) = −i[ε(q) + Eg]pq(t) + id(q)E(t) + E(t)
∂pq(t)

∂q
. (4)

Here pq(t) is the polarization between the bands and is
effectively the probability amplitude of a transition from
valence to conduction band at quasimomentum q and time
t , and is therefore equivalent to bq(t).

The only difference between (3) and (4) is the energy gap
that needs to be overcome (Eg vs Ip) and the dispersion of the
states the electrons move to [q2/2 vs ε(q)]. This shows that one
can calculate a subcycle transition rate between two bands of
a solid in much the same way as between a ground state of an
atom and plane-wave states. The solution to (4) can be written

bq(t) = −i

∫ t

0
dt ′E(t ′)dx[q − A(t) + A(t ′)]

× e−i
∫ t

t ′ dt ′′[�(1−cos{d[q−A(t)+A(t ′′)]})+Eg ]. (5)

A denotes the vector potential associated with E. q is the
instantaneous quasimomentum, associated with the canonical
momentum p as q(t) = p + A(t). In terms of p (5) can be
rewritten as

cp(t) = −i

∫ t

0
dt ′E(t ′)dx[p + A(t ′)]

× e−i
∫ t

t ′ dt ′′[�(1−cos{d[p+A(t ′′)]})+Eg ], (6)

where cp(t) is the amplitude needed to have canonical
momentum p at time t .

The population of electrons in the conduction band is given
[21] by

W (t) =
∫

|bq(t)|2dq. (7)

In order to calculate the rate of appearance of electrons in
the conduction band, (7) is used in conjunction with many of
the ideas used in the calculation of ionization rates for atoms
in [21].

From (5) it is easily seen that b(t) ∝ ∫
e−iSq (t), where Sq(t)

is given by

Sq(t) =
∫ t

t ′
dt ′′[�(1 − cos{d[q − A(t) + A(t ′′)]}) + Eg]. (8)

We evaluate bq(t) at the saddle point, where the derivative
of Sq(t) is zero. Taking the saddle-point equation gives us an
equation for the times of ionization, t ′, for any pair of q and t :

�(1 − cos{d[q − A(t) + A(t ′)]}) + Eg = 0. (9)

In terms of p (9) is

�(1 − cos{d[p + A(t ′)]}) + Eg = 0. (10)

Equation (9) can be rearranged into the form

d[q − A(t) + A(t ′)] = i cosh−1

(
1 + Eg

�

)
. (11)

If we set Eg = 0 (similar to setting Ip to 0 in the atomic
case) we see that (11) recovers the classical picture describing
an electron being excited at t ′ and reaching momentum q

by time t. This suggests that, since we are dealing with
transitions to states near the minima of the conduction band,
we can set the momentum just after the transition, q, to
zero. This approximation is equivalent to parametrizing p as
p = −A(t) with t acquiring the meaning of the “birth time” for
classical two-step models of ionization. This is a reasonable
approximation near the peaks of the field, but not near the
zeros. In any case, if we are interested in subcycle dynamics
we can use an approximation similar to that used for the case of
atoms: for low-frequency fields the transition rate is dominated
by low initial momenta.

It can also be seen from (11) that t ′ must be complex. Taking
these points into account we arrive at

sin(ωt) − sin(ωt ′) = −i

[
dE0

ω

]−1

cosh−1

(
1 + Eg

�

)
. (12)

Here we have neglected the change in the envelope of the laser
pulse during a cycle, for the purpose of extracting an analytic
solution.
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Equation (12) is of the form

sin(ωt ′) = α + iβ. (13)

Here α and β are defined by

α = sin(ωt), (14)

β = 1

μ
cosh−1

(
1 + Eg

�

)
, (15)

and we have denoted μ = dE0/ω. This is an important
parameter that is equivalent to the Bloch frequency of the
band divided by the field’s frequency. If it is greater than π ,
then reflections will occur at the band edge. In strong MIR
fields μ � 1 and hence β � 1.

Continuing with the derivation, since t ′ is complex let us
write it as

t ′ = t0 + iτ ; (16)

then the solution to (13) is

sin(ωt0) =

√√√√(
α̃2 + 1

2

)
−

√(
α̃2 + 1

2

)2

− α2, (17)

sinh(ωτ ) =

√√√√(
α̃2 − 1

2

)
+

√(
α̃2 − 1

2

)2

+ β2, (18)

where α̃2 = α2 + β2. Note that the signs of the square roots are
chosen such that t0 is close to t as we expect transition to occur
mostly over imaginary time, similar to gas-phase ionization in
this respect.

We also note that α is related to the canonical momentum p

by the relation p = E0α/ω. This relates the real and imaginary
parts of the transition time to the final quasimomentum p.

We are interested in the rate of electrons appearing in the
conduction band at any moment t , and with q = 0. Noting the
similarities with the case of atomic ionization [21], one finds


(t) ∼ e−2Im[S0(t)]. (19)

Here S0 = Re(S0) − iIm(S0) denotes the semiclassical action
(8) for electrons appearing with q = 0. This is precisely the
case that we have considered above. Finding the saddle-point
ionization time (17), (18) and substituting into (8), we obtain
the transition rate. This calculation is done analytically in the
low-frequency limit in Sec. III.

While the above transition rate has only exponential
accuracy, it is already sufficient for calculating the high-order-
harmonic spectrum and assessing the role of the transition
dynamics on the subcycle time scale. Importantly, it allows us
to assess the role of interference of electron currents due to
transitions at different phases of the driving laser field.

However, when needed, one can also use the standard
recipe, originally proposed by Keldysh [1] to obtain the
preexponential factor in Eq. (19). For instance, this would be
important for quantitative calculation of the current induced by
a femtosecond pulse, as in Refs. [17,19]. The Keldysh recipe is
to take the limit of a small frequency, normalizing the transition
rate at the maximum of the field to the static tunneling rate.
In the case of atoms and molecules, this procedure leads to
quantitatively accurate results for both small and large values

of the Keldysh parameter. It introduces two preexponential
factors, described in detail in [23]. The first concerns the

field-strength dependence proportional to E
−2/

√
2Eg

0 . The
second deals with the wave-function geometry in the unit
cell. Normalization can also be done with respect to the more
elaborate approach developed by Stockman and co-workers
[17,18], which is itself calibrated against experiments [17,18].

The calculation of the saddle-point transition times was
performed for the case of a continuous field, but can also be
calculated numerically for the case of very short pulses where
the envelope changes during the half cycle.

One can also express the rate in terms of the final
momentum after the end of the pulse; to do so the action
is written as

S0(p) =
∫ t

t ′(p)
dt ′′[�(1 − cos{d[p + A(t ′′)]}) + Eg]. (20)

It follows that the rate is given by


(p) ∼ e−2Im[S0(p)]. (21)

III. STRONG-FIELD LOW-FREQUENCY LIMIT

Now we consider the parameter μ; this is equivalent to
the ratio of the Bloch frequency to the driving laser frequency
ωb/ω. If this parameter is greater than π then Bragg reflections
will occur at the band edge. We find this parameter to be
important throughout the rest of this analysis, and we consider
the case when this parameter is large, μ � 1, i.e., for strong
or low-frequency fields.

The imaginary part of the semiclassical action results
from integration over imaginary time only. The integration
variable is written t ′′ = t0 + iξ . The approximation t0 ≈ t is
made, which is valid near the peaks for the field where most
transitions occur. Then S0 is given by

S0(t) = −i

∫ τ

0
dξ (�{1 − cos[μh(t,ξ )]} + Eg). (22)

Here h(t,ξ ) is

h(t,ξ ) = sin(ωt)[1 − cosh(ωξ )] − i cos(ωt) sinh(ωξ ). (23)

Over the integration, in the low-frequency limit, cosh(ωξ )
remains close to 1 so that we may write

S0(t) = −i(Eg + �)τ

+ i�

∫ τ

0
dξ cosh [μ cos(ωt) sinh(ωξ )] . (24)

Writing y = sinh(ωξ ) and defining

a(t) = μ cos(ωt), (25)

Eq. (24) becomes

S0(t) = −i(Eg + �)τ + i
�

ω

∫ sinh(ωτ )

0
dy

cosh[a(t)y]√
1 + y2

. (26)

In the low-frequency limit y2 < 1 over the integration and
so the binomial expansion (1 + y2)−1/2 ≈ 1 − y2/2 is used to
arrive at

S0(t) = −i

[
(Eg + �)τ − �

ω
f (a(t),τ (t))

]
, (27)
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FIG. 1. (Color online) This plot presents a comparison of the
transition rate calculated using (24) (blue solid), the approximation
of the rate using (27) (green dashed), and a Gaussian approximation
(red dot-dashed). The parameters used are those expected for a ZnO
experiment. The material properties are Eg = 0.125 a.u. (3.4 eV),
� = 0.092 a.u. (2.5 eV), and d = 5.29 a.u. (0.28 nm), which can
be seen from [15,24]. The light is characterized by ω = 0.014 a.u.
(λ = 3.25 μm), and μ = 5 in line with the work of [9].

where the function f is given by

f (a,τ ) = sinh[a sinh(ωτ )]

a
− sinh2(ωτ ) sinh[a sinh(ωτ )]

2a

+ sinh(ωτ ) cosh[a sinh(ωτ )]

a2
− sinh[a sinh(ωτ )]

a3
.

(28)

The rate 
(t) of particles entering the conduction band at time
t given in (19) can then be written out with S0 given by (27)
with f approximated as in (28).

As discussed in Sec. II one can also express t0 and τ

as functions of the canonical momentum p. This is useful
because, as ωt approaches ±π/2, i.e., the edge of the ionization
burst, the approximation t0 ≈ t no longer holds. At these
times one has to use a[t0(p)] rather than a(t) (25) with the
corresponding change in 
(t) → 
[t0(p)].

A comparison of the full calculation of 
 and the ap-
proximation given above is given in Fig. 1. One can see that
the shape of the fully calculated rate agrees closely with the
approximation. A Gaussian fit is also plotted; it does not fit
as well toward the minima of the field. The parameters used
in the calculation are those expected for a ZnO experiment as
described in [15] and are given in the caption.

IV. ROLE OF THE BAND STRUCTURE

The parameter written here as β is found to be equivalent to
the Keldysh parameter in the case of solids, which he arrives
at in the second half of his seminal 1965 paper [1]. In that case
a different band structure was used, which is of the form

E(q) = Eg

[
1 + �

Eg

(qd)2

]1/2

, (29)

corresponding to

ε(q) = Eg

[
1 + �

Eg

(qd)2

]1/2

− Eg. (30)

This expression for ε(q) should be compared with (2).
For small q (qd � 1) the two bands are identical, ε(q) ≈
�/2(qd)2. Analysis of the saddle-point condition considered
above, for the case of the band structure (30), gives the
following:

sin(ωt) − sin(ωt ′) = i
1

μ

√
Eg

�
. (31)

Comparison of (31) with (12) shows that the β parameter (15)
for the case of Keldysh’s band structure is given by

βKeldysh = 1

μ

√
Eg

�
, (32)

If one considers how the parameters are labeled in this
approach compared to that of Keldysh, it is easily verified
that βKeldysh is equivalent to the Keldysh parameter for solids
arrived at in [1] (noting that � = 1/md2 with m being the
reduced mass of the electron-hole pair). The band structure
used by Keldysh is an approximation to the band structure
around the minima of the band, the region the electron tunnels
to. However, during the imaginary tunneling time both the
action and thereby the transition rate are sensitive to the shape
of the band structure away from the minima of the band.
Consider the expression given for the action in (22). The
argument of the cosine in (22) is μh(t,ξ ) (23); it tells us where
the electron is in the conduction band. The maximal value of
μh(t,ξ ) is at ξ = τ and is given by

μ sinh

[
1

μ
cosh−1

(
1 + Eg

�

)]
≈ cosh−1

(
1 + Eg

�

)
. (33)

For typical experimental conditions (given in the caption of
Fig. 1) this value is 1.52; thus the shape of the band structure
away from the minima is of importance.

If one includes interactions beyond nearest-neighbor terms
in the band structure, with a conduction-band dispersion (with
a,b being constants)

ε(q) = � [1 − a cos(qd) − b cos(3qd)] , (34)

then neither the band structure used by Keldysh nor the
nearest-neighbor approximation will provide a close fit to the
full expression. However, the ability to write a closed-form
expression for the transition rate makes a nearest-neighbor
model an attractive one.

A plot comparing numerical simulations of the transition
rate for nearest-neighbor, Keldysh, and full band structures
is shown in Fig. 2. The ionization times were calculated
numerically for the full band structure as the solution for
the nearest-neighbor band structure cannot be used as an
approximation, since small changes can dramatically affect
the rate.

From Fig. 2 it is clear that the inclusion of terms beyond the
nearest-neighbor approximation can have a dramatic effect on
the rate. The inclusion of a cos(3qd) term in the band structure
stops the band shape matching the nearest-neighbor model in
the low-qd range. If one alters the width of the band to be
�̃ = �/(a + 9b) then the band’s shapes match for low qd. In
the case of this scaling any differences in the rate are due only
to the structure of the band away from the minima. The rate for
this band structure with modified bandwidth is also plotted in
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FIG. 2. (Color online) This plot presents a comparison of the
transition rate calculated for different band structures. The nearest-
neighbor model (2) (blue solid), including a 3qd term [a = 0.95,
b = 0.05 in (34)] (green dashed), the 3qd model with � modified so
the bands shape matches the other bands in the low-qd range (purple,
dashed), and the band structure used by Keldysh (red dot-dashed).
The parameters used are those expected for a ZnO experiment, listed
in the caption of Fig. 1.

Fig. 2; the rate is then closer to matching the nearest-neighbor
model but is still very different.

Even though the nearest-neighbor model and that of
Keldysh have a similar magnitude the shape differs. Looking
ahead, the calculation of harmonic spectra from solids involves
Fourier transforms of the transition rate. Small changes in the
shape of the rate could have a large impact on the high-energy
part of the harmonic spectrum.

V. HIGH-ORDER-HARMONIC GENERATION

Electrons that are promoted into the conduction band will
move in this band, driven by the same field that caused
the transition. The quasimomentum of an electron is given
by q̇ = −E(t), with the initial condition that the electron
appeared in the conduction band at a time ta with q(ta) = 0.
The quasimomentum in a continuous electric field is given by

q(t) = −μ

d
[sin(ωt) − sin(ωta)] . (35)

The group velocity of electrons, given by ∂ε/∂q, with this
quasimomentum in a nearest-neighbor band structure is

vg(t,ta) = −�d sin [μ sin(ωt) − μ sin(ωta)] . (36)

The motion of electrons with the group velocity given above
leads to an electron current in the conduction band. From
Maxwell’s equations it is seen that a current j (t) leads to
the creation of an electric field, with the emission intensity
proportional to |J ()|2; see, e.g., [12]. Here J () is the
Fourier transform of the current, and we note that J () is
simply the Fourier transform of ∂j/∂t . Calculation of ∂j/∂t

and its Fourier transform allows a description of the HHG
process.

The current is written as

j (t) = −
∫ t


(ta)vg(t,ta)dta; (37)

in this way all electrons previously promoted to the conduction
band contribute to the current. In order to calculate the intensity

of harmonics emitted due to this current we take the time
differential:

∂j/∂t =
∫ t


(ta)
∂vg(t,ta)

∂t
dta, (38)

which yields

∂j/∂t = −�dωμ cos(ωt)
3∑

i=1

Gi,n(t), (39)

where, for the case of a continuous electric field in which N

half cycles have already occurred, the functions Gi(t) are

G1(t) = NC(t)
∫ π/2ω

−π/2ω


(ta)C(ta)dta, (40)

G2(t) = C(t)
∫ t

−π/2ω


(ta)C(ta)dta, (41)

G3(t) = S(t)
∫ t

−π/2ω


(ta)S(ta)dta, (42)

and

C(t) = cos[μ sin(ωt)], (43)

S(t) = sin[μ sin(ωt)]. (44)

Here G1 describes the contribution from the electrons pro-
moted to the conduction band during the previous N half
cycles. The functions G2,3 describe the contributions from
the electrons promoted to the conduction band during the half
cycle under consideration. Compared to high-order-harmonic
emission in atomic or molecular gases, the first term can be
associated with the “very long” trajectories, which usually do
not make substantial contribution to atomic HHG.

Here, however, the situation seems different. Initially, one
may expect that the contributions due to previous half cycles
(40) of the field will dominate over the subcycle terms (41),
(42), particularly if many half cycles have occurred. It is then
tempting to treat the transitions as occurring only at the peaks
of the field. Then the integral in (40) simply becomes the
number of electrons appearing in each half cycle. Under these
approximations ∂j/∂t becomes

∂j/∂t = −�dωμ cos(ωt)N (t)C(t) (45)

and is analogous to the expression in [15], with N (t) the
number of previous half cycles. However, we find that this
initial expectation and the associated approximation are not,
in fact, accurate. Physically, in the strong-field limit, the
subcycle dynamics of the transitions leads to Bragg reflections
at different phases of the field and possible cancellation of
currents originating from different phases of the interband
transitions. This physical picture is discussed in more detail in
the following section.

Mathematically, one can use the Jacobi-Anger expansion
of the trigonometric function appearing in (40). Then one
finds that the integral is a weighted sum of many Fourier
transforms of the transition rate. As a result, the contribution
due to previous half cycles is highly dependent on the temporal
shape of the transition rate.

This point is illustrated in Fig. 3, where the integral in
Eq.(40), denoted I (E0,λ), is shown as a function of the
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FIG. 3. (Color online) Plot of I (E0,λ). All other parameters are
those expected for a ZnO experiment, as listed in the caption of Fig. 1.
The circular markers lie on the line where I (E0,λ) is zero, so that
contributions to ∂j/∂t from previous half cycles do not affect the
harmonic spectrum.

laser parameters, for the example of the nearest-neighbor
band structure. One can drastically alter the value of I (E0,λ)
by tuning the field strength E0 and the driving laser
wavelength λ.

In particular, one can suppress the effect of previous half
cycle contributions by selecting the appropriate laser field
strength and wavelength combination (marked with dots in
Fig. 3). In this case, only the subcycle effects will be present
in the spectrum, very much in contrast with the model of (45).
This statement is illustrated in Fig. 4, which shows the time
dependence of ∂j/∂t for the laser parameters chosen along the
lines marked with circles in Fig. 3. We see that the signal does
not grow from one laser cycle to the next, as opposed to the
model where the current is proportional to the total number of
the electrons promoted to the conduction band.

A. Destructive interference of electron currents

A physical understanding of how currents created during
previous half cycles do not persist at later times is easily
obtained. Considering the shape of the integrand in I (E0,λ),
we see that it has a maximum at sin(ωta) = 0, p = 0 and
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FIG. 4. (Color online) Plot of ∂j/∂t for the Ghimire model (red)
and our model (black); the laser parameters are λ = 4.1 μm and
E0 = 0.6 V/Å which correspond with a point on the line in Fig. 3.
All other parameters are those expected for a ZnO experiment, as
listed in the caption of Fig. 1. The different temporal structures show
the importance of the subcycle dynamics for the generated electron
currents.

minima at sin(ωta) = ±π/μ, p = ±π/d. Here we have used
the relationship p = (E0/ω) sin(ωta) between the transition
times ta and the associated canonical momenta p. Maxima
and minima beyond these are small enough, for the values of
μ achievable, to be neglected in this simple analysis.

Thus, there are three prominent instants in time that
maximally affect the rate of change of current. Let us assume
that transitions occur only at these three times. The value of
the group velocity for these three transitions sheds some light
on what it means physically for the integral to go to zero. The
group velocities at a later time t due to these three transitions
are

vg(t,p = −(π/d)) ∼ N1�d sin[μ sin(ωt)], (46)

vg(t,p = 0) ∼ −N2�d sin[μ sin(ωt)], (47)

vg(t,p = (π/d)) ∼ N3�d sin[μ sin(ωt)]. (48)

FIG. 5. (Color online) A simplified picture of transition dynamics during a half cycle of the laser field. Three bursts of transition occur; if
the numbers of electrons in the first and third bursts sum to the the number of electrons in the second burst then currents due to these electrons
will interfere destructively.
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Here N1, N2, and N3 relate to the number of electrons
that undergo these transitions. Due to the symmetry of the
transition rate N1 = N3. If 2N1 = N2, then electron bunches
that make transitions at these times will cause currents that
cancel one another out after the half cycle. This condition can
be satisfied by changing the shape of 
, i.e., by altering the
laser field strength and wavelength, as in Fig. 3. A diagram of
the simplified three-burst model is shown in Fig. 5. Note that
the last burst appears at the bottom of the conduction band
when the first burst returns there; from then on they move
together, out of phase with the middle burst.

VI. CONCLUSIONS

Recent experiments [9] have shown that it is possible
to generate nonperturbative high-order harmonics in bulk
periodic solids. In order to describe the process of high-order-
harmonic emission by an intraband current model, one should
consider the subcycle transition dynamics of electrons in the
periodic structure.

We have shown that in the low-frequency limit an analytic
approximation for the transition rate may be used to describe
this dynamics, and that it is sensitive to the shape of the
band structure not only near the bottom of the Brillouin zone,
but also relatively far away from it. Terms of higher order
than the nearest-neighbor interactions in the band structure
affect the rate, and thus they may be important for subsequent
dynamics [9].

The incorporation of the subcycle transition rate derived
in this paper with an intraband current model of HHG from
periodic bulk media has been developed. We have shown that
the harmonic spectrum is sensitive to the shape of the subcycle
structure of the transition rate. The choice of certain laser
parameters gives rise to an effect that removes contributions to
∂j/∂t from previous half cycles. This cancellation of electron
currents is described by a simple three-burst model.
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