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Nonlinear spectral singularities of a complex barrier potential and the lasing threshold condition
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A spectral singularity is a mathematical notion with an intriguing physical realization in terms of certain
zero-width resonances. In optics it manifests as lasing at the threshold gain. We explore the recently developed
nonlinear generalization of spectral singularities for a complex barrier potential and study the associated resonance
effect for an infinite planar slab of gain medium. In particular, for a Kerr nonlinearity, we show that the first-order
perturbative equation that determines the nonlinear spectral singularities provides an explicit expression for the
intensity of the emitted waves from the slab. This is a mathematical derivation of the known linear relationship
between the output intensity of the slab and its gain coefficient. We also discuss the implications of our results
for the time-reversed system which acts as a coherent perfect absorber.
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I. INTRODUCTION

One of the most interesting properties of complex scattering
potentials [1] is that unlike their real analogs they can
admit scattering states satisfying Siegert outgoing boundary
conditions [2]. Because these states have a real and positive
energy, they behave exactly like a zero-width resonance. This
observation was originally made by the present author [3]
in an attempt to understand the physical meaning of the
mathematical notion of a spectral singularity [4]. The results
obtained in this direction have motivated the study of the
physical aspects and applications of spectral singularities,
particularly in optics [3,5–15].

A remarkable outcome of this study is that for an optical
system consisting of an infinite planar slab of homogeneous
gain medium the well-known lasing threshold condition
follows from the equation ensuring the generation of a spectral
singularity [12]. Furthermore, if we consider the time-reversed
setup, where the slab consists of a lossy medium with the
loss coefficient having the same value as the gain coefficient
required for a spectral singularity, it behaves as a coherent
perfect absorber [11].

A more recent development is a nonlinear generalization of
the notion of a spectral singularity [16]. A characteristic feature
of nonlinear spectral singularities is that they are intensity
dependent. This means that they correspond to the emission
of waves with a particular wavelength-amplitude profile. In
Ref. [16] we offer details of this phenomenon for a delta-
function potential with a complex coupling constant [17].

To improve our understanding of the properties and possible
applications of nonlinear spectral singularities, in the present
article, we study their behavior for a complex barrier potential
that appears in modeling the interaction of electromagnetic
waves with an infinite planar slab of gain material.

Consider a linearly polarized electromagnetic wave that is
aligned along the x axis in some Cartesian coordinate system
and has an electric field of the form �E = e−iωtE (z)êx , where
ω is the angular frequency of the wave, E is a complex-valued
function, and êx is the unit vector along the positive x axis.
Suppose that this wave interacts with an infinite planar slab of
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gain material of thickness a that is aligned in the x-y plane and
located between the planes z = 0 and z = a. Then it is well
known that the Helmholtz equation for this system reduces to
the Schrödinger equation

−E ′′(z) + V (z)E (z) = k2E (z), (1)

for the energy-dependent complex barrier potential [12]

V (z) := k2(1 − n2)χa(z), (2)

where k := ω/c is the wave number, n is the complex refractive
index of the slab, and χa is the characteristic function of the
interval [0,a], i.e.,

χa(z) :=
{

1 for 0 � z � a,

0 otherwise.
(3)

When a nonlinearity is present, n2 is replaced by n2 +
σf (|E (z)|) and (1) takes the form

−E ′′(z) + V (z)E (z) − σ k2 χa(z)f (|E (z)|)E (z) = k2E (z),

(4)

where σ is a real constant and f is a real-valued function [18].
In terms of the scaled variables,

x := z/a, ψ(x) := E (a x), K := ak,
(5)

γ := −K2σ, z := K2(1 − n2), v(x) := zχ1(x),

we can write (4) as

−ψ ′′(x) + v(x)ψ(x) + γχ1(x)f (|ψ(x)|)ψ(x) = K2ψ(x).

(6)

For a Kerr nonlinearity, where

f (|ψ |) = |ψ |2, (7)

(6) is known as the Gross-Pitaevskii equation and has applica-
tions in the description of the Bose-Einstein condensates [19].
For real values of z it admits exact analytic solutions in terms
of the Jacobi elliptic functions [20].

II. NONLINEAR SPECTRAL SINGULARITIES

In Ref. [16] we introduced nonlinear spectral singularities
associated with (6). In short, they correspond to the real and

063838-11050-2947/2013/87(6)/063838(4) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.063838


ALI MOSTAFAZADEH PHYSICAL REVIEW A 87, 063838 (2013)

positive values of K2 for which (6) admits a nonzero solution
fulfilling the outgoing boundary conditions

ψ ′(0) + iK ψ(0) = 0, ψ ′(1) − iK ψk(1) = 0. (8)

To see the physical implications of these conditions, we use
the fact that for x /∈ [0,1] the general solution of (6) is a
linear combination of the plane waves e±iKx . This allows us to
construct scattering solutions of (6) corresponding to incident
waves from the left (x < 0) and the right (x > 1). The former
has the form [16]

ψl(x) =

⎧⎪⎨
⎪⎩

N−e−iKx + Ñ−eiKx for x < 0,

ζ (x) for 0 � x � 1,

N+eiKx for x > 1,

(9)

where ζ is a solution of (6) satisfying

ζ (1) = N+eiK, ζ ′(1) = iKN+eiK, (10)

N+ is a complex constant determining the amplitude of the
transmitted wave, and

N− := iG−(K)

2K
, Ñ− := − iG+(K)

2K
, (11)

G±(K) := ζ ′(0) ± iK ζ (0). (12)

We can use (9) and (11) to derive the following expressions
for the reflection and transmission coefficients from the left,
respectively [16]:

Rl = −G−(K)

G+(K)
, T l = 2ikN+

G+(K)
. (13)

In view of (10) the solution (9) satisfies the second equation
in (8). The first of these equations, which is equivalent to
G+(K) = 0, implies that both the reflection and transmission
coefficients diverge. This is a characteristic property of a
resonance state. Notice, however, that the energy K2 does not
have an imaginary part. Therefore (9) is a scattering solution
of (6) which behaves like a resonance with a zero width [3].

Now suppose that we tune the parameters of the system
so that it supports a spectral singularity with wave number k

and amplitude parameter N+. Then any left-incident plane
wave with wave number and amplitude, respectively, in a close
vicinity of k and Ñ− is amplified and emitted from both sides
of the slab. In the absence of the nonlinearity, this phenomenon
is amplitude independent and the system amplifies the back-
ground noise and serves as a laser that functions at the very
threshold gain. This is because the mathematical expression
describing the realization of a spectral singularity coincides
with the laser threshold condition [12]. The presence of the
nonlinearity modifies this expression by introducing in it a
particular amplitude dependence. In the following we derive
an explicit form of this expression and explain its physical
meaning.

III. LASING THRESHOLD CONDITION AND
OUTPUT INTENSITY

The determination of nonlinear spectral singularities
requires the solution of the boundary-value problem defined
by (6) and (8). This is equivalent to finding the function ζ ,

which satisfies (6) and (10), and demanding that

G+(K) = 0. (14)

For x ∈ [0,1], we can express (6) in the form of the integral
equation

ψ(x) = ψ0(x) + γ

∫ x

x0

G (x − y)f (|ψ(y)|)ψ(y)dy, (15)

where ψ0 is the general solution of the linear equation

ψ ′′ + n2K2ψ = 0, (16)

in [0,1], x0 ∈ [0,1] is arbitrary, and G is the Green’s function
for this equation, i.e.,

G (u) := sin(nK u)

nK
. (17)

Repeated use of (15) in its right-hand side yields a perturbative
series expansion for ψ with γ playing the role of the
perturbation parameter. In particular, we find the following
first-order perturbative expression for ζ :

ζ (x) ≈ ζ0(x) + γ ζ1(x), (18)

where ≈ means that we neglect quadratic and higher-order
terms in powers of γ , ζ0 is the solution of (16) satisfying (10),
and

ζ1(x) :=
∫ x

1
G (x − y)f (|ζ0(y)|) ζ0(y)dy. (19)

It is easy to show that

ζ0(x) = N+eiK

2n
[(n + 1)einK(x−1) + (n − 1)e−inK(x−1)]. (20)

Next, we insert (18) in (12) to obtain

G±(K) ≈ G
(0)
± (n,K) + γG

(1)
± (n,K), (21)

where

G
(j )
± (n,K) := ζ ′

j (0) ± iKζj (0), (22)

for j = 0,1. The computation of G
(0)
± (K) is straightforward. It

gives

G
(0)
− (n,K) = N+eiKK(n2 − 1) sin(nK)

n
, (23)

G
(0)
+ (n,K) =

[
iN+ei(n+1)K(n + 1)2

2n

]
L(n,K), (24)

where

L(n,K) := e−2inK −
(

n − 1

n + 1

)2

. (25)

According to (24) and (25), in the absence of nonlinearity,
γ = 0, and we find a spectral singularity provided that the
right-hand side of (25) vanishes. This is in complete agreement
with the results reported in Refs. [12–14].

Let n0 and K0 be such that L(n0,K0) = 0, i.e., they
correspond to a linear spectral singularity, and η0 and κ0

be, respectively, the real and imaginary parts of n0, so that
n0 := η0 + iκ0. Then in view of (25) and the fact that for
typical gain media

η0 − 1 � −κ0 > 0, (26)
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we have

e−in0K0 = n0 − 1

n0 + 1
. (27)

Recalling that the gain coefficient g0 necessary for the
emergence of the spectral singularity is related to κ0 according
to g0 = −2K0 κ0/a, and taking the modulus square of both
sides of (27), we obtain

g0 = 1

2a
ln

1

|R|2 , (28)

where R := (n0 − 1)2/(n0 + 1)2. In view of (26), R ≈ (η0 −
1)2/(η0 + 1)2. Therefore, it gives the reflexivity of the slab,
and (28) coincides with the standard expression for the lasing
threshold condition [12]

g0 ≈ 2

a
ln

(
η0 + 1

η0 − 1

)
. (29)

To obtain the nonlinear generalization of (29), we solve (14)
perturbatively. Let n1 and K1 be such that, up to linear terms
in γ , (14) holds for

n = n0 + γ n1, K = K0 + γK1. (30)

Inserting (30) in (21), expanding the resulting expression for
G+ in powers of γ , and equating the coefficient of γ to zero
give

∂n0G
(0)
+ (n0,K0)n1 + ∂K0G

(0)
+ (n0,K0)K1 + G

(1)
+ (n0,K0) = 0.

(31)

Equation (27) simplifies the calculation of ∂n0G
(0)
+ (n0,K0) and

∂K0G
(0)
+ (n0,K0) enormously. The result is

∂n0G
(0)
+ (n0,K0) = N+eiK0K0

[(
n2

0 − 1
)
K0 − 2i

]
n0

, (32)

∂K0G
(0)
+ (n0,K0) = N+eiK0K0

(
n2

0 − 1
)
. (33)

The calculation of G
(1)
+ (n0,K0) is more involved. However, it

turns out that we can use (19), (22), and (27) to write it in the
form

G
(1)
+ (n0,K0) = −N+eiK0c2

n0

∫ 1

0
f (|N+cn0h(x)|)h(x)2dx,

(34)

where

cn0 := n0 + 1

2n0
, h(x) := ein0K0(x−1) + e−in0K0x.

For a Kerr nonlinearity (7), we can easily perform the
integral in (34) and use (27) to express G

(1)
+ (n0,K0) as

G
(1)
+ (n0,K0) = 8i|N+|2N+eiK0

(
4n2

0 − n∗2
0 − 3

)
K0

(
9n4

0 + n∗4
0 − 10|n0|4

) . (35)

We can determine the nonlinear corrections to the location of
the spectral singularities by substituting (32), (33), and (35)
in (31) and solving the resulting equation for any two of
Re(n1), Im(n1), and K1 in terms of the third.

To gain a better understanding of the consequences of (31),
we expand the right-hand sides of (32), (33), and (35) in powers

of κ0 and keep the leading-order term. This gives

∂n0G
(0)
+ (n0,K0) ≈ N+eiK0K0

[(
η2

0 − 1
)
K0 − 2i

]
η0

, (36)

∂K0G
(0)
+ (n0,K0) ≈ N+eiK0K0

(
η2

0 − 1
)
, (37)

G
(1)
+ (n0,K0) ≈ 3|N+|2N+eiK0

(
η2

0 − 1
)

4η3
0K0 κ0

. (38)

We also note that the gain coefficient g required to support a
nonlinear spectral singularity is given by

g = −2 K κ

a
≈ g0

[
1 + γ

(
κ1

κ0
+ K1

K0

)]
, (39)

where κ := Im(n) and κ1 := Im(n1).
Now suppose that we are interested in a nonlinear spectral

singularity corresponding to a Kerr nonlinearity that has the
same wavelength as its linear analog. Then K1 = 0 and (31)
together with (36) to (39) give

g ≈ g0

[
1 − 6

(
η2

0 − 1
)
γ |N+|2

η2
0

[(
η2

0 − 1
)2

K2
0 + 4

]
ln2

(
η0+1
η0−1

)
]

≈ g0

[
1 + 6 σ |N+|2

η2
0

(
η2

0 − 1
)

ln2
(

η0+1
η0−1

)
]

. (40)

Here in the last relation we have switched to the unscaled
nonlinearity parameter σ and used the fact that for typical
optical setups (η2

0 − 1)2/K2
0 ≈ 0.

Equation (40) implies that for a positive Kerr nonlinearity
parameter σ , which is usually the case [18], the presence of
the nonlinearity increases the necessary gain for producing a
spectral singularity. More importantly, it shows that the slab
acts as an amplifier for left-incident plane waves only if g

exceeds g0. In this case it emits an amplified transmitted plane
wave whose intensity is given by

1

2
|N+|2 ≈

(
g − g0

12σ g0

)[
η2

0

(
η2

0 − 1
)

ln2

(
η0 + 1

η0 − 1

)]
. (41)

Because this relation follows from our first-order perturbative
analysis, it applies for situations where σ |N+|2 � 1. Typically,
σ < 10−13 cm2/W which for a value of |N+|2 as large as
1GW/cm2 gives σ |N+|2 < 10−4. This shows that (41) is quite
reliable.

We can view (41) as a mathematical justification for the
well-known fact that lasers operate when the gain coefficient
is larger than g0. It is important to notice that in the linear
case the spectral singularity disappears as the value of the gain
coefficient exceeds g0 and the slab stops functioning as a laser.
This is not the case when we take into account the effect of a
Kerr nonlinearity with σ > 0.

We have performed a first-order perturbative calculation
of G−(K) and used the result together with (11) to compute
the amplitude parameter N− for the emitted wave from the
left-hand side of the slab. This calculation shows that whenever
we arrange the parameters of the system to generate a nonlinear
spectral singularity, the contribution of the terms of the order γ

to N− cancel one another and we find N− ≈ N+eiK. Therefore
similarly to the linear case, the wave emitted from the left-hand
side of the slab has the same amplitude and phase as the one
emitted from its right-hand side. This is a manifestation of the
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P symmetry of nonlinear spectral singularities established in
Ref. [16]. For the time-reversed system, it implies that a lossy
slab serves as a coherent perfect absorber provided that the
loss factor α has a numerical value that is larger than g0 and
the intensity |N+|2/2 of the incident coherent waves is given
by (41) with g replaced with α.

IV. CONCLUDING REMARKS

An interesting outcome of the search for the physical im-
plications of spectral singularities is a mathematical derivation
of the lasing threshold condition for an infinite planar slab of
gain material [12]. This is quite different from the standard
derivation of this condition that is essentially based on the
physical principle of conservation of energy [21]. It involves
determining the linear spectral singularities of a complex
barrier potential. In the present article we have addressed
the problem of locating nonlinear spectral singularities of
this potential and explored the physical consequences of their
emergence.

Our method is quite general and can be applied to almost
all nonlinearities of physical interest. For a Kerr nonlinearity it
provides a simple mathematical verification of the well-known

fact that the slab model we consider does not function as
a laser at the threshold gain g0. It starts emitting radiation
only when the gain coefficient exceeds g0. More specifically,
the first-order perturbative treatment of the nonlinear spectral
singularities of this model gives rise to a purely mathematical
derivation of an expression for the intensity of the emitted
radiation. This expression agrees with the well-known results
obtained using physical considerations, thus confirming the
remarkable relevance of the mathematics of spectral singular-
ities and their nonlinear generalization to the physics of lasers.
This is another striking example of what Wigner once called
“the unreasonable effectiveness of mathematics in natural
sciences.”
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