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Microscopic characterization of Lévy flights of light in atomic vapors
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We investigate multiple scattering of near-resonant light in a Doppler-broadened atomic vapor. We
experimentally characterize the length distribution of the steps between successive scattering events. The obtained
power law is characteristic of a superdiffusive behavior, where rare but very long steps (Lévy flights) dominate

the transport properties.
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I. INTRODUCTION

The diffusion model for the propagation of light has been
used as early as 1922 by Compton to describe the transport
of light in an atomic vapor [1,2]. Soon afterwards, however,
pioneering experiments by Zemansky on the decay of the
fluorescence emitted by an initially excited mercury vapor
have shown a deviation from the prediction of such a diffusion
model [3]. Kenty realized that the frequency change during
the scattering in a Doppler-broadened medium leads to lower
excitation probabilities for photons with frequencies far from
the center of the atomic resonance [4]. These photons can thus
propagate over larger distances and escape a finite size system
with increased probability. Soon afterwards, Holstein proposed
an integrodifferential equation allowing us to describe the
transport of light taking into account the distribution of step
lengths of the photons [5]. In the radiative transfer equation for
the light propagation of photons at fixed frequency, this step-
length distribution is an exponentially decreasing function,
with well defined mean-free path and higher moments. For the
diffusion model to fail, a divergence of the second moment
of the step-length distribution is required. Holstein showed
that if the frequency of the photons inside the atomic vapor
follows a Gaussian distribution (motivated by the Gaussian
velocity distribution of the atoms) the step-length distribution
of the photons has a divergent second moment, in line with the
observations of Zemansky. A similar model was developed
independently a few years later in the context of astrophysics
to describe the radiative transfer in stellar atmospheres out of
local thermal equilibrium [6-8].

If the step-length distribution of the photons P(x) asymp-
totically follows a power law,

P(x) — xi"’ X —> 00, (1)
with o > 3, the variance of P(x) is finite and the diffusion
regime is normal. If 1 < o < 3, the variance is not defined
any more and the regime is said to be superdiffusive. It has
been predicted [9] and demonstrated experimentally [10] that
the step-length distribution of light in resonant atomic vapors
follows a power law with o < 3.
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In this article we report on the detailed experimental study
of the length distribution of steps of quasiresonant photons
during their random walk in an atomic vapor. Particularly, we
measure this distribution in three distinct regimes: (i) The sin-
gle scattering regime, where photons with the same frequency
originating from a laser are scattered once outside the laser
beam volume, (ii) a double scattering regime, where photons
scattered once at 90° have a Doppler-broadened frequency
spectrum before we measure their step-length distribution,
and (iii) a multiple scattering limit, where photons have
undergone many scattering events before their step-length
distribution is measured. In the single scattering regime we
measure the step-length distribution and show that it still
carries the memory of the frequency spectrum of the incident
photons. We show that in the multiple scattering regime, on
the contrary, the emission spectrum converges to a stable one,
i.e., light “thermalizes.” Therefore the measurement of the
step-length distribution after several scattering events allows
us to characterize the transport properties.

The paper is organized as follows. In Sec. II we derive
the expression of the step-length distribution for resonant
photons scattered by Doppler-broadened atoms in the regime
of complete frequency redistribution and show that its variance
diverges, characterizing a superdiffusive transport of photons
in the vapor. In Sec. III we detail the experimental protocol
enabling us to measure the distance traveled by laser photons
between their first and second scattering by atoms of a rubid-
ium vapor and show that the obtained step-length distribution
exhibits indeed an infinite variance. However, the deviation
between the measurements and the predictions of our first
model leads us to refine the latter, in Sec. IV. We also illustrate
the peculiar nature of the first scattering event, due to the
memory that the photons keep of their initial frequency. We
show in Sec. V that this correlation vanishes for a sufficiently
large number of steps and that the corresponding step-length
distribution is indeed characteristic of a superdiffusion regime.
We conclude in Sec. VI.

II. STEP-LENGTH DISTRIBUTION IN A
DOPPLER-BROADENED ATOMIC VAPOR

A. Frequency redistribution and broadening of the absorption
profile by the Doppler effect

A two-level atom with velocity v, illuminated by light
of intensity well below its saturation intensity, elastically
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scatters the photons in its rest frame. Assuming that v is small
compared to the speed of light, a photon of frequency w in
the laboratory frame and incident along the direction e, has
a frequency w(l — v -e,/c) in the atomic rest frame. After
scattering along the direction €/, the frequency w’ of the photon
as seen by an observer in the laboratory becomes

Ve, v-e
154 =a)<1 — )(1 + ) )
Cc Cc

Thus, in a gas at nonzero temperature 7, the Doppler effect
contributes to the frequency redistribution of the incident light
during a scattering process. Other effects, such as inelastic
scattering by an isolated atom at rest or phenomena of
energy exchange during interatomic collisions [11], may also
contribute to the frequency redistribution.

Since the atomic scattering cross section strongly varies
with the frequency close to the atomic resonance, photons
shifted from resonance by Doppler effect may travel in
the medium a distance much longer than resonant photons.
However, the extinction cross section for a moving atom is
also shifted by the Doppler effect. The absorption profile ¥ (w),
inverse of the mean-free path ¢ at the frequency w, is therefore
determined by averaging over the atomic velocity distribution

L[ 1= 2) | Pya(uo)d
(@) —nof_oo Usc|:w< - C)] M, 1 (Vx)d vy,
3)

where n is the atomic density, Py, | is the Maxwell distribution
of atomic velocities along a direction x, and o is the atomic
scattering cross section at the frequency w(1 — v, /c) of the
light in the atomic rest frame.

From Beer-Lambert’s law, the probability P(x,w) that a
photon of frequency w travels a distance x in the medium
before it is scattered can be written

Y(w) =

P(x,0) = e/ e, 4

Lse(w)
The distribution P governing the length of a step is then
obtained by averaging this result over the spectrum ®(w) of
the light emitted in the preceding scattering event,

+oo
P(x) = / O(w)P(x,w)dw. (@)
0

This distribution remains unchanged during the random walk
of light, only if the emission spectrum ®(w) is independent
of the scattering event considered and, particularly, of the
frequency of the photon during the previous step. This is the
hypothesis of complete frequency redistribution (CFR), which
is verified when some collisional broadening mechanisms
dominate [12]. It is however incompatible with the description
of Doppler broadening previously made.

B. Simplification

Even if the CFR hypothesis is a priori not verified with
Doppler broadening, it is still valuable to make this assumption
in order to obtain analytical results. We suppose also that
the emission profile is proportional to the absorption profile,
which is the case in an infinite medium at thermodynamic
equilibrium [5]. In the limit where the atomic scattering cross
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section is described by a Lorentzian of width I' much smaller
than the Doppler width Awp, the absorption profile tends to a
Gaussian,
() 1 ol 1

W)= ———
Lo 2 27 Awp
where £y = 1/[ngos.(wp)] is the mean-free path that a photon
at resonance with the atomic transition of frequency wy would
have if all the atoms were at rest (zero temperature). The width
of the Doppler profile is

w—w) \2
( ©—®0 )?

1
e 2\ Bop

(6)

Awp = —/ —, (7)
c m
where kg is the Boltzmann constant, 7 is the temperature, and
m is the atomic mass. Moreover, by hypothesis,

1 ©=w0 2
—3( Aop )

O(w) = ®)

1
—e
LY, 2 Aa)D

By inserting the emission and absorption profiles [Egs. (6)
and (8)] into Egs. (4) and (5), we obtain the step-length
distribution (Fig. 1), whose asymptotic behavior obeys [5,9]

1
x2/In(x /)

It has a divergent second moment (x?), so that, in this
framework, the transport of light in an atomic vapor falls
under the scope of abnormal diffusion. One can show that
the obtained distribution verifies a generalized central limit
theorem [13]. Neglecting time-dependent aspects, we can
therefore describe the resulting transport of light in terms of
Lévy flights. Note that here P(x) = O(x2), so that the mean-
free path is always finite, in contrast to the case of Lorentzian
absorption and emission profile, where even the mean-free
path becomes infinite [9,14]. Note also that the asymptotic
behavior (9) is close to a power law. In particular, in the range
of x /¢y accessible to our experiments, there is no noticeable
difference between the numerically computed distribution and
apowerlaw P(x) = x~%,withae = 2.112 4 0.001 (confidence
interval 95%) (Fig. 1). In the following we will fit the computed
and measured distributions by such a power law with an
adjustable coefficient «.

P(x) ~ €))

III. MEASUREMENT OF THE STEP-LENGTH
DISTRIBUTION

A. Experimental setup

A simple, yet precisely designed experimental setup [15]
allows us to directly measure the distribution P(x) of the
length of the steps of photons between two scattering events
in an atomic vapor. A beam with a power of 0.5 mW, a
2 mm waist and a spectral width smaller than 1 MHz is sent
to a first cylindrical cell (18 mm diameter, 20 mm long) at
room temperature 7y = 20 °C containing a natural mixture of
rubidium isotopes (*>Rb : 72.17%, 8’Rb : 27.83%) [16]. The
beam is produced by an extended-cavity diode laser, stabilized
to the transition F' = 3 — F’ = 4 of the rubidium 85 D, line.

The atomic density in the cell is determined by the saturated
vapor pressure. Fine adjustment of the cell temperature
allows us to significantly change the atomic density and,
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FIG. 1. (Color online) (a) Step-length distribution (green, solid
line), in logarithmic scale on both axes, estimated numerically from
Egs. (4)—(8), for Gaussian emission and absorption profiles. It is
approximated by its asymptotic equivalent given by Eq. (9) (purple,
dashed line) and by a power law 1/x? (gray, solid line). The blue,
solid line shows the local slope of the step-length distribution,
which gives the coefficient « (right axis) of the power law x=
approaching the best the P distribution. The red frame represents
the typical window of experimentally reachable parameters. (b) The
same step-length distribution (green, solid line) in this experimentally
reachable window and in linear scale. It is compared to a fit by
an exponential law (blue, dashed line) and by a power law (red,
dashed line) given by Eq. (1) with« = 2.112 £ 0.001. We notice the
good agreement between the power-law model and the numerically
calculated distribution. (c) Evolution of the spectral profile of the
light as a function of the distance x in the atomic vapor. Photons in
the wings of the atomic line propagate over a longer distance than
photons at the line center.

consequently, the scattering mean-free path for resonant
light ¢(wp), while keeping the Doppler width Awp almost
unchanged. At Ty = 20 °C the atomic density in the first cell is
~9 x 10" m~3, and the mean-free path of the resonant light is
~70 mm. The optical depth in this cell is therefore at most 0.3
in any direction, which ensures that photons undergo at most
one scattering event, with a position uncertainty much smaller
than £(wyg).

From the radiation scattered in this first cell, two iris
diaphragms separated by 12 cm select a 2-mm-diameter beam
propagating in a direction orthogonal to the initial laser
(Fig. 2). This beam crosses a second cylindrical rubidium cell
(25 mm diameter, 75 mm long), with an angle of about 10°
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FIG. 2. (Color online) Experimental setup. A laser beam illumi-
nates along e, a first “source cell” containing a rubidium vapor where
incident photons are scattered at most once. A beam of scattered
light propagating in the orthogonal direction e, is selected by two
diaphragms and sent to a second rubidium cell, called observation
cell. The image of the fluorescence radiation from the second cell is
projected onto a cooled CCD camera. The intensity detected along
the axis of the incident beam gives the step-length distribution P (x).

with respect to the cell axis in order to prevent reflections at
the cell sides from superimposing on the incident beam. This
second cell is mounted on a heating plate that allows us to
adjust its temperature. We can adjust the mean-free path of the
resonant light, from 70 mm at 20 °C to 5 mm at 47 °C.

We form the image of the fluorescence from the observation
cell on a cooled CCD camera using a single lens (focal length
50 mm, diameter 25 mm), placed about 50 cm from the
observation cell. While the small solid angle of detection limits
the flux available for detection, it allows us to suppress any
vignetting effect and to obtain an excellent image flatness
[17]. The CCD camera, an Apogée AP2P, is equipped with
a KAF-1602E-1 Kodak sensor with 1024 x 1056 pixels, a
quantum efficiency of 60% at 780 mm, and a 14-bit dynamics.
Its temperature is maintained at about —6 °C by a Peltier cooler.
Each pixel on the recorded image corresponds to a size of
53.8 um in the observation cell.

In fact, three different experimental arrangements are used
(Fig. 3). By sending directly a resonant laser in the observation
cell, we can observe its exponential attenuation, characteristic
of the Beer-Lambert law, and deduce the mean-free path of the
resonant light (C1 configuration). The atomic density in the cell
is then obtained from Eq. (3). The second configuration is the
one detailed above (Fig. 2): Photons incident in the observation
cell have previously been scattered once in the source cell (C2
configuration). In the third experimental configuration (C3),
the laser illuminates a first rubidium cell (18 mm diameter,
30 mm long) heated to 36 °C, whose optical depth along the
long axis is 2.5. In this cell, photons are scattered on average
about 4 times before escaping. Photons propagating in the
direction perpendicular to the exciting laser beam are selected
by an iris diaphragm and sent to the source cell of configuration
C2. In configuration C3, the available flux for detection by the
CCD camera is extremely weak, on the order of 0.5 photon
per pixel per hour in the image areas the most distant from the
source (Fig. 4).

If the atomic density in the observation cell is weak enough
for the photon to be in the single scattering regime, the
detected intensity on the beam axis at the point of abscissa x
is proportional to the number of photons scattered after a step
of length x traveled in the observation cell. A section of the
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FIG. 3. (Color online) Images obtained for the different ex-
perimental configurations. (C1) A resonant laser (locked to the
F =3 — F’ = 4 transition) directly illuminates the observation cell.
(C2) The incident beam comes from the single scattering of a laser in
a first source cell (Fig. 2). (C3) Multiply scattered photons in a first
cell are used instead of the laser to illuminate the previous “source
cell.” For these three images, the temperature of the observation cell
is ~41°C, which corresponds to an atomic density in the cell of
5 x 10'® m™3 and a mean free path of 12 mm for resonant light
(white bar). Images C1 and C2 are obtained after a 30 min exposure
and a dark image subtraction. Image C3 is obtained from six raw
images with 5 h exposure each and four corresponding dark images,
according to the procedure detailed in Sec. III B1. The small dark
region on the left of each image is due to a mask, which hides possible
direct reflections of the incident beam off the glass of the observation
cell.

intensity detected along the axis of the incident beam (Fig. 5)
then gives the step-length distribution P(x). In practice, if the
atomic density in the cell is too weak, the attenuation of the
ballistic beam is not sufficient to characterize its behavior
(the width of the observation window represented in Fig. 1
decreases and its center is shifted to the low values of x /).

FIG. 4. Images obtained for weak flux conditions (C3 configu-
ration) via different processing. Gray levels have been inverted for
better visibility. (a) Raw image, obtained with a 5 h exposure time.
(b) After subtraction of a dark image. (c) Average of six raw images
(30 h total exposure), from which the average of four dark images
has been subtracted. (d) Signal obtained by median compositing of
six raw images, followed by subtraction of a median dark image.
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FIG. 5. (Color online) (a) Fluorescence in the observation cell
(inverted colors, C1 configuration). The intensity on and off axis is
obtained through averaging over 60 lines (red and blue rectangles,
respectively). The dashed lines represent the maximum width of
the ballistic beam, as defined by the iris diaphragms. The vertical
bar on the right represents the mean-free path of resonant photons.
(b) Vertical section of the image, where a central peak appears, related
to the single scattering of the incident laser, and a larger structure
(pedestal) due to multiple scattering.

It is therefore necessary to increase the atomic density, with
the drawback that the contribution of multiple scattering to
the detected signal may not be negligible anymore. There is
thus a tradeoff to find for the temperature of the second cell,
and multiply scattered light has to be taken into account in the
image analysis.

B. Image analysis
1. Noise reduction

The image analysis uses a preprocessing stage aiming
at removing biases and reproducible noise related to the
imaging and the electronics of the camera, but also some
nonreproducible artifacts. These procedures are particularly
delicate for the images obtained in the last experimental
configuration (with three cells) in conditions of extremely
weak fluxes.

The offset due to charges accumulated in a pixel during
the exposure time or added during the readout is efficiently
corrected by subtracting from the raw signal a “dark” image,
taken with the same exposure time and with the laser frequency
shifted out of the Doppler absorption bands. Possible stray
reflections are also eliminated with this procedure.

Fluctuating noises cannot be filtered out via such image
processing. At room temperature, the most significant of them
is the thermal noise. Its impact is limited by a Peltier cooler,
which keeps the sensor temperature at —6 °C. The noise related
to sources present in the system is here essentially due to the
photon shot noise and to fluctuations of the number of detected
electrons due to the direct impact of cosmic rays on the CCD
sensor [18]. Cosmic rays create locally important variations of
the detected intensity, but the number of visible impacts on an
image after a few hour exposure remains small. Thus, if several
images are taken, it is unlikely that several of them will have
impacts of cosmic rays on the same pixels. We can therefore
obtain an image clean from these impacts by taking for each
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pixel the median value of the intensity (Fig. 4). Although the
suppression of thermal noise is less efficient than using all
images for averaging, the obtained signal to noise ratio (SNR)
is sufficient.

2. Correction for multiple scattering

If we neglect multiple scattering in the observation cell,
the step-length distribution is simply given by the intensity
along the incident-beam axis. In practice, we add the signals
obtained in 30 (experiment with two cells) or 60 (three-cell
configuration) lines of the CCD sensor (1.6 to 3.2 mm in
the cell), and we average over the same number of pixels in
the x direction. This summation improves the signal-to-noise
ratio (by a factor of 60 for a value of the intensity obtained by
average over a 60 x 60-pixel square).

However, the intensity measured off-axis of the ballistic
beam is not zero, indicating that multiple scattering cannot be
neglected and thus affects the measurement of the intensity on
the ballistic-beam axis. Indeed, at 41 °C, the mean-free path
of the resonant photons is 12 mm and is comparable to the
radius of the observation cell (12.5 mm). However, the effect
of multiple scattering can be corrected. Indeed, the intensity
measured along the ballistic-beam axis can be written in the
form

I(x,0) = I1(x,0) 4 I,>2(x,0), (10)

where [; is the intensity due to single scattering of ballistic
photons and [,,>, is the intensity due to multiple scattering.
Slightly off-axis, only this later contribution remains. If we
assume a smooth variation of ,>,(x,d) on a distance d small
compared to the mean-free path of resonant photons, i.e.,
Li>2(x,d) = I,>2(x,0) for d < £(wp), we can use the off-axis
measurement to subtract the multiple-scattering contribution
from the intensity measured on axis. Therefore,

P(x) x I(x,0) — I(x,d). (11

This correction process is illustrated in Fig. 5. We have
performed Monte Carlo simulations to validate this correction
procedure, see Fig. 6 and Ref. [19]. Also, the shape of
the distribution P(x) estimated through this method remains
unchanged for measurements carried out with different atomic
densities in the observation cell, and therefore for different
amounts of multiple scattering (inset of Fig. 7).
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FIG. 6. (Color online) (a) Total intensity on the ballistic-beam
axis (dark blue) in C2 configuration, and estimate of P(x) (green)
after correction for multiple scattering [Eq. (11)]. (b) Validation of
the correction procedure by Monte Carlo simulations: The on-axis
intensity due to ballistic photons scattered only once (solid blue) is
in very good agreement with the signal resulting from the subtraction
of the off-axis intensity from the on-axis one (dotted green).
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FIG. 7. (Color online) Step-length distribution P(x) in log-log
scale. For a resonant and quasimonochromatic incident laser (gray
crosses), this distribution is well described by a decaying exponential
(blue dashed line) corresponding to Beer’s law. For an incident
radiation coming from a first scattering in the source cell (C2
configuration), P(x) exhibits a linear behavior in log-log scale,
characteristic of a power law (gray points). A fit yields P(x) ~ x7¢,
with @ = 2.41 £ 0.12 (red dashed line). This result is in very good
agreement with the computed step-length distribution (green, solid
line), see text. Inset: o coefficient measured for different atomic
densities nq in the observation cell. The result is almost constant,
demonstrating the effectiveness of the correction process for multiple
scattering.

IV. DISTRIBUTION OF THE FIRST-STEP LENGTH

From images recorded in the two-cell configuration (C2),
we obtain the step-length distribution of the first step for
photons scattered at 90° in the source cell. The corresponding
result is presented in Fig. 7. A linear fit of the distribution
P(x) plotted in log-log scale shows that, in the experimentally
reachable window and for sufficiently large x, P(x) behaves
as a power law,

P(x) ~x7% with o =241+0.12. (12)
Thus, with o < 3, the measured distribution has a diverging
second moment. Consequently, standard diffusion cannot
properly describe the transport of light in an atomic vapor.

If the complete frequency redistribution hypothesis were
verified, the measured law would govern the lengths of all steps
and this result would allow the classification of the light trans-
port as Lévy flights. In the case of Doppler broadening, photon
frequencies are redistributed around their initial frequency,
leading to a memory effect incompatible a priori with the
hypothesis of complete frequency redistribution. Furthermore,
the measured value of P(x) is significantly different from the
theoretical prediction « = 2.11 expected in the experimentally
reachable window (see Fig. 1) made for Gaussian emission
and absorption profiles. We thus have to take into account the
precise emission and absorption spectra to correctly describe
the experiment.

To calculate the length of the first step P; from Eq. (5), we
need to determine the absorption profile W of the rubidium
vapor, as well as the spectrum ®; gp- of the light scattered
along e,, at 90° of the direction e, of the incident laser in the
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source cell,
+o0
Pi(x) = / dw O o (W)W (w)e V@, (13)
0

The absorption profile is given by Eq. (3) and is independent
of the number of previous scattering events. The emission
spectrum however evolves and, for a first scattering event, is
given by

+00 +00 +00
O1,90: (@) CX/ da)’/ dvx/ dv, Oy(w")
0 — —00

X O‘SC|: <1 — —):| P 2(vx,vy)
c
><8|:a)—a)’<1——)(1+ >i|, (14)
c

where ®¢(w’) is the spectrum of the incident laser. The integral
over v, yields the probability that an atom absorbs a photon
of frequency wy = o'(1 — vy/c) in its rest frame. Knowing
that a photon of frequency w, has been absorbed, the integral
over v, yields the probability that it is re-emitted along e, with
frequency @ = wy(1 + vy /c). Py 2 is the Maxwell-Boltzmann
distribution of velocities along two directions. Finally, the
Dirac distribution in the integral expresses energy conservation
during the scattering process in the atomic rest frame.

Case of an infinitely narrow transition: For a monochro-
matic incident laser, and in the limit where the width I of
the atomic transition is negligible compared to the Doppler
width, the emission spectrum takes the Gaussian shape given
by Eq. (8). The simple model assuming identical Gaussian
emission and absorption profiles is thus relatively relevant. In
this model, for the distances x experimentally reachable, the
distribution P;(x) is well described with a power law with
parameter

a = 2.112 £ 0.001. (15)

Impact of the natural width of the transition: For two-level
atoms with a transition of finite natural width I, the scattering
cross section is a Lorentzian function with a full width at
half maximum I'. For the D, line of rubidium, we have
I'/2mr = 6.066 MHz. In this case, the distribution P;(x) can
be numerically estimated from Egs. (3), (13), and (14), taking
also into account the Lorentzian shape of the spectrum of the
initial laser (full width at half maximum ~1 MHz). A linear
fit in log-log scale gives then

o =2.27+0.04. (16)

The emission profile, visible in Fig. 8, keeps a shape close to
a Gaussian one. On the other hand, the absorption spectrum
is a Voigt profile, convolution of the atomic velocity Gaussian
distribution and the Lorentzian cross section [20]. Light
strongly detuned from the atomic resonance is absorbed more
efficiently than in the pure Doppler case. In the experimentally
accessible range, this results in an increase of the parameter
o describing the decay of the step-length distribution P;. For
larger x, we observe a “truncation,” i.e., a sharp collapse of
this distribution (inset of Fig. 8).

Impact of the temperature difference between the cells: In
our experimental setup the temperature of the observation
cell (T, =314 K) is slightly higher than the temperature
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FIG. 8. (Coloronline) Emission ®; ¢ (solid blue) and absorption
(dashed green) spectra for two-level atoms of natural width I'/27 =
6.066 MHz, at temperature 7' = 41 °C (semilogarithmic scale). The
red lines define the detunings at which the mean-free path is smaller
than 1 m. In this frequency range, emission and absorption spectra are
similar and close to a Gaussian curve. Inset: Step-length distribution
computed with these profiles, in log-log scale. A truncation at long
range is clearly observable.

of the source cell (77 =293 K). The absorption profile is
consequently broader than the emission one. This results
in a slight decrease of the P; distribution experimentally
accessible. Taking into account this temperature difference,
we numerically obtain

o =2.32+0.04. (17)

Impact of the multilevel structure of rubidium: The multi-
level structure of rubidium modifies the expression of the scat-
tering cross section. Assuming that the population is equally
distributed between the Zeeman sublevels of the hyperfine
ground states of rubidium, which is a good approximation for
a room-temperature vapor, we get

23 2F +1
o(w) = il
WS

2 F=1 F] QR+ 1)

SFr
X )
1 +4(w — wpp)?/ T2

(18)

The coefficients Sy are transition factors calculated from the
Clebsch-Gordan and the Wigner 3-; coefficients [16,21] and
wrp is the frequency of the transition between the hyperfine
ground state F and the excited hyperfine level F’.

Due to Doppler broadening, the laser excites all the transi-
tions from the fundamental level F' = 3 to the excited levels.
Part of the light may undergo inelastic Raman scattering, with
the atom going to state F = 2. The emission spectrum can
then be written

+0o0 +00 +00
O(w) oc/ da)’/ dvxf dvy Oy(w)

4

)\5222 2F +1

—2 =2 Fiml YroQF+1)
Sk
1 + 4’1 —v,/c) —

wp ]/ T?
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Sk
X—
3,8
> r—2 SFF

x8|:a)—a) (1 — ?><l + > —wFle], (19)

where F| and F, are the initial and final states of the scattering
process, F' is the intermediate excited state, and wp,f, is
the hyperfine splitting between the two ground states. The
second term of the second line corresponds to the Raman
scattering probability. Due to this process, the atomic emission
spectrum is the superposition of two quasi-Gaussian peaks,
with a frequency separation wp, , ~ 3 GHz. The distribution
P, computed from this expression is plotted in Fig. 7. The
atomic density used in the expression of the absorption profile
is determined in an independent experiment (measurement of
the attenuation of an incident laser beam in C1 configuration)
so that the only adjustable parameter of the model is the
incident intensity. We notice that the agreement between the
model and the experiment is excellent. A fit of the computed
distribution yields

PM,Z(vaUy)

o =2.4510.04. (20)

Summary: The natural width of the scattering transition,
the complex structure of energy levels of the scattering atoms,
and finally the temperature difference between the source and
the observation cells in the experiment, lead to corrections
in the shape of the step-length distribution P relative to the
predictions of the model at the origin of our study. All tend
to accelerate the decay of this distribution (see Table I). By
including these effects, the model is in excellent agreement
with the experimental observations.

V. MULTIPLE SCATTERING REGIME

A. Light thermalization

The spectrum of light scattered by the atoms is likely to
evolve during the diffusion process. Particularly, the frequency
redistribution induced by the Doppler effect tends to broaden
the spectrum at each step so that the measurement performed
on the first step does not actually allow us to draw a rigorous
conclusion about the system behavior in the multiple scattering
regime. Light “thermalization,” i.e., the convergence of the
spectrum towards a stable one, should however occur in the
case where the natural width of the transition is much smaller
than the Doppler one Awp. Indeed, a photon with frequency
detuning A > Awp can only be scattered by a very fast atom,

TABLE I. Impact of the different effects affecting the value of the
coefficient o of the power law x~* that better models the first-step
distribution P;(x), in the distance range considered (2-6 cm) and at
T =41°C.

Situation o

Two-level atoms

and infinitely narrow transition
+ Natural width

+ Temperature difference

+ Multilevel structure

2.112 £ 0.001 (num.)
2.27 £ 0.04 (num.)
2.32 + 0.04 (num.)
2.45 + 0.04 (num.)
2.41 £ 0.12 (expt.)
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with its velocity v; along the incident-light axis much larger
than the width Av of the Maxwellian velocity distribution. Its
detuning after scattering is essentially imposed by the atom
velocity along the re-emission axis, statistically smaller than
v1. The frequency of the scattered photon is therefore brought
back closer to the atomic resonance.

In order to compute the evolution of the atomic emission
spectrum with the number of scattering events, we consider a
photon with initial frequency wy, submitted to a random walk
in an infinite gas, and we compute the probability ®,(w) that
the photon frequency is w after n scattering events. ®,(w) is
obtained by averaging the emission spectrum over all possible
scattering angles [12,22]. As we assume the medium to be
infinite, the photon cannot escape and is therefore always
scattered, regardless of its frequency w at a given instant. Using
the joint redistribution function R, already averaged over the
angles, and giving the probability that a photon of frequency
o' is scattered and re-emitted at frequency w, we get

+oo R(w,)
O = [ 0,0 g ot CANCY

where W is the normalized absorption profile [23]. In the

simple case of two-level atoms with an infinitely narrow
transition, the joint redistribution function is given by

Ri(w,0) = jerfe(X), (22)

where X = max(|-&2 | |“’ —n |) [12]. The normalized,

V2Aw
Gaussian absorption proﬁle 1s glven by Eq. (8). As expected,

an emission spectrum with the same shape remains unchanged
through Eq. (21), which suggests that the measurement of
the first-step length distribution previously performed gives a
good estimate of the step-length distribution in the multiple
scattering regime, due to the very specific selection of the
first-scattering angle.

If we take into account the finite width I' of the atomic
transition, the redistribution function is

3 oo 2
Rij(w,0)=n"2 e "
o
X+u X —u
X | arctan — arctan du,
a a

(23)

where X = mln(|? 20| |‘” —0 |) and a = I'/(v/8Awp) is

the Voigt parameter [24]. Flgure 9 shows the evolution of the
emission spectrum ®,,, numerically computed from Eqs. (21)
and (23) as a function of the number of steps. The figure
highlights the convergence of the spectrum to the normalized
Voigt absorption profile, faster for frequencies close to the line
center than for frequencies in the wings of the distribution.
Thus, after a few steps, the photon losses the memory of its
initial frequency.

Finally, we can take into account the multilevel structure
of rubidium by averaging the contributions of all hyperfine
transitions, weighted by their transition factor. Including the
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FIG. 9. (Color online) Probability ®,(w) that the frequency of
a photon is w, as a function of the number of steps n. The initial
spectrum (light gray) is the Lorentzian spectrum of the laser used in
the experiment, at resonance. We notice that the emission spectrum
converges to the Voigt absorption profile (dashed green). Inset: Same
emission spectra, for an initial laser detuned two Doppler widths from
resonance (440 MHz).

inelastic Raman scattering, we obtain

4

F

3 3
=2 F,=2 F'=1 ZF:2(2F +1) ZF:Z SFF

X Rij(w — wp,p, 0 — @p p). (24)

We thus deduce the evolution of the emission spectrum via
Eq. (21), and then the distribution P, governing the length of
the step n from Egs. (3), (5), and (18). Following the same
fitting procedure as before, we obtain the coefficient o of the
power law that better models the distribution P, in the range
of distance experimentally accessible. The evolution of this
coefficient with the number of steps is reported in the inset of
Fig. 10. As the number of steps increases, the profile wings
get broader and this coefficient decreases until it reaches, in

10%—<—
?\
el T
"‘~:’\\~!
i NN
\\0’;\
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FIG. 10. (Color online) Step-length distribution in multiple scat-
tering regime (log-log scale), measured in the C3 configuration (black
dots). The measurement is compared to a fit by an exponential law
(dashed blue) and by a power law (dashed red) P(x) ~ x~ with
o = 2.08 £ 0.13. Inset: Evolution of the coefficient « as a function
of the number of steps. The numerical result (red dots) is compared
to the measurement in configurations C3 (red triangle) and C2 (green
triangle). In the latter case, a model without angular averaging is more
appropriate (green dot).

PHYSICAL REVIEW A 87, 063837 (2013)

the region experimentally accessible, a limit value close to the
value obtained for two purely Doppler emission and absorption
spectra.

B. Measurement

Due to the thermalization process, a single distribution
P(x) governs the step length during multiple scattering in
an infinite medium. The experimental configuration C3 allows
us to prepare photons having undergone several (typically 2
to 6) scattering events before we measure the step-length
distribution, and thus to approach a measurement of the limit
distribution P(x) (Fig. 10). We measure
with

P(x) ~x°, o =2.0840.13. 25)

This result agrees very well with our numerical estimate of the
distribution P(x) of the step length in the multiple scattering
regime in the distance range experimentally accessible.

VI. CONCLUSION

The shape of the distribution governing the step length of
the random walk of quasiresonant light in a dilute alkali-metal
atomic vapor at room temperature is entirely determined by
the atomic emission and absorption spectra and evolves, with
the emitted light spectrum, during the diffusion process. We
have computed this evolution and we have shown that the step-
length distribution converges to a limit law when the number
of steps grows. We have also presented direct measurements
of the distance traveled by light between two scattering events,
first for the first step directly following the scattering of
photons generated by a laser source, then for photons having
experienced several scattering events and having thus lost
memory of their initial frequency. The results are in very good
agreement with our models taking into account, beyond the
Doppler effect, the natural width of the transitions and the
multilevel structure of rubidium 85. Above all, they show that,
in the distance range experimentally accessible, the step-length
distribution in the multiple scattering regime is described by a
power law P(x) ~ x~% with « < 3. Thus, the second moment
of this distribution diverges. Consequently transport of light in
the stationary regime can be described by a Lévy-flight model.

A few important questions remain open, notably related
to the temporal dynamics of abnormal diffusion of light in
an atomic vapor or to the impact of correlations between
steps. Most of known systems giving rise to a superdiffusive
regime are spatially inhomogeneous, and the existence of
these correlations is therefore inevitable. Their impact on
the transport properties may however be very limited [25].
In atomic vapors, correlations can be suppressed, provided
the regime of complete frequency redistribution is achieved.
Addition of a buffer gas in rubidium cells may enable one
to get close to this condition [26]. It would affect the shape
of the emission and absorption spectra, which could become
Lorentzian, leading to an asymptotic decay of the step-length
distribution too slow to ensure that the scattering mean-free
path remains defined.

Finally, atomic vapors constitute a model system, of
simple experimental implementation, that may enable the
characterization of different regimes of abnormal transport.
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This work shows that the microscopic element constituted by
the step-length distribution is as experimentally accessible as
macroscopic quantities characteristic of the transport, such as
the diffuse transmission through a sample [27,28].
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