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Optical impulse response of silica microspheres: Complementary approach to
whispering-gallery-mode analysis
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We use frequency comb interferometry to simultaneously obtain the optical impulse responses and wide-band
transmission spectra of silica microspheres, as they together provide a more complete description of light
dynamics inside the resonator. The grouping of periodic cavity ring-down pulses in the impulse response provides
confirmation that small asphericities give rise to a precession of the orbit of the light pulse propagating along the
inner surface of the microcavity. This effect also strongly depends on coupling conditions. Moreover, we notice
the presence of secondary pulses associated with modes of higher radial quantum number. All these features
bring valuable information on the optical properties of microspheres.
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I. INTRODUCTION

Optical microresonators are key elements in several areas
of fundamental and applied sciences, such as optoelectron-
ics, cavity quantum electrodynamics, optical filtering and
switching, wavelength-division multiplexing, biosensing, and
nonlinear optics [1]. When using dielectric microspheres as
sensors, the mechanism for detection is often the spectral shift
of whispering-gallery-mode (WGM) resonant frequencies.
This technique is capable of detecting various changes in
the sphere’s environment such as analyte adsorption [2–4],
refractive index [5] and temperature [6] variations, and
accelerations [7]. Still, specific information on the nature
of the perturbation is generally limited since most analyses
consider only a narrow frequency band. On the other hand,
simultaneously monitoring several WGMs on a wide spectral
band increases the number of parameters available, enabling
a better characterization of the environment probed by the
sphere [8–10].

To overcome the challenge of analyzing a large number
of modes, time-domain analysis can be considered. To do so,
many methods have been developed in the last decades. For
instance, cavity ring-down of a light pulse is a well-known
phenomenon [11] used to measure resonator characteristics,
especially when its energy storage is very efficient [12]. Other
methods also exist based on the sweeping of the resonator
length [13,14] or of the input laser frequency [15–17]. Using
pulses to probe a resonator is a more direct way to measure
its impulse response, but basic modulators produce pulses
lasting longer than the round-trip time: a careful analysis
accounting for the coupling properties is thus required [18,19].
Durations shorter than the round-trip time can be achieved
with femtosecond laser sources [20,21], adding the benefit of
a larger bandwidth exciting multiple modes at once. More-
over, using radio frequency modulation, the optical impulse
response in the time domain can be readily obtained from
the phase-sensitive transmission or reflection spectroscopy of
resonators [22,23]. It should be noted that whenever the Hilbert
transform is applicable, the frequency spectrum modulus alone
suffices to compute the impulse response [24]. Recently, the
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powerful technique of frequency comb interferometry [25] has
been applied to directly probe the impulse response of glass
microspheres [26]. In spite of all this progress, an elegant
description of the observed light pulse dynamics in both time
and frequency domains is still missing.

In this paper, we fully relate the features of the transmission
spectrum (frequency-domain analysis) to the optical impulse
response (time-domain analysis) of single silica microspheres.
We first describe the propagation of light via the impulse
response, which can be intuitively linked to the pulse trajectory
in the microresonator. Precession, along with cavity ring-
down, are observed with improved accuracy and thoroughly
explained. We then make the comparison with the frequency
domain. Since the time-domain data are obtained with an
unprecedented level of detail, we resolve slightly different
group delays introduced by different radial modes. We finally
discuss how modifications of the coupling conditions affect
the various features observed in the impulse response and the
frequency spectrum.

II. METHODS AND MATERIAL

The complete setup and its dispersion correction algorithm
is essentially the same as in [26]. The diameters of the silica
microspheres vary from 60 to 300 μm. Using a micrometric
translation stage, a single microsphere is brought into contact
with a 4-μm tapered fiber to induce coupling between
microsphere and fiber modes. They stay in contact due to
various adhesion forces [27].

The microspheres are probed with an interferometric setup
using two frequency comb lasers (Fig. 1). One comb excites the
microresonator producing a periodized version of its impulse
response. The second comb is used to optically sample the
probe signal, such as to take a sample at a different and known
time delay for each repetition. The optical impulse response,
which is convolved with the mutual coherence function of the
two combs, is obtained over a duration of more than 10 ns,
with a resolution of about 80 fs.

This 10-ns window comes from the 100-MHz repetition rate
of the combs defining the spectral mode spacing and hence the
spectral resolution of the measurement. The main strength of
the setup is its high measurement rate, allowing to obtain up to
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FIG. 1. (Color online) This interferometric measurement tech-
nique provides the optical impulse response of the probed micro-
sphere, from which the complex spectrum can be deduced over
the bandwidth of the combs, which are centered around 194 THz.
The setup includes two frequency comb lasers. One laser is sent
through the tapered fiber where it is coupled to the microsphere.
The other laser, having a slightly different repetition rate, is sent
through a reference fiber. The two signals are then combined in a fiber
coupler. Both combs are also sent to a referencing stage to determine
accurately the timings of the measurements [25]. LPF: low pass filter;
ADC: analog to digital converter; RF amp.: radio frequency amplifier.

100 spectra per second over the full 100-nm comb bandwidth.
Several modes can thus be tracked simultaneously in spectral
amplitude and phase, as well as in the time-domain impulse
response. If needed, successive measurements can be averaged
to improve the signal-to-noise ratio.

III. RESULTS

The impulse response is connected to the complex spectrum
by the Fourier transform. In the spectral domain, the interfero-
metric measurement yields the resonator transfer function (in
magnitude and phase) multiplied by the combs’ cross-spectral
density. In the time domain, the measurement consists of
the resonator’s impulse response convolved with the combs’
mutual coherence function. These two complementary views
provide different perspectives on the resonator’s physics.

FIG. 2. (Color online) Optical impulse response of a 155-μm
silica microsphere as measured with our dual frequency comb setup.
The amplitude of the impulse response is normalized with respect
to the pulse that stays in the fiber and reaches the detector without
having entered the sphere. �t = 2.32 ps is the time the light pulse
takes to complete a single revolution. T = 52.7 ps is the observed
period between recurring groups of pulses. Zooms on the (b) first
pulses and on the (c) first recurring cluster are shown.

Whereas the spectrum directly shows the resonant modes, the
time-domain analysis better highlights the temporal evolution
of the electromagnetic field within the cavity. Figure 2 shows
the measured impulse response of a 155-μm silica microsphere
and Fig. 3, its associated transmission spectrum. Many features
are visible in the impulse response.

First, the impulse response presents a gradual decrease
in intensity as time advances [Fig. 2(a)]. This effect is the
time-domain counterpart of the width of resonances in the
frequency spectrum: it is thus quantified by the quality factor.
A microsphere having modes with higher Q factors will
exhibit a longer ring-down in its impulse response. Since the
measured Q factor depends not only on cavity loss but also
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FIG. 3. (Color online) Transmission spectrum of a 155-μm silica
microsphere, computed from its impulse response shown in Fig. 2.
FSR = 433 GHz is the spacing between consecutive � = |m| modes,
whereas �f = 19.2 GHz is the spacing between m modes.

on resonator-fiber coupling, increasing the fraction of energy
coupled from the tapered fiber to the resonator shortens the
cavity ring-down. The signal-to-noise ratio of the impulse
response must therefore be sacrificed to observe a longer
ring-down, as less light is initially coupled into the resonator.

The first peak in Fig. 2(b) (out of scale) corresponds to
light that stays in the fiber and that directly reaches the
detector without coupling in the resonator. The observed
recurring peaks come from the coupled pulse traveling along
the circumference of the sphere [20,28], recoupling with the
tapered fiber after each of the first few revolutions. In this
geometrical paradigm, the detected pulses are thus separated
by �t , which is the time taken by pulses to circumnavigate
the sphere. This group delay is linked to the resonator modal
structure through the group velocity vg

�t = 2πa

vg

= 2πa

dω/dk
, (1)

where a is the radius of the sphere, ω is the angular frequency,
and k is the wave number. To estimate dω/dk, one needs to
project the pulse onto the sphere’s orthogonal modes. When
only considering degenerate m modes of a perfect sphere with
radial quantum number1 n = 1, the group velocity becomes

vg = dω

dk
≈ �ω�

�k
= 2π (f�+1 − f�)

[(� + 1) − �]/a
. (2)

Equation (1) then becomes

�t ≈ 1

f�+1 − f�

= 1

FSR
. (3)

The quantity f�+1 − f� is often named the free spectral range
(FSR) in analogy to the constant mode spacing of Fabry-Perot
resonators. Obviously, the resonators used in our experiment
cannot be made perfectly spherical. Consequently, m modes
appear within each FSR of the computed spectrum, as shown

1The quantum numbers are such that m is the number of oscillations
along the equator, � − |m| is the number of nodes on a meridian, and
n is the number of maxima in the radial direction.

in Fig. 3. Nevertheless, the equation �t × FSR = 1 holds. For
instance, with our 155-μm sphere, �t = 2.32 ps and FSR =
433 GHz as seen in Figs. 2 and 3. When dispersion is low, the
FSR can be regarded as constant for a given n. Our data suggest
that dispersion is negligible in our experiment: the pulses do
not undergo significant widening in the impulse responses.

Another interesting feature found in the measured impulse
responses is the existence of groups of pulses. Figure 2(c)
displays one of these clusters. This phenomenon is caused
by a precessional effect: the slight ellipticity of the resonator
affects the propagation of the energy within the cavity. After
each revolution around the cavity, the light pulse does not
come back exactly where it was one revolution before. In
other words, the trajectory of the light pulse precesses: it takes
several revolutions before the coupling with the fiber becomes
optimal again. The precession creates pulse clusters with a
period T , as shown in Fig. 2. This period is directly related by
the Fourier transform to the average separation �f between
two consecutive m modes: T �f = 1. This is confirmed by the
155-μm sphere used in our experiment having T = 52.7 ps and
�f = 19.2 GHz. The separation �f is, in general, a function
of geometry and quantum numbers n, �, and m. For instance,
the frequencies of nondegenerate m modes in a spheroidal
resonator are given by [29]

f�m ≈ f�

[
1 − e

6

(
1 − 3m2

�(� + 1)

)]
, (4)

where e is a constant that quantifies the ellipticity in the polar
direction and f� is the frequency of the degenerate �th mode
as if the resonator had been a perfect sphere. The quantity �f

is obtained by differentiating with respect to m

�f ≈ �m
df�m

dm
= e

(
f�

�

) (
m

� + 1

)
, (5)

where �m = 1. Our data show that �f is nearly constant
over the measured spectrum bandwidth. Looking at Eq. (5)
leads to the same conclusion: since the microsphere is
coupled near its equator, the average ratio m/(� + 1) ≈ m/�

is close to unity. Furthermore, the fact that the FSR is nearly
constant in the measured spectrum implies a constant f�/�

ratio. Precession in the context of WGMs has already been
studied [28,30–32]. However, previous work focused mostly
on precession involving a single or a limited number of
modes. In our setup, all modes within the combs’ bandwidth
are excited at the same time. The many evenly spaced m

modes give rise to a time-dependent precession with period
T = 1/�f . To illustrate this, Fig. 4 compares the trajectories
of a Gaussian pulse built from modal superposition in perfect
and deformed spheres. An asymptotic expansion was used
to obtain the solutions of the WGM characteristic equation
[33], Eq. (4) providing the perturbed mode frequencies in the
deformed case. It should be noted that the explanation for
the precession given here is not the same as the one provided
in [28], where the pulse’s unclosed trajectory lies on a constant
plane. Our results show that the orbital plane precesses with a
period T . Our explanation implies that no such precession must
occur when all m modes are degenerated. The same principle
applies to system having no quantum number m, such as ring
resonators [24].
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FIG. 4. (Color online) Computer simulation showing the path
taken by a Gaussian pulse in (a) spherical and (b) spheroidal
resonators of mean radii a, for four revolutions. Decomposing the
pulse into its modal components, multiplying them by exp(jω�mt),
then summing them back yields the trajectory of the pulse. The
frequency spacing between m modes in a deformed sphere causes
a precession in the pulse’s orbit.

The high temporal resolution of our experimental setup
makes secondary pulses visible in the optical impulse re-
sponse, as shown in Fig. 5. After several revolutions in the
microsphere, the light pulse has split, giving rise to additional
pulses of lower intensity. More of these additional pulses
can be distinguished for larger microspheres, as shown in
Fig. 5(b). We demonstrate here that the additional pulses are
formed by modes having n > 1. For each possible value of
n, a set of modes can be formed from all modes having this
particular radial quantum number value. Each set of modes
has its own FSR, and thus its own group delay. To illustrate
this, the frequencies of transverse electric (TE) and transverse
magnetic (TM) modes with n ∈ [1,6] were computed using

FIG. 5. (Color online) Secondary pulses can be seen in the optical
impulse response of silica microspheres, and are more numerous for
larger resonators. (a) The pulses after 20, 21, 22, and 23 revolutions
around a 155-μm microsphere are shown. (b) The pulses after 27,
28, 29, and 30 revolutions around a 280-μm microsphere are shown.
The apparent splitting is caused by the dependence of the FSR on the
radial quantum number n.

FIG. 6. (Color online) The computed arrival times of secondary
pulses, each formed by a set of modes having the same radial quantum
number n (blue dashed lines) fit the experimental data (red curve). The
figure shows a split pulse after its 29th revolution around a 280-μm
microsphere.

the WGM characteristic equation. The analysis was limited
to modes being in the spectral range of our setup. FSRs were
then estimated for each value of n and each polarization state.
Finally, the expected arrival times of pulses were computed
with Eq. (3). Figure 6 shows the agreement between this
computation and experimental data after 29 revolutions in
a 280-μm sphere. On one hand, the difference between TE
and TM pulse arrival times is not observed as it is of the
order of few femtoseconds, thus smaller than the resolution
of our setup. On the other hand, a change in the radial mode
number has a more significant and clearly visible effect. For
the selected diameter and revolution number, the experiment
yields a 0.65-ps delay between n = 1 and n = 2 pulses while
the computation predicts a 0.66-ps delay.

Up to this point, we only considered the case where a
microsphere was coupled to a tapered fiber in a specific
configuration: the fiber touches the sphere at and parallel
to its equator. Changing these conditions affects the features
discussed previously, each to a different degree.

The position of the tapered fiber relative to the microsphere
can be described by two parameters: the latitude on the sphere
at which there is contact with the fiber and the angle the fiber
forms with the equator of the sphere. Figure 7 shows that the
latitude barely affects the time �t taken by the light pulse to
circumnavigate the cavity. Instead, in aspherical resonators,
the latitude significantly changes the period of precession T

by modifying the shape of the unclosed path taken by the light
pulse. The groups of pulses are closer to each other when the
tapered fiber is further from the equator. Also, the number
of pulses within each group is significantly reduced at higher
latitudes. The coupling conditions determine the quantity of
energy transferred from the tapered fiber to the different cavity
modes [34–38]. Increasing the latitude at which the sphere is in
contact with the tapered fiber allows WGMs of higher � − |m|
values to be coupled. Because lifting the m-mode degeneracy
depends on quantum numbers n, �, and m, high-latitude (high
� − |m|) modes need not have the same spectral separation
�f as low-latitude (low � − |m|) modes. This explains why
the rate of precession differs for both situations. The latitude
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FIG. 7. (Color online) The period of precession T decreases when
the contact between the optical tapered fiber and the microsphere is
not at the equator of the latter, while the delay between each pulse
�t remains roughly the same. Also, there are fewer pulses in each
cluster. (a) shows the impulse response of a 100-μm sphere coupled
at its equator to the tapered fiber, whereas for (b) the latitude of the
contact is of about 30◦.

was modified both ways, north and south from the equator
(Fig. 1), yielding similar results.

A modification of the coupling angle affects the impulse
response in the same way as a change in latitude, but to a
smaller extent. The angle must at least be 20◦ for these effects
to be observed at all.

IV. CONCLUSION

The optical impulse response of a microsphere provides a
complementary perspective to the typical WGM transmission
spectrum that proves very useful to consolidate the com-
prehension of the dynamics of light in spheroidal cavities.
The time-domain approach is better suited to describe the
propagation of light pulses inside a resonator, along with its
precession caused by asphericities. It clearly shows features
that are difficult to see or quantify in the spectral domain,
such as a significant presence of modes of higher radial
quantum number. In addition to asphericities, the coupling
conditions between the tapered fiber and the microsphere
modify the precession trajectory and thus the impulse response
and spectrum.

The study of the time-domain features described in this
article sheds a new light on spherical resonators. It comple-
ments the information provided by the transmission spectrum,
which is also available with our measurements. We believe
that combining time- and frequency-domain measurements
can only reinforce the knowledge basis on microresonators
and their interaction with their surroundings.
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